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Experiments #3: 

 

Objective: 

1. Measurement of dead time 

2. To investigate the statistics related to measurements with a Geiger counter

Apparatus:  

• Set-up for ST-350 Counter  

• GM Tube and stand  

• Shelf stand, serial cable, and a source holder 

• Radioactive Source (e.g., Cs-137, Sr-90, or Co

 

 

 

 

 

 

 

 

Fig. 1 Experimental set up for 

Dead Time  

 In nearly all detector systems, there will be a minimum amount of time that separates 

that they may be recorded as two separate pulses. In some cases the limiting time may be set by processes 

in the detector itself, while in other cases the limit may arise due to the delays associated with the 

electronics. This minimum time separation is usually ca

Because of the random nature of radioactive decay, there is always some probability that a true event will 

be lost because it occurs too quickly following a preceding event. Two models of dead time are in 

common use, categorized on the basis of paralyzable and nonparalyzable response of the detector. The 

fundamental assumptions of the two models are illustrated in Fig. 3. At the 

scale is shown on which six randomly spaced events in the 

figure is the corresponding dead time behaviour of a detector to be nonparalyzable. A fixed time 

assumed to follow each true event that occurs during the “live period” of the detector. True events that 

occur during the dead period are lost and assumed to have no effect whatsoever on the behaviour of the 

 

Experiments #3:  Dead time and nuclear counting statistics

To investigate the statistics related to measurements with a Geiger counter: Poisson and Gaussian distr

stand, serial cable, and a source holder  

90, or Co-60)   

Fig. 1 Experimental set up for studying dead time and counting statistics

In nearly all detector systems, there will be a minimum amount of time that separates 

y may be recorded as two separate pulses. In some cases the limiting time may be set by processes 

in the detector itself, while in other cases the limit may arise due to the delays associated with the 

electronics. This minimum time separation is usually called the dead time of the counting system. 

Because of the random nature of radioactive decay, there is always some probability that a true event will 

be lost because it occurs too quickly following a preceding event. Two models of dead time are in 

se, categorized on the basis of paralyzable and nonparalyzable response of the detector. The 

fundamental assumptions of the two models are illustrated in Fig. 3. At the centre

scale is shown on which six randomly spaced events in the detector are indicated. At the bottom of the 

figure is the corresponding dead time behaviour of a detector to be nonparalyzable. A fixed time 

assumed to follow each true event that occurs during the “live period” of the detector. True events that 

r during the dead period are lost and assumed to have no effect whatsoever on the behaviour of the 

statistics 

Poisson and Gaussian distribution  

counting statistics 

In nearly all detector systems, there will be a minimum amount of time that separates two events in order 

y may be recorded as two separate pulses. In some cases the limiting time may be set by processes 

in the detector itself, while in other cases the limit may arise due to the delays associated with the 

of the counting system. 

Because of the random nature of radioactive decay, there is always some probability that a true event will 

be lost because it occurs too quickly following a preceding event. Two models of dead time are in 

se, categorized on the basis of paralyzable and nonparalyzable response of the detector. The 

centre of the figure, a time 

detector are indicated. At the bottom of the 

figure is the corresponding dead time behaviour of a detector to be nonparalyzable. A fixed time τ is 

assumed to follow each true event that occurs during the “live period” of the detector. True events that 

r during the dead period are lost and assumed to have no effect whatsoever on the behaviour of the 



detector. In the example shown the nonparalyzable detector would record four counts from the six true 

events. In contrast, the behaviour of a paralyzable det

dead time τ is assumed to follow each true interaction that occurs during the live period of the detector. 

True events that occur during the dead period are not recorded but they 

period τ following the lost event. In the example shown, only three counts are recorded for the six true 

events. The two models predict the same first

They are in some sense two extremes

display a behaviour that is intermediate between these 

counting system may depend on the physical processes taking place in the detector itse

introduced by the pulse processing and recording electronics. 

 If the system dead time is τ, and the measured count rate is m , then the true count rate n

predicted by the two models can be expressed as 

Nonparalyzable Model:

Paralyzable Model:

The derivations of the above results are given in Ref. 1. You may sh

rates ( � << 1/τ ) both models give the same expression for n . In the present experiment we will 

utilize the nonparalyzable model in the calculation of true counts and the dead time 

 

 

 

 

 

 

 

 

 

 

 

A commonly used method for dead time measurements is known as two source method. The method is 

based on observing the counting rate from two sources individually and in combination. Because the 

counting losses are nonlinear, the observed rate due to the co

of the rates due to the two sources counted individually, and the dead time can be calculated from the 

discrepancy.  

detector. In the example shown the nonparalyzable detector would record four counts from the six true 

events. In contrast, the behaviour of a paralyzable detector is shown along the top line of Fig. 3. The same 

 is assumed to follow each true interaction that occurs during the live period of the detector. 

