DEDICATION

Prof. Varadharajan Muruganandam
Large time behaviour of heat propagator on Damek–Ricci spaces

Muna Naik

Harish-Chandra Research Institute, Prayagraj
India

5th January, 2022

Joint work with Dr. Rudra P. Sarkar and Dr. Swagato K. Ray
Notation:

- **Volume mean value operator** $B_r f$ is given by

$$B_r f(x) := \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy$$
Notation:

- **Volume mean value operator** $B_r f$ is given by

$$B_r f(x) := \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) \, dy = f \ast m_r(x)$$

where

$$m_r(y) := \frac{1}{|B(o, r)|} \chi_{B(o, r)}(y).$$
Notation:

- **Volume mean value operator** $B_r f$ is given by

 $$B_r f(x) := \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) \, dy = f \ast m_r(x)$$

 where

 $$m_r(y) := \frac{1}{|B(o, r)|} \chi_{B(o, r)}(y).$$

- **Heat kernel on \mathbb{R}^n:** $h_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad (t > 0, x \in \mathbb{R}^n).$
Notation:

- **Volume mean value operator** $B_r f$ is given by

$$B_r f(x) := \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) \, dy = f \ast m_r(x)$$

where

$$m_r(y) := \frac{1}{|B(o, r)|} \chi_{B(o, r)}(y).$$

- **Heat kernel on \mathbb{R}^n:** $h_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}$, \hspace{1em} ($t > 0, x \in \mathbb{R}^n$).

- $u(x, t) = (e^{t\Delta} f)(x) := f \ast h_t(x)$
Notation:

- Volume mean value operator $B_r f$ is given by

$$B_r f(x) := \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) \, dy = f \ast m_r(x)$$

where

$$m_r(y) := \frac{1}{|B(o, r)|} \chi_{B(o, r)}(y).$$

- Heat kernel on \mathbb{R}^n: $h_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad (t > 0, x \in \mathbb{R}^n)$.

- $u(x, t) = (e^{t\Delta} f)(x) := f \ast h_t(x)$ solves the heat equation:

$$\partial_t u = \Delta u,$$
$$u(x, 0) = f(x).$$
Notation:

- **Volume mean value operator** $B_r f$ is given by

$$B_r f(x) := \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) \, dy = f * m_r(x)$$

where

$$m_r(y) := \frac{1}{|B(o, r)|} \chi_{B(o, r)}(y).$$

- **Heat kernel on \mathbb{R}^n**: $h_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad (t > 0, x \in \mathbb{R}^n)$.

- $u(x, t) = (e^{t\Delta} f)(x) := f * h_t(x)$ solves the heat equation:

$$\partial_t u = \Delta u,$$

$$u(x, 0) = f(x).$$
Theorem 1 (Repnikov and Éidel’man, [5], 1966).

Let $f \in L^\infty(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$ be fixed. Then

$$\lim_{r \to \infty} f \ast m_r(x_0) = L \text{ if and only if } \lim_{t \to \infty} f \ast h_t(x_0) = L.$$
Theorem 1 (Repnikov and Éidel’man, [5], 1966).

Let \(f \in L^\infty(\mathbb{R}^n) \) and \(x_o \in \mathbb{R}^n \) be fixed. Then

\[
\lim_{r \to \infty} f \ast m_r(x_o) = L \text{ if and only if } \lim_{t \to \infty} f \ast h_t(x_o) = L.
\]

The above result was generalized by Li [3] to complete \(n \)-dimensional Riemannian manifolds \(M \) with nonnegative Ricci curvature satisfying

\[
\liminf_{r \to \infty} \frac{|B(x, r)|}{r^n} > 0. \tag{1}
\]
Theorem 1 (Repnikov and Éidel’man, [5], 1966).

Let \(f \in L^\infty(\mathbb{R}^n) \) and \(x_o \in \mathbb{R}^n \) be fixed. Then

\[
\lim_{r \to \infty} f * m_r(x_o) = L \text{ if and only if } \lim_{t \to \infty} f * h_t(x_o) = L.
\]

The above result was generalized by Li [3] to complete \(n \)-dimensional Riemannian manifolds \(M \) with nonnegative Ricci curvature satisfying

\[
\lim_{r \to \infty} \inf_{r > 0} \frac{|B(x, r)|}{r^n} > 0. \tag{1}
\]

Using Bishop–Gromov comparison theorem one can show that the geodesic ball \(B(x, r) \) has polynomial volume growth.
Theorem 1 (Repnikov and Éidel’man, [5], 1966).

Let $f \in L^\infty(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$ be fixed. Then

$$\lim_{r \to \infty} f \ast m_r(x_0) = L \text{ if and only if } \lim_{t \to \infty} f \ast h_t(x_0) = L.$$

The above result was generalized by Li [3] to complete n-dimensional Riemannian manifolds M with nonnegative Ricci curvature satisfying

$$\liminf_{r \to \infty} \frac{|B(x, r)|}{r^n} > 0. \quad (1)$$

Using Bishop–Gromov comparison theorem one can show that the geodesic ball $B(x, r)$ has polynomial volume growth.

The proof of Li’s result relies on the above result of Repnikov et al.