True events that occur during the dead period are not recorded but they extend the dead time by

 following the lost event. In the example shown, only three counts are recorded for the six true 

events. The two models predict the same first-order losses and differ only when true event rates are high. 

They are in some sense two extremes of idealized system behaviour, and real counting system will often 

that is intermediate between these extremes. The detailed 

counting system may depend on the physical processes taking place in the detector itse

introduced by the pulse processing and recording electronics.  

, and the measured count rate is m , then the true count rate n

predicted by the two models can be expressed as  

Model:  � � 	 �
����	

               (1) 

Model:          � � �	�
�             (2) 

The derivations of the above results are given in Ref. 1. You may show that for low counting 

 ) both models give the same expression for n . In the present experiment we will 

utilize the nonparalyzable model in the calculation of true counts and the dead time 

A commonly used method for dead time measurements is known as two source method. The method is 

based on observing the counting rate from two sources individually and in combination. Because the 

counting losses are nonlinear, the observed rate due to the combined sources will be less than the sum 

of the rates due to the two sources counted individually, and the dead time can be calculated from the 

detector. In the example shown the nonparalyzable detector would record four counts from the six true 

ector is shown along the top line of Fig. 3. The same 

 is assumed to follow each true interaction that occurs during the live period of the detector. 

xtend the dead time by another 

 following the lost event. In the example shown, only three counts are recorded for the six true 

order losses and differ only when true event rates are high. 

, and real counting system will often 

The detailed behaviour of a specific 

counting system may depend on the physical processes taking place in the detector itself or on delays 

, and the measured count rate is m , then the true count rate n 

ow that for low counting  

 ) both models give the same expression for n . In the present experiment we will  

utilize the nonparalyzable model in the calculation of true counts and the dead time τ.  

A commonly used method for dead time measurements is known as two source method. The method is 

based on observing the counting rate from two sources individually and in combination. Because the 

mbined sources will be less than the sum 

of the rates due to the two sources counted individually, and the dead time can be calculated from the 



Procedure  

(i) To find the dead time we have to use two 

the experiment as per the steps given below, care must be exercised not to move the source already in 

place and consideration must be given to the possibility that the presence of a second source will 

scatter radiation into the detector which wo

In order to keep the scattering unchanged, a dummy second source without activity is normally put in 

place when the sources are counted individually.

(ii) Keep source S1 in one of the pits in the sour

source in the second pit. Record the counts for a preset time (say 300 s).

(iii) Without removing source S1 remove the dummy source from the second pit and keep the source S

in its place. Record the number 

time as in (ii). 

(iv) Remove source S1 and measure the counts due to source S

(ii).  

(v)  Remove source S2 as well and record the background counts for the sa

count rates in all the cases. Let 

sources S1, S2 and (S1 +S2), respectively. 

rates. Also let ��and ��be 

removed. Assuming the nonparalyzable model, the dead time 
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To find the dead time we have to use two γ sources say S1 (
137

Cs) and S2 (
60

the experiment as per the steps given below, care must be exercised not to move the source already in 

place and consideration must be given to the possibility that the presence of a second source will 

scatter radiation into the detector which would not ordinarily be counted from the first source alone. 

In order to keep the scattering unchanged, a dummy second source without activity is normally put in 

place when the sources are counted individually. 

in one of the pits in the source holder made for this purpose. Keep a dummy 

second pit. Record the counts for a preset time (say 300 s). 

remove the dummy source from the second pit and keep the source S

in its place. Record the number of counts for the combined sources S1 and S

and measure the counts due to source S2 alone, for the same preset time as in 

as well and record the background counts for the same period. Calculate the 

count rates in all the cases. Let ��, �� and ���be the true counts (sample plus background), with 

), respectively. Let��, �� and ���represent the corresponding observed 

 the true and measured background rates with both the sources 

nonparalyzable model, the dead time τ is given by (see Ref. 1 for details)

Data for resolving time 

60
Co). While performing 

the experiment as per the steps given below, care must be exercised not to move the source already in 

place and consideration must be given to the possibility that the presence of a second source will 

uld not ordinarily be counted from the first source alone. 