Let S be a Damek–Ricci space and $f \in L^\infty(S)$. Then for any $x_0 \in S$,

$$\lim_{r \to \infty} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} f \ast h_t(x_0) = L,$$

where L is a constant.

The converse of above theorem is not true in Damek–Ricci space.

Question: Can one replace the boundedness condition of f in Repnikov and ´Eidel’mann’s Theorem 1 by any other suitable growth condition?

Let S be a Damek–Ricci space and $f \in L^\infty(S)$. Then for any $x_o \in S$,

$$\lim_{r \to \infty} f \ast m_r(x_o) = L \implies \lim_{t \to \infty} f \ast h_t(x_o) = L,$$

where L is a constant.

- The converse of above theorem is not true in Damek–Ricci space.

Let S be a Damek–Ricci space and $f \in L^\infty(S)$. Then for any $x_0 \in S$,

$$\lim_{r \to \infty} f * m_r(x_0) = L \implies \lim_{t \to \infty} f * h_t(x_0) = L,$$

where L is a constant.

The converse of above theorem is not true in Damek–Ricci space.

Question: Can one replace the boundedness condition of f in Repnikov and Éidel’man’s Theorem 1 by any other suitable growth condition?

Let \(f, g \) be measurable functions on \(S \) such that \(f \in L^\infty(S) \) and

\[
\lim_{r \to \infty} f * m_r(x) = g(x), \quad \text{for almost every } x \in S.
\]

Then \(\Delta g = 0 \).

Let f, g be measurable functions on S such that $f \in L^{\infty}(S)$ and

\[\lim_{r \to \infty} f \ast m_r(x) = g(x), \quad \text{for almost every } x \in S. \]

Then $\Delta g = 0$.

Proof.

- Applying Theorem 2 we get

\[\lim_{s \to \infty} f \ast h_s(x) = g(x), \quad (2) \]

for almost every $x \in S$.

Let \(f, g \) be measurable functions on \(S \) such that \(f \in L^\infty(S) \) and

\[
\lim_{r \to \infty} f \ast m_r(x) = g(x), \quad \text{for almost every } x \in S.
\]

Then \(\Delta g = 0 \).

Proof.

- Applying Theorem 2 we get

\[
\lim_{s \to \infty} f \ast h_s(x) = g(x), \quad (2)
\]

for almost every \(x \in S \). Owing to (2) we have

\[
\lim_{s \to \infty} f \ast h_s \ast h_t(x) = g \ast h_t(x),
\]

Let \(f, g \) be measurable functions on \(S \) such that \(f \in L^\infty(S) \) and

\[
\lim_{r \to \infty} f \ast m_r(x) = g(x), \quad \text{for almost every } x \in S.
\]

Then \(\Delta g = 0 \).

Proof.

- Applying Theorem 2 we get

\[
\lim_{s \to \infty} f \ast h_s(x) = g(x), \tag{2}
\]

for almost every \(x \in S \). Owing to (2) we have

\[
\lim_{s \to \infty} f \ast h_s \ast h_t(x) = g \ast h_t(x),
\]

\[
\Rightarrow \lim_{s \to \infty} f \ast h_{s+t}(x) = g \ast h_t(x),
\]

Let \(f, g \) be measurable functions on \(S \) such that \(f \in L^\infty(S) \) and

\[
\lim_{r \to \infty} f * m_r(x) = g(x), \quad \text{for almost every } x \in S.
\]

Then \(\Delta g = 0 \).

Proof.

- Applying Theorem 2 we get

\[
\lim_{s \to \infty} f * h_s(x) = g(x), \quad (2)
\]

for almost every \(x \in S \). Owing to (2) we have

\[
\lim_{s \to \infty} f * h_s * h_t(x) = g * h_t(x),
\]

\[
\Rightarrow \lim_{s \to \infty} f * h_{s+t}(x) = g * h_t(x),
\]

\[
\Rightarrow g(x) = g * h_t(x).
\]

Let f, g be measurable functions on S such that $f \in L^\infty(S)$ and

$$\lim_{r \to \infty} f \ast m_r(x) = g(x), \quad \text{for almost every } x \in S.$$

Then $\Delta g = 0$.

Proof.

- Applying Theorem 2 we get

$$\lim_{s \to \infty} f \ast h_s(x) = g(x), \quad (2)$$

for almost every $x \in S$. Owing to (2) we have

$$\lim_{s \to \infty} f \ast h_s \ast h_t(x) = g \ast h_t(x),$$

$$\Rightarrow \lim_{s \to \infty} f \ast h_{s+t}(x) = g \ast h_t(x),$$

$$\Rightarrow g(x) = g \ast h_t(x).$$
Proof Contd.

Thus $g * h_t = g$ for any $t > 0$.
Proof Contd.

Thus \(g \ast h_t = g \) for any \(t > 0 \).

Hence

\[
\Delta g = \Delta (g \ast h_t)
\]
Proof Contd.

Thus \(g \ast h_t = g \) for any \(t > 0 \).

Hence

\[
\Delta g = \Delta(g \ast h_t) = \partial_t(g \ast h_t)
\]
Thus $g \ast h_t = g$ for any $t > 0$.

Hence

$$\Delta g = \Delta (g \ast h_t) = \partial_t (g \ast h_t) = \partial_t g$$
Proof Contd.

Thus \(g \ast h_t = g \) for any \(t > 0 \).

Hence

\[
\Delta g = \Delta (g \ast h_t) = \partial_t (g \ast h_t) = \partial_t g = 0.
\]
Proof Contd.

Thus $g \ast h_t = g$ for any $t > 0$.
Hence

$$\Delta g = \Delta(g \ast h_t) = \partial_t(g \ast h_t) = \partial_t g = 0.$$

Proposition 1.

Let $f \in L^\infty(\mathbb{R}^n)$ and $x_o \in \mathbb{R}^n$ be fixed.
Proof Contd.

Thus \(g \ast h_t = g \) for any \(t > 0 \).

Hence

\[
\Delta g = \Delta (g \ast h_t) = \partial_t (g \ast h_t) = \partial_t g = 0.
\]

Proposition 1.

Let \(f \in L^\infty(\mathbb{R}^n) \) and \(x_o \in \mathbb{R}^n \) be fixed. If

\[
\lim_{r \to \infty} f \ast m_r(x_o) = L
\]

for a constant \(L \), then for any \(x \in \mathbb{R}^n \)

\[
\lim_{r \to \infty} f \ast m_r(x) = L.
\]
Proof Contd.

Thus $g \ast h_t = g$ for any $t > 0$.

Hence

$$\Delta g = \Delta(g \ast h_t) = \partial_t(g \ast h_t) = \partial_t g = 0.$$

Proposition 1.

Let $f \in L^\infty(\mathbb{R}^n)$ and $x_o \in \mathbb{R}^n$ be fixed. If

$$\lim_{r \to \infty} f \ast m_r(x_o) = L$$

for a constant L, then for any $x \in \mathbb{R}^n$

$$\lim_{r \to \infty} f \ast m_r(x) = L.$$
First assume that $x_0 = 0$.
Proof

First assume that $x_0 = 0$.

$$f \ast m_r(0) - f \ast m_r(x)$$
Proof

First assume that \(x_0 = 0 \).

\[
f \ast m_r(0) - f \ast m_r(x) = 1 \left| B(o, r) \right| \left(\int_{B(o, r)} f(y) \, dy - \int_{B(x, r)} f(y) \, dy \right)
\]
Proof

First assume that $x_o = 0$.

\[
\begin{align*}
f \ast m_r(0) - f \ast m_r(x) &= 1 \left| B(o, r) \right|
\left(\int_{B(o, r)} f(y) \, dy - \int_{B(x, r)} f(y) \, dy \right) \\
&= \frac{1}{\left| B(o, r) \right|} \left[\left(\int_{B(o, r) \setminus B(x, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) \right]
\end{align*}
\]
Proof

First assume that \(x_o = 0 \).

\[
f \ast m_r(0) - f \ast m_r(x) = \frac{1}{|B(o, r)|} \left(\int_{B(o, r)} f(y) \, dy - \int_{B(x, r)} f(y) \, dy \right)
\]

\[
= \frac{1}{|B(o, r)|} \left[\left(\int_{B(o, r) \setminus B(x, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) \right.
\]

\[
- \left(\int_{B(x, r) \setminus B(o, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) \right]
\]
Proof

First assume that \(x_0 = 0 \).

\[
f \ast m_r(0) - f \ast m_r(x) = \frac{1}{|B(o, r)|} \left(\int_{B(o, r)} f(y) \, dy - \int_{B(x, r)} f(y) \, dy \right)
= \frac{1}{|B(o, r)|} \left[\left(\int_{B(o, r) \setminus B(x, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) - \left(\int_{B(x, r) \setminus B(o, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) \right]
= \frac{1}{|B(o, r)|} \left(\int_{B(o, r) \setminus B(x, r)} f(y) \, dy - \int_{B(x, r) \setminus B(o, r)} f(y) \, dy \right)
\]
First assume that $x_o = 0$.

$$f \ast m_r(0) - f \ast m_r(x) = \frac{1}{|B(o, r)|} \left(\int_{B(o, r)} f(y) \, dy - \int_{B(x, r)} f(y) \, dy \right)$$

$$= \frac{1}{|B(o, r)|} \left[\left(\int_{B(o, r) \setminus B(x, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) \right.$$

$$- \left. \left(\int_{B(x, r) \setminus B(o, r)} f(y) \, dy + \int_{B(o, r) \cap B(x, r)} f(y) \, dy \right) \right]$$

$$= \frac{1}{|B(o, r)|} \left(\int_{B(o, r) \setminus B(x, r)} f(y) \, dy - \int_{B(x, r) \setminus B(o, r)} f(y) \, dy \right)$$
\[|f \ast m_r(0) - f \ast m_r(x)| \]
\[|f * m_r(0) - f * m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \]
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \leq \|f\|_\infty \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \]
\[
|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy
\]

\[
\leq \|f\|_{\infty} \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|}
\]

\[
\leq \|f\|_{\infty} \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|}
\]

where \(A(r - |x|, r + |x|)\) is the **annulus** centered at \(o\) with inner radius \(r - |x|\) and outer radius \(r + |x|\).
\begin{align*}
|f \ast m_r(0) - f \ast m_r(x)| & \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \\
& \leq \|f\|_{\infty} \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \\
& \leq \|f\|_{\infty} \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|}
\end{align*}