In order to keep the scattering unchanged, a dummy second source without activity is normally put in 

ce holder made for this purpose. Keep a dummy 

remove the dummy source from the second pit and keep the source S2 

and S2 for the same preset 

alone, for the same preset time as in 

me period. Calculate the 

be the true counts (sample plus background), with 

represent the corresponding observed 

the true and measured background rates with both the sources 

 is given by (see Ref. 1 for details) 



 

Counting statistics: 

Radioactive decay is a random process. Consequently, any measurement based on observing the radiation 

emitted in a nuclear decay is subject to some degree of statistical fluctuations. These inherent fluctuations are 

unavoidable in all nuclear measurements

analysis required to process the results of nuclear counting experiments and to make predictions about the 

expected precision of quantities derived from these measurements. 

 Although each measurement (number of decays in a given interval) for a radioactive sample is 

independent of all previous measurements (due to randomness of the process), for a large number of 

individual measurements the deviation of the individual count rates from the

predictable manner. Small deviations from the average are much more likely than large deviations. These 

statistical fluctuations in the nuclear decay can be understood from the statistical models utilizing Poisson 

distribution or Gaussian (Normal) distribution. If we observe a given radioactive nucleus for a time t and 

define the success as “the nucleus decays during the process” then the probability of success “p” is given by (1 

− e 
−λt

 ). The Poisson distribution applies w

(i.e. number of counts measured) is also small (say <30). In practical terms, this condition implies that we 

have chosen an observation time that is small compared with the half

number of successes becomes relatively large (say > 30) we can utilize the Gaussian model of distribution. 

Since in most of the cases the count rates are reasonably large (few tens of counts per second) the Gaussian 

model has become widely applicable to many problems in counting statistics. On the other hand the Poisson 

distribution is applicable in the case of background counts. The details of experimental, Poisson and Gaussian 

distributions are given below. 

Experimental distribution function 

 We assume that we have a collection of N independent measurements of the same physical quantity. In this 

particular case the quantity is the number of counts recorded by the detector in a specific time interval. We 

denote the result of these N measurements as 

 y1, y2, y3 …………….......yi…...........….y

 The experimental mean is given by 

     

 

The data set is conveniently represented by a frequency distribution function F(y). The value of F(y) is the 

relative frequency with which the number a

  ��� � 	 
�����	��	�ℎ�	

�����

A plot of F(y) versus y gives the frequency dis

calculated by choosing a suitable interval for the values of y

given by 

    

 

 

Radioactive decay is a random process. Consequently, any measurement based on observing the radiation 

emitted in a nuclear decay is subject to some degree of statistical fluctuations. These inherent fluctuations are 

unavoidable in all nuclear measurements. The term counting statistics includes the framework of statistical 

analysis required to process the results of nuclear counting experiments and to make predictions about the 

expected precision of quantities derived from these measurements.  

h measurement (number of decays in a given interval) for a radioactive sample is 

independent of all previous measurements (due to randomness of the process), for a large number of 

individual measurements the deviation of the individual count rates from the average count rate behaves in a 

predictable manner. Small deviations from the average are much more likely than large deviations. These 

statistical fluctuations in the nuclear decay can be understood from the statistical models utilizing Poisson 

ion or Gaussian (Normal) distribution. If we observe a given radioactive nucleus for a time t and 

define the success as “the nucleus decays during the process” then the probability of success “p” is given by (1 

). The Poisson distribution applies when the success probability p is small and the number successes 

(i.e. number of counts measured) is also small (say <30). In practical terms, this condition implies that we 

have chosen an observation time that is small compared with the half-life of the so

number of successes becomes relatively large (say > 30) we can utilize the Gaussian model of distribution. 

Since in most of the cases the count rates are reasonably large (few tens of counts per second) the Gaussian 

widely applicable to many problems in counting statistics. On the other hand the Poisson 

distribution is applicable in the case of background counts. The details of experimental, Poisson and Gaussian 

n function  

We assume that we have a collection of N independent measurements of the same physical quantity. In this 

particular case the quantity is the number of counts recorded by the detector in a specific time interval. We 

measurements as  

…...........….yN .  