where \(A(r - |x|, r + |x|) \) is the annulus centered at \(o \) with inner radius \(r - |x| \) and outer radius \(r + |x| \).
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy\]
\[\leq \|f\|_{\infty} \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|}\]
\[\leq \|f\|_{\infty} \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|}\]

where \(A(r - |x|, r + |x|)\) is the annulus centered at \(o\) with inner radius \(r - |x|\) and outer radius \(r + |x|\).
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \]

\[\leq \|f\|_\infty \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \]

\[\leq \|f\|_\infty \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \]

where \(A(r - |x|, r + |x|) \) is the annulus centered at \(o \) with inner radius \(r - |x| \) and outer radius \(r + |x| \).
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \]

\[\leq \|f\|_{\infty} \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \]

\[\leq \|f\|_{\infty} \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \]

where \(A(r - |x|, r + |x|) \) is the annulus centered at \(o \) with inner radius \(r - |x| \) and outer radius \(r + |x| \).
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \]
\[\leq \|f\|_\infty \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \]
\[\leq \|f\|_\infty \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \]

where \(A(r - |x|, r + |x|) \) is the **annulus** centered at \(o \) with inner radius \(r - |x| \) and outer radius \(r + |x| \).

\[\text{op} = xp - ox = r - |x|. \]
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \]
\[\leq \|f\|_{\infty} \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \]
\[\leq \|f\|_{\infty} \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \]

where \(A(r - |x|, r + |x|) \) is the annulus centered at \(o \) with inner radius \(r - |x| \) and outer radius \(r + |x| \).

\[\text{op} = xp - ox = r - |x|. \]

\[\text{oq} = ox + xq = r + |x|. \]
\[|f \ast m_r(0) - f \ast m_r(x)| \leq \frac{1}{|B(o, r)|} \int_{B(o, r) \triangle B(x, r)} |f(y)| \, dy \]
\[\leq \|f\|_{\infty} \frac{|B(o, r) \triangle B(x, r)|}{|B(o, r)|} \]
\[\leq \|f\|_{\infty} \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \]

where \(A(r - |x|, r + |x|) \) is the annulus centered at \(o \) with inner radius \(r - |x| \) and outer radius \(r + |x| \).

\(op = xp - ox = r - |x| \).

\(oq = ox + xq = r + |x| \).

\(B(o, r) \triangle B(x, r) \subseteq A(r - |x|, r + |x|) \).
Thus we get

\[|f \ast m_r(0) - f \ast m_r(x)| \leq \|f\|_\infty \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|}. \]
Thus we get

\[|f * m_r(0) - f * m_r(x)| \leq \|f\|_\infty \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \cdot (r + |x|)^n - (r - |x|)^n \]

Since

\[\frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} = \frac{(r + |x|)^n - (r - |x|)^n}{r^n} \]

goes to zero as \(r \to \infty \), by taking \(\lim \sup \) in both sides of (3) we get our desired result. \[\square\]
Thus we get

\[|f \ast m_r(0) - f \ast m_r(x)| \leq \|f\|_\infty \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|}. \tag{3} \]

Since

\[\frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} = \frac{(r + |x|)^n - (r - |x|)^n}{r^n} \]

goes to zero as \(r \to \infty \), by taking lim sup in both sides of (3) we get our desired result. \(\square \)

- In a Damek–Ricci space,

\[\frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \lesssim \frac{e^{\alpha(r + |x|)} - e^{\alpha(r - |x|)}}{e^{\alpha r}} = e^{\alpha |x|} - e^{-\alpha |x|} \]

doesn’t go to zero as \(r \to \infty \).
Thus we get

\[|f * m_r(0) - f * m_r(x)| \leq \|f\|_\infty \frac{|A(r - |x|, r + |x|)|}{|B(o, r)|}. \] (3)

Since

\[\frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} = \frac{(r + |x|)^n - (r - |x|)^n}{r^n} \]

goes to zero as \(r \to \infty \), by taking \(\lim \sup \) in both sides of (3) we get our desired result.

- In a Damek–Ricci space,

\[\frac{|A(r - |x|, r + |x|)|}{|B(o, r)|} \asymp \frac{e^{\alpha (r + |x|)} - e^{\alpha (r - |x|)}}{e^{\alpha r}} = e^{\alpha |x|} - e^{-\alpha |x|} \]

doesn’t go to zero as \(r \to \infty \).
Notation:

- We fix the identity element e of the group S as the origin o.
Notation:

- We fix the identity element e of the group S as the origin o.
- Let ρ denotes the half of the limit of the mean curvature of geodesic spheres as radius of the sphere tends to infinity.
Notation:

- We fix the identity element e of the group S as the origin o.
- Let ρ denotes the half of the limit of the mean curvature of geodesic spheres as radius of the sphere tends to infinity.
- For $\lambda \in \mathbb{C}$, Elementary spherical function φ_λ is the unique smooth radial eigenfunction of Δ with
 \[
 \Delta \varphi_\lambda = -(\lambda^2 + \rho^2) \varphi_\lambda, \quad \varphi_\lambda(o) = 1.
 \]
We fix the identity element e of the group S as the origin o.

Let ρ denotes the half of the limit of the mean curvature of geodesic spheres as radius of the sphere tends to infinity.

For $\lambda \in \mathbb{C}$, **Elementary spherical function** φ_{λ} is the unique smooth radial eigenfunction of Δ with

$$\Delta \varphi_{\lambda} = -(\lambda^2 + \rho^2) \varphi_{\lambda}, \quad \varphi_{\lambda}(o) = 1.$$

$\varphi_{\lambda} = \varphi_{-\lambda}$ and $\varphi_{i\rho} = \varphi_{-i\rho} = 1$.
Notation:

- We fix the identity element e of the group S as the origin o.
- Let ρ denotes the half of the limit of the mean curvature of geodesic spheres as radius of the sphere tends to infinity.
- For $\lambda \in \mathbb{C}$, Elementary spherical function φ_λ is the unique smooth radial eigenfunction of Δ with
 \[\Delta \varphi_\lambda = - (\lambda^2 + \rho^2) \varphi_\lambda, \quad \varphi_\lambda(o) = 1. \]

- $\varphi_\lambda = \varphi_{-\lambda}$ and $\varphi_{i\rho} = \varphi_{-i\rho} = 1$.
- $|\varphi_\lambda(x)| \leq 1$ for $|\Re \lambda| \leq \rho$.

$\text{Muna Naik (HRI, Prayagraj)}$
For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ.
Definition

For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ defined by

$$\hat{f}(\lambda) := \int_S f(x) \varphi_{\lambda}(x) \, dx.$$
Definition

For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the **spherical Fourier transform of f** at λ defined by

$$
\hat{f}(\lambda) := \int_{S} f(x) \varphi_{\lambda}(x) \, dx.
$$
Definition

- For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ defined by
 \[\hat{f}(\lambda) := \int_S f(x) \varphi_{\lambda}(x) \, dx. \]

- For a suitable measure μ on S and $\lambda \in \mathbb{C}$, we define $\hat{\mu}(\lambda)$ by
 \[\hat{\mu}(\lambda) := \int_S \varphi_{\lambda}(x) \, d\mu(x). \]
Definition

For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ defined by

$$\hat{f}(\lambda) := \int_{S} f(x) \varphi_{\lambda}(x) \, dx.$$

For a suitable measure μ on S and $\lambda \in \mathbb{C}$, we define $\hat{\mu}(\lambda)$ by

$$\hat{\mu}(\lambda) := \int_{S} \varphi_{\lambda}(x) \, d\mu(x).$$

$$\hat{h}_{t}(\lambda) := e^{-t(\lambda^2 + \rho^2)}.$$
Definition

For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ defined by

$$\hat{f}(\lambda) := \int_{S} f(x)\varphi_{\lambda}(x) \, dx.$$

For a suitable measure μ on S and $\lambda \in \mathbb{C}$, we define $\hat{\mu}(\lambda)$ by

$$\hat{\mu}(\lambda) := \int_{S} \varphi_{\lambda}(x) \, d\mu(x).$$

$\hat{h}_{t}(\lambda) := e^{-t(\lambda^{2}+\rho^{2})}$.

Let $\psi_{\lambda}(r) := \frac{1}{|B(o, r)|} \int_{B(o, r)} \varphi_{\lambda}(x) \, dx$.
For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ defined by

$$\hat{f}(\lambda) := \int_S f(x) \varphi_\lambda(x) \, dx.$$

For a suitable measure μ on S and $\lambda \in \mathbb{C}$, we define $\hat{\mu}(\lambda)$ by

$$\hat{\mu}(\lambda) := \int_S \varphi_\lambda(x) \, d\mu(x).$$

$$\hat{h}_t(\lambda) := e^{-t(\lambda^2 + \rho^2)}.$$

Let $\psi_\lambda(r) := \frac{1}{|B(o,r)|} \int_{B(o,r)} \varphi_\lambda(x) \, dx = \hat{m}_r(\lambda).$

$$\left(\text{Recall: } m_r(y) = \frac{1}{|B(o,r)|} \chi_{B(o,r)}(y) \right).$$

(Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 14 / 25)
For $\lambda \in \mathbb{C}$, let $\hat{f}(\lambda)$ denotes the spherical Fourier transform of f at λ defined by

$$
\hat{f}(\lambda) := \int_S f(x) \varphi_{\lambda}(x) \, dx.
$$

For a suitable measure μ on S and $\lambda \in \mathbb{C}$, we define $\hat{\mu}(\lambda)$ by

$$
\hat{\mu}(\lambda) := \int_S \varphi_{\lambda}(x) \, d\mu(x).
$$

$\hat{h}_t(\lambda) := e^{-t(\lambda^2 + \rho^2)}$.

Let $\psi_{\lambda}(r) := \frac{1}{|B(o,r)|} \int_{B(o,r)} \varphi_{\lambda}(x) \, dx = \widehat{m_r}(\lambda)$.

$$
\left(\text{Recall: } m_r(y) = \frac{1}{|B(o,r)|} \chi_{B(o,r)}(y) \right).
$$

$\psi_{\lambda} = \psi_{-\lambda}$ and $\psi_{i\rho} = \psi_{-i\rho} = 1$.