  (7)  

The data set is conveniently represented by a frequency distribution function F(y). The value of F(y) is the 

relative frequency with which the number appears in the collection of data. By definition

	�������
���	��	�ℎ�	�����	�	�	≡�����

�����	��	���������
��	� !�

   (8

A plot of F(y) versus y gives the frequency distribution of the data (The number of occurrences can also be 

calculated by choosing a suitable interval for the values of y).  The standard deviation of the distribution is 

  (9)  

Radioactive decay is a random process. Consequently, any measurement based on observing the radiation 

emitted in a nuclear decay is subject to some degree of statistical fluctuations. These inherent fluctuations are 

. The term counting statistics includes the framework of statistical 

analysis required to process the results of nuclear counting experiments and to make predictions about the 

h measurement (number of decays in a given interval) for a radioactive sample is 

independent of all previous measurements (due to randomness of the process), for a large number of 

average count rate behaves in a 

predictable manner. Small deviations from the average are much more likely than large deviations. These 

statistical fluctuations in the nuclear decay can be understood from the statistical models utilizing Poisson 

ion or Gaussian (Normal) distribution. If we observe a given radioactive nucleus for a time t and 

define the success as “the nucleus decays during the process” then the probability of success “p” is given by (1 

hen the success probability p is small and the number successes 

(i.e. number of counts measured) is also small (say <30). In practical terms, this condition implies that we 

life of the source. When the average 

number of successes becomes relatively large (say > 30) we can utilize the Gaussian model of distribution. 

Since in most of the cases the count rates are reasonably large (few tens of counts per second) the Gaussian 

widely applicable to many problems in counting statistics. On the other hand the Poisson 

distribution is applicable in the case of background counts. The details of experimental, Poisson and Gaussian 

We assume that we have a collection of N independent measurements of the same physical quantity. In this 

particular case the quantity is the number of counts recorded by the detector in a specific time interval. We 

The data set is conveniently represented by a frequency distribution function F(y). The value of F(y) is the 

ppears in the collection of data. By definition 

) 

tribution of the data (The number of occurrences can also be 

).  The standard deviation of the distribution is 

  



Notes regarding σ exp and "# 

 Remember that Eq. (9) is applicable to the quantities directly measured in the experiment and not to the 

derived quantities. To illustrate, in the present experiment if you measure the number of counts for a preset 

time interval (say 30 s) and call it yi.

rates calculated using these values. To determine the deviations for the derived quantities proper error 

propagation methods should be used. 

 To be precise, �$ is the true mean value determined from a set having infinitely large number of 

measurements and cannot be determined experimentally as such. However for a reasonably large set of 

measurements the value of �$ can be set equal to

The Poisson distribution  

 As mentioned above it is applicable when p <<1 and the number of successes are very few.

     

 

In this case the standard deviation is given by

 

The Normal or Gaussian distribution 

 When p << 1 and the successes are large one can model the experimental data using the Normal distribution 

which is also called Gaussian distribution 

its derivation by Gauss (1809) was antedated by those of Laplace (1774) and DeMoivre (1735)). This is given 

by  

   

 

The standard deviation in this case is the same as that for the Poisson distribution

      

We will denote both σP and σG as σth. 

Applications of statistical models in nuclear physics 

 There are two major applications of counting statistics in nuclear measurements. The first application 

involves the use of statistical analys

physical quantity shows an amount of internal fluctuation that is consistent with statistical predictions. In this 

case the motivation is to determine whether a particular counting system i

application is more important in which we examine these methods to make a prediction about the uncertainty 

one should associate with a single measurement. The following procedure and analysis will give you a feel as 

to how an experimental distribution in a nuclear counting experiment looks like and how does it compare with 

theoretical distributions. 

 

 

) is applicable to the quantities directly measured in the experiment and not to the 

derived quantities. To illustrate, in the present experiment if you measure the number of counts for a preset 

. Then Eq. (9) is applicable to these counts only and not to the counting 

rates calculated using these values. To determine the deviations for the derived quantities proper error 

 

is the true mean value determined from a set having infinitely large number of 

measurements and cannot be determined experimentally as such. However for a reasonably large set of 

can be set equal to �$ (Eq. (7). 

As mentioned above it is applicable when p <<1 and the number of successes are very few.

 (10) 

this case the standard deviation is given by 

%& � '�$   (11)     

The Normal or Gaussian distribution  

When p << 1 and the successes are large one can model the experimental data using the Normal distribution 

h is also called Gaussian distribution (as per R.D. Evans it is erroneous to call this as Gaussian because 

its derivation by Gauss (1809) was antedated by those of Laplace (1774) and DeMoivre (1735)). This is given 

 (12) 

se is the same as that for the Poisson distribution 

     (13) 

 

Applications of statistical models in nuclear physics  

There are two major applications of counting statistics in nuclear measurements. The first application 

involves the use of statistical analysis to determine whether a set of multiple measurements of the same 

physical quantity shows an amount of internal fluctuation that is consistent with statistical predictions. In this 

case the motivation is to determine whether a particular counting system is functioning normally. The second 

application is more important in which we examine these methods to make a prediction about the uncertainty 

one should associate with a single measurement. The following procedure and analysis will give you a feel as 

w an experimental distribution in a nuclear counting experiment looks like and how does it compare with 

) is applicable to the quantities directly measured in the experiment and not to the 

derived quantities. To illustrate, in the present experiment if you measure the number of counts for a preset 

) is applicable to these counts only and not to the counting 

rates calculated using these values. To determine the deviations for the derived quantities proper error 

is the true mean value determined from a set having infinitely large number of 

measurements and cannot be determined experimentally as such. However for a reasonably large set of 

As mentioned above it is applicable when p <<1 and the number of successes are very few. 

When p << 1 and the successes are large one can model the experimental data using the Normal distribution 

per R.D. Evans it is erroneous to call this as Gaussian because 

its derivation by Gauss (1809) was antedated by those of Laplace (1774) and DeMoivre (1735)). This is given 

 

There are two major applications of counting statistics in nuclear measurements. The first application 

is to determine whether a set of multiple measurements of the same 

physical quantity shows an amount of internal fluctuation that is consistent with statistical predictions. In this 

s functioning normally. The second 

application is more important in which we examine these methods to make a prediction about the uncertainty 

one should associate with a single measurement. The following procedure and analysis will give you a feel as 

w an experimental distribution in a nuclear counting experiment looks like and how does it compare with 



Procedure  

(i) Set the operating voltage of the Geiger counter at its proper value. 

(ii) Don’t put any source in the lead castle. Also remove all the sources in the vicinity of the castle. 

     (iii) Take 100 independent readings of the background counts for a preset time of 10 s. (To set Preset time 

10 sec. follow  step (ii) of initial proce

(iv) Save the data by pressing STORE

(iii) of initial procedure) to 1.  

(v) Place one of the γ sources (137Cs or 60Co) far enough away from the window of the G

that approximately 2000 counts are recorded in a time period of 30 s. Take 100independent readings of the 

counts for a preset time of 30s.  

(vi) Save the data by pressing STORE

(v) of initial procedure) to 1.  

(vii) Transfer the data on PC and plot the required function.

Analysis of Background counts (data set (iii) above) 

(viii) Determine frequency of occurrence 

4 ….counts have been observed and plot 

(ix) Calculate the average number of counts 

 

 

(x) Calculate σexp and σth and compare. The comparison gives clue to the reliability of

equipment. If σexp is larger than σ

apparatus, such as spurious counts due to voltage surges, sparks in the tube or change of the background 

during the course of the experiment which can occur when you handle the sources 

another ) while the measurements are going on.

(xi) Determine the actual number of intervals for which the absolute value of the deviation from the 

average is larger than the standard deviation 

Analysis of the counts taken with the source data set (v) above 

(xii) Carry out the analysis following steps (viii) to (xi) above. However, in this case use Gaussian 

distribution. Also, in order to represent the distribution in the best possible manner, frequency of 

occurrence may be calculated by choosing equally spaced, non

counts. The width of the interval can be anywhere from 2 to 10 cou

(xiii) In addition, you may use different methods of testing the "Gaussian" nature of an experimental data 

which are illustrated in the book: 

Doebelin, pages 44-58. 

 

 

 

(i) Set the operating voltage of the Geiger counter at its proper value.  

(ii) Don’t put any source in the lead castle. Also remove all the sources in the vicinity of the castle. 

(iii) Take 100 independent readings of the background counts for a preset time of 10 s. (To set Preset time 

10 sec. follow  step (ii) of initial procedure).  