For $\Im \lambda < 0$ and $t > 0$, we have the following asymptotic estimate of ψ_λ,

$$\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)$$

where $c(\lambda)$ is an analogue of Harish-Chandra c-function. It is also known that c-function has neither zero nor pole in the region $\Im \lambda < 0$. Let $0 \neq \alpha \in \mathbb{R}$ be fixed. Claim: $\psi_{\alpha - i\rho}(r)$ does not converge to any value as $r \to \infty$ and is oscillatory. Reason: $e^{i\alpha r} = 1 e^{-(i(\alpha - i\rho) - \rho)r} \psi_{\alpha - i\rho}(r)$.
For $\Re \lambda < 0$ and $t > 0$, we have the following asymptotic estimate of ψ_λ,

$$\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)$$

(4)

where $c(\lambda)$ is an analogue of Harish-Chandra c-function.
For $\Im \lambda < 0$ and $t > 0$, we have the following asymptotic estimate of ψ_λ,

$$\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)$$

(4)

where $c(\lambda)$ is an analogue of Harish-Chandra c-function.

It is also known that c-function has neither zero nor pole in the region $\Im \lambda < 0$.

Claim: $\psi_{\alpha - i\rho}(r)$ does not converge to any value as $r \to \infty$ and is oscillatory.

Reason: $e^{i\alpha r} = 1 e^{-(i(\alpha - i\rho) - \rho)r} \psi_{\alpha - i\rho}(r)$.
For $\Im \lambda < 0$ and $t > 0$, we have the following asymptotic estimate of ψ_λ,

$$\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)$$

(4)

where $c(\lambda)$ is an analogue of Harish-Chandra c-function.

It is also known that c-function has neither zero nor pole in the region $\Im \lambda < 0$.

Let $0 \neq \alpha \in \mathbb{R}$ be fixed.
For \(\Im \lambda < 0 \) and \(t > 0 \), we have the following asymptotic estimate of \(\psi_\lambda \),

\[
\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)
\]

where \(c(\lambda) \) is an analogue of Harish-Chandra c-function.

It is also known that c-function has neither zero nor pole in the region \(\Im \lambda < 0 \).

Let \(0 \neq \alpha \in \mathbb{R} \) be fixed.

Claim: \(\psi_{\alpha - i\rho}(r) \) does not converge to any value as \(r \to \infty \).
For $\Im\lambda < 0$ and $t > 0$, we have the following asymptotic estimate of ψ_λ,

$$\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)$$ \hspace{1cm} (4)$$

where $c(\lambda)$ is an analogue of Harish-Chandra c-function.

It is also known that c-function has neither zero nor pole in the region $\Im\lambda < 0$.

Let $0 \neq \alpha \in \mathbb{R}$ be fixed.

Claim: $\psi_{\alpha - i\rho}(r)$ does not converge to any value as $r \to \infty$ and is oscillatory.
For \(\Im \lambda < 0 \) and \(t > 0 \), we have the following asymptotic estimate of \(\psi_\lambda \),

\[
\lim_{t \to \infty} e^{-(i\lambda - \rho)t} \psi_\lambda(t) = c(\lambda)
\]

(4)

where \(c(\lambda) \) is an analogue of Harish-Chandra \(c \)-function.

It is also known that \(c \)-function has neither zero nor pole in the region \(\Im \lambda < 0 \).

Let \(0 \neq \alpha \in \mathbb{R} \) be fixed.

Claim: \(\psi_{\alpha - i\rho}(r) \) does not converge to any value as \(r \to \infty \) and is oscillatory.

Reason:

\[
e^{i\alpha r} = \frac{1}{e^{-[i(\alpha - i\rho) - \rho]r} \psi_{\alpha - i\rho}(r)} \psi_{\alpha - i\rho}(r).
\]
For a radial measure \(\mu \), one can show that

\[
\varphi_\lambda \ast \mu(x) = \hat{\mu}(\lambda) \varphi_\lambda(x).
\]
For a radial measure μ, one can show that

$$\varphi_\lambda \ast \mu(x) = \hat{\mu}(\lambda)\varphi_\lambda(x).$$

Thus we get

$$\varphi_\lambda \ast h_t(x) = \hat{h}_t(\lambda)\varphi_\lambda(x).$$
For a radial measure μ, one can show that

$$\varphi_\lambda \ast \mu(x) = \hat{\mu}(\lambda)\varphi_\lambda(x).$$

Thus we get

$$\varphi_\lambda \ast h_t(x) = \hat{h}_t(\lambda)\varphi_\lambda(x)$$

$$= e^{-t(\lambda^2 + \rho^2)}\varphi_\lambda(x).$$
For a radial measure μ, one can show that

$$\varphi_{\lambda} \ast \mu(x) = \hat{\mu}(\lambda) \varphi_{\lambda}(x).$$

Thus we get

$$\varphi_{\lambda} \ast h_t(x) = \hat{h}_t(\lambda) \varphi_{\lambda}(x) = e^{-t(\lambda^2 + \rho^2)} \varphi_{\lambda}(x).$$