STORE key. While taking 100 independent reading set 

 sources (137Cs or 60Co) far enough away from the window of the G

that approximately 2000 counts are recorded in a time period of 30 s. Take 100independent readings of the 

STORE key. While taking 100 independent reading set 

(vii) Transfer the data on PC and plot the required function. 

Analysis of Background counts (data set (iii) above)  

(viii) Determine frequency of occurrence ν(y) which is the number of measurements in which y = 0, 1,2 , 3, 

….counts have been observed and plot the experimental distribution ν(y) versus y . 

(ix) Calculate the average number of counts �$  and the Poisson distribution 

and compare. The comparison gives clue to the reliability of

σth , it means that additional fluctuations have been introduced by the 

apparatus, such as spurious counts due to voltage surges, sparks in the tube or change of the background 

eriment which can occur when you handle the sources 

another ) while the measurements are going on. 

(xi) Determine the actual number of intervals for which the absolute value of the deviation from the 

ard deviation % � '�$ and the probable error 0.6745

Analysis of the counts taken with the source data set (v) above  

(xii) Carry out the analysis following steps (viii) to (xi) above. However, in this case use Gaussian 

Also, in order to represent the distribution in the best possible manner, frequency of 

occurrence may be calculated by choosing equally spaced, non-overlapping, contiguous intervals for the 

counts. The width of the interval can be anywhere from 2 to 10 counts or more depending on the data set.

(xiii) In addition, you may use different methods of testing the "Gaussian" nature of an experimental data 

 Measurement systems, Applications and Design (4th edition) by E. O. 

(ii) Don’t put any source in the lead castle. Also remove all the sources in the vicinity of the castle.  

(iii) Take 100 independent readings of the background counts for a preset time of 10 s. (To set Preset time 

key. While taking 100 independent reading set ITERATION (Step 

 sources (137Cs or 60Co) far enough away from the window of the Geiger tube so 

that approximately 2000 counts are recorded in a time period of 30 s. Take 100independent readings of the 

key. While taking 100 independent reading set ITERATION (Step 

y) which is the number of measurements in which y = 0, 1,2 , 3, 

y) versus y .  

and compare. The comparison gives clue to the reliability of the measuring 

, it means that additional fluctuations have been introduced by the 

apparatus, such as spurious counts due to voltage surges, sparks in the tube or change of the background 

eriment which can occur when you handle the sources (move from one place to 

(xi) Determine the actual number of intervals for which the absolute value of the deviation from the 

0.6745σ. Compare with theory. 

(xii) Carry out the analysis following steps (viii) to (xi) above. However, in this case use Gaussian 

Also, in order to represent the distribution in the best possible manner, frequency of 

overlapping, contiguous intervals for the 

nts or more depending on the data set. 

(xiii) In addition, you may use different methods of testing the "Gaussian" nature of an experimental data 

Measurement systems, Applications and Design (4th edition) by E. O. 



 

Table:     Data for counting statistics
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6.0 IMPORTANT DEFINITIONS OF RADIATION TERMS  

 

 Absorbed dose: The energy transferred to a material by ionising radiation per unit 

 mass of the material.  

Unit: J kg-1; Name of unit: Gray (see also Rad) 

 Absolute Efficiency: The ratio of number of pulses recorded to the number of 

radiations emitted by the source. 

 Activity: Measurement of quantity of radioactive material. It is the number of nuclear 

transformations or isomeric transitions per unit time.  

 Unit: s-1 Name of unit: Becquerel (see also Curie) 

 Alpha decay: Alpha particles consist of two protons and two neutrons bound 

together into a particle identical to a helium nucleus. They are generally produced in 

the process of alpha decay, but may also be produced in other ways. Alpha particles 

are named after the first letter in the Greek alphabet, α. 

 A radioactive conversion accompanied by the emission of an alpha particle. In alpha 

decay the atomic number is reduced by 2 and the mass number by 4. Alpha decay 

occurs, with a few exceptions, only for nuclides with a proton number exceeding 82. 

 Alpha radiation: Radiation that consists of high energy helium (4He) nuclei emitted 

during alpha disintegration of atomic nuclei. Alpha particles possess discrete initial 

energies (line spectra) which are characteristic of the emitting nuclide.  

 Anode (in electron tubes): An electrode through which a principal stream of 

electrons leaves the interelectrode space. 

 Attenuation coefficient: The probability that a photon will be removed from the 

incident beam per unit thickness of material traversed. 

 Background counts (radiation counters): Counts caused by ionizing radiation 

coming from sources other than that be to measured. 