Hence

$$\varphi_{\alpha-i\rho} \ast h_t(x) = e^{-t[(\alpha-i\rho)^2 + \rho^2]} \varphi_{\alpha-i\rho}(x).$$
For a radial measure μ, one can show that

$$\varphi_\lambda * \mu(x) = \hat{\mu}(\lambda) \varphi_\lambda(x).$$

Thus we get

$$\varphi_\lambda * h_t(x) = \hat{h}_t(\lambda) \varphi_\lambda(x)$$
$$= e^{-t(\lambda^2 + \rho^2)} \varphi_\lambda(x).$$

Hence

$$\varphi_{\alpha-i\rho} * h_t(x) = e^{-t[(\alpha-i\rho)^2 + \rho^2]} \varphi_{\alpha-i\rho}(x)$$
$$= e^{-t(\alpha^2 - \rho^2 - 2i\alpha \rho + \rho^2)} \varphi_{\alpha-i\rho}(x).$$
For a radial measure μ, one can show that

$$\varphi_\lambda * \mu(x) = \hat{\mu}(\lambda) \varphi_\lambda(x).$$

Thus we get

$$\varphi_\lambda * h_t(x) = \hat{h}_t(\lambda) \varphi_\lambda(x)$$

$$= e^{-t(\lambda^2 + \rho^2)} \varphi_\lambda(x).$$

Hence

$$\varphi_{\alpha - i\rho} * h_t(x) = e^{-t[\alpha^2 - \rho^2 - 2i\alpha \rho]} \varphi_{\alpha - i\rho}(x)$$

$$= e^{-t(\alpha^2 - \rho^2 - 2i\alpha \rho)} \varphi_{\alpha - i\rho}(x)$$

$$= e^{-t(\alpha^2 - 2i\alpha \rho)} \varphi_{\alpha - i\rho}(x).$$
For a radial measure μ, one can show that

$$\varphi_\lambda \ast \mu(x) = \hat{\mu}(\lambda)\varphi_\lambda(x).$$

Thus we get

$$\varphi_\lambda \ast h_t(x) = \hat{h}_t(\lambda)\varphi_\lambda(x)$$
$$= e^{-t(\lambda^2 + \rho^2)}\varphi_\lambda(x).$$

Hence

$$\varphi_{\alpha - i\rho} \ast h_t(x) = e^{-t[(\alpha - i\rho)^2 + \rho^2]}\varphi_{\alpha - i\rho}(x)$$
$$= e^{-t(\alpha^2 - \rho^2 - 2i\alpha\rho + \rho^2)}\varphi_{\alpha - i\rho}(x)$$
$$= e^{-t(\alpha^2 - 2i\alpha\rho)}\varphi_{\alpha - i\rho}(x)$$
$$= e^{-t\alpha^2}e^{2it\alpha\rho}\varphi_{\alpha - i\rho}(x).$$

From above, it is clear that for any $x \in S$, $\varphi_{\alpha - i\rho} \ast h_t(x) \to 0$ as $t \to \infty$.

Muna Naik (HRI, Prayagraj)
Large time behaviour of heat propagator
5th January, 2022 16 / 25
For a radial measure μ, one can show that

$$\varphi_\lambda * \mu(x) = \hat{\mu}(\lambda)\varphi_\lambda(x).$$

Thus we get

$$\varphi_\lambda * h_t(x) = \hat{h}_t(\lambda)\varphi_\lambda(x)$$
$$= e^{-t(\lambda^2 + \rho^2)}\varphi_\lambda(x).$$

Hence

$$\varphi_{\alpha - i\rho} * h_t(x) = e^{-t[(\alpha - i\rho)^2 + \rho^2]}\varphi_{\alpha - i\rho}(x)$$
$$= e^{-t(\alpha^2 - \rho^2 - 2i\alpha \rho + \rho^2)}\varphi_{\alpha - i\rho}(x)$$
$$= e^{-t(\alpha^2 - 2i\alpha \rho)}\varphi_{\alpha - i\rho}(x)$$
$$= e^{-t\alpha^2}e^{2it\alpha \rho}\varphi_{\alpha - i\rho}(x).$$

From above, it is clear that for any $x \in S$, $\varphi_{\alpha - i\rho} * h_t(x) \to 0$ as $t \to \infty$.
Similarly we have, \(\varphi_\lambda \ast m_r(x) = \hat{m}_r(\lambda) \varphi_\lambda(x) \).
Similarly we have, $\varphi_\lambda \ast m_r(x) = \hat{m}_r(\lambda) \varphi_\lambda(x)$

$= \psi_\lambda(r) \varphi_\lambda(x)$.

Since $\psi_\lambda(r)$ does not converge to any value as $r \to \infty$, it follows that $\varphi_\lambda \ast h_t(x)$ does not converge to any value as $t \to \infty$. But since $\varphi_\lambda \ast h_t(x) \to 0$ as $t \to \infty$, it follows that the function φ_λ forms a counterexample for Repnikov et al’s theorem in Damek–Ricci space.
Similarly we have, \(\varphi_\lambda \ast m_r(x) = \widehat{m_r}(\lambda)\varphi_\lambda(x) \)
\[= \psi_\lambda(r)\varphi_\lambda(x). \]

Thus we get, \(\varphi_{\alpha-i\rho} \ast m_r(x) = \psi_{\alpha-i\rho}(r)\varphi_{\alpha-i\rho}(x). \)
Similarly we have, $\varphi_\lambda \ast m_r(x) = \hat{m}_r(\lambda)\varphi_\lambda(x)$

$\varphi_\lambda(\lambda)\varphi_\lambda(x)$.