 Becquerel (Bq): Name of the derived SI unit of activity. Number of radioactive 

transformations or isometric transitions per seconds s-1 = Bq. 
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 1 Bq  = 27 x 10-12  = 27 pCi 

 1 kBq  = 27 x 10-9  = 27 nCi 

 1 MBq  = 27 x 10-6  = 27 mCi 

 1 GBq  = 27 x 10-3  = 27 mCi 

 1 TBq  = 27 Ci  = 27 Ci 

 Beta decay: Radioactive conversion accompanied by the emission of a beta particle, 

i.e. a negatively charged electron (b- decay) or a positively charged electron (b+ 

decay). When a negatively charged electron is emitted, a neutron in the atomic 

nucleus is converted to a proton with the simultaneous emission of an antineutrino, so 

that the proton number Z is increased by 1. When a positively charged electron 

(positron) is emitted, a proton in the nucleus is converted to a neutron with 

simultaneous emission of a neutrino, so that the proton number Z is decreased by 1.  

 Beta Radiation: Radiation that consists of negative or positive electrons which are 

emitted from nuclei  undergoing decay. Since the decay energy (or, if it is followed 

by gamma radiation, the decay energy less that photons energy) is statistically divided 

between beta particles and neutrinos (or antineutrinos), the energy  spectrum of beta 

radiation is continuous, extending from zero to a maximum value characteristic of the 

nuclide concerned. The maximum beta energy is generally termed the “beta end-point 

energy of the  nuclide”. 

 Bremsstrahlung: Radiation that results from the acceleration/deceleration of 

 charged particles in the Coulomb field of atoms.  

 Curie (Ci): Name for derived unit of activity. One Curie corresponds to 3.7 x 1010 

 nuclear disintegrations or isomeric transitions per second 1 Ci = 3.7 x 1010 s-1. 

 1 Ci = 37 GBq 

 1 mCi = 37 MB1 

 1 Ci = 37 kBq 

 1 nCi = 37 Bq 

 1 pCi = 37 mBq 

 Dose: See absorbed dose, exposure value, and dose equivalent  

 Dose equivalent: A term used in radiation protection for the radiation dose. It is the 

 product of absorbed dose times the quality factor.   

 Unit: J kg-1; Name of unit: Sievert (see also Rem)  
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 Dose rate: Dose absorbed per unit time  

 Dynode: An electrode which performs a useful function, such as current 

amplification, by means of secondary emission.  

 Electron radiation: Particle emission consisting of negatively or positively charged 

 electrons.   

 Exposure dose: The ratio of the amount of electric charge of the ions of one polarity 

 that are formed in air by Ionizing radiation and the mass of the air.  

 Unit: C. kg-1 (see also Roentgen)  

 Full width at half maximum (FWHM): The full width of a distribution measured at 

half the maximum ordinate. 

 Gamma radiation: Gamma radiation, also known as gamma rays, and denoted by 

the Greek letter γ, refers to electromagnetic radiation of extremely high frequency and 

therefore high energy per photon. Gamma rays are ionizing radiation, and are thus 

biologically hazardous. They are classically produced by the decay from high energy 

states of atomic nuclei (gamma decay), but are also created by other processes. Paul 

Villard, a French chemist and physicist, discovered gamma radiation in 1900, while 

studying radiation emitted from radium. Villard's radiation was named "gamma rays" 

by Ernest Rutherford in 1903. 

 Natural sources of gamma rays on Earth include gamma decay from naturally 

occurring radioisotopes, and secondary radiation from atmospheric interactions with 

cosmic ray particles. Rare terrestrial natural sources produce gamma rays that are not 

of a nuclear origin, such as lightning strikes and terrestrial gamma-ray flashes. 

Additionally, gamma rays are also produced by a number of astronomical processes in 

which very high-energy electrons are produced, that in turn cause secondary gamma 

rays via bremsstrahlung, inverse Compton scattering and synchrotron radiation. 

However, a large fraction of such astronomical gamma rays are screened by Earth's 

atmosphere and can only be detected by spacecraft. 

 Gray: The SI unit of absorbed radiation dose. 1 Gray of absorbed dose corresponds to 

 1 joule of energy per kilogram of mass. 

 1 Gray = 100 rad 

 Half-value thickness (T1/2): The thickness of material layer that reduces the initial 

intensity of radiation by a factor of two.  