Thus we get, $\varphi_{\alpha-i\rho} \ast m_r(x) = \psi_{\alpha-i\rho}(r)\varphi_{\alpha-i\rho}(x)$.

Since $\psi_{\alpha-i\rho}(r)$ does not converge to any value as $r \to \infty$,
Similarly we have, \(\varphi_\lambda \ast m_r(x) = \widehat{m_r}(\lambda) \varphi_\lambda(x) \)
\[= \psi_\lambda(r) \varphi_\lambda(x). \]

Thus we get, \(\varphi_{\alpha-i\rho} \ast m_r(x) = \psi_{\alpha-i\rho}(r) \varphi_{\alpha-i\rho}(x). \)

Since \(\psi_{\alpha-i\rho}(r) \) does not converge to any value as \(r \to \infty \), it follows that \(\varphi_{\alpha-i\rho} \ast m_r(x) \) does not converge to any value as \(r \to \infty \).
Similarly we have,
\[\varphi_\lambda \ast m_r(x) = \widehat{m_r}(\lambda) \varphi_\lambda(x) = \psi_\lambda(r) \varphi_\lambda(x). \]

Thus we get,
\[\varphi_{\alpha - i \rho} \ast m_r(x) = \psi_{\alpha - i \rho}(r) \varphi_{\alpha - i \rho}(x). \]

Since \(\psi_{\alpha - i \rho}(r) \) does not converge to any value as \(r \to \infty \), it follows that \(\varphi_{\alpha - i \rho} \ast m_r(x) \) does not converge to any value as \(r \to \infty \).
But since \(\varphi_{\alpha - i \rho} \ast h_t(x) \to 0 \) as \(t \to \infty \),
Similarly we have, \(\varphi_\lambda \ast m_r(x) = \hat{m}_r(\lambda)\varphi_\lambda(x) \)
\[= \psi_\lambda(r)\varphi_\lambda(x). \]
Thus we get, \(\varphi_{\alpha-i\rho} \ast m_r(x) = \psi_{\alpha-i\rho}(r)\varphi_{\alpha-i\rho}(x). \)

Since \(\psi_{\alpha-i\rho}(r) \) does not converge to any value as \(r \to \infty \), it follows that \(\varphi_{\alpha-i\rho} \ast m_r(x) \) does not converge to any value as \(r \to \infty \).
But since \(\varphi_{\alpha-i\rho} \ast h_t(x) \to 0 \) as \(t \to \infty \), it follows that the function \(\varphi_{\alpha-i\rho} \) forms a counterexample for Repnikov et al’s theorem in Damek–Ricci space.
Let \(\varphi_{\alpha - i \rho}(x) = u(x) + i v(x) \).
Let $\varphi_{\alpha-i\rho}(x) = u(x) + i v(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$.

Without loss of generality assume that $u * m_r(x)$ does not converge. Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$. Let $f(x) = 2 - u(x)$. Clearly f is a strictly positive function and $f * m_r(x)$ does not converge to any value as $r \to \infty$. On the other hand, since $u * h_t(x) + iv * h_t(x) = \varphi_{\alpha-i\rho} * h_t(x) \to 0$ as $t \to \infty$, it is clear that $u * h_t(x) \to 0$ as $t \to \infty$. Consequently we get

$$\lim_{t \to \infty} f * h_t(x) = 2 - \lim_{t \to \infty} u * h_t(x) = 2$$

for any fixed $x \in S$.

Muna Naik (HRI, Prayagraj)
Let \(\varphi_{\alpha-i\rho}(x) = u(x) + iv(x) \). As \(\varphi_{\alpha-i\rho} \ast m_r(x) \) does not converge to any value, it follows that either \(u \ast m_r(x) \) or \(v \ast m_r(x) \) does not converge to any value as \(r \rightarrow \infty \). Without loss of generality assume that \(u \ast m_r(x) \) does not converge.
Let $\varphi_{\alpha-i\rho}(x) = u(x) + iv(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$. Without loss of generality assume that $u * m_r(x)$ does not converge.

Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$.

Clearly $f(x) = 2 - u(x)$. Clearly f is a strictly positive function and $f * m_r(x)$ does not converge to any value as $r \to \infty$.

On the other hand, since $u * h(x) + iv * h(x) = \varphi_{\alpha-i\rho} * h(x) \to 0$ as $t \to \infty$, it is clear that $u * h(x) \to 0$ as $t \to \infty$.

Consequently we get $\lim_{t \to \infty} f * h(x) = 2 - \lim_{t \to \infty} u * h(x) = 2$ for any fixed $x \in S$.

Let $\varphi_{\alpha-i\rho}(x) = u(x) + i v(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$. Without loss of generality assume that $u * m_r(x)$ does not converge.

Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$.

Let $f(x) = 2 - u(x)$.

Clearly f is a strictly positive function and $f * m_r(x)$ does not converge to any value as $r \to \infty$.

On the other hand, since $u * ht(x) + i v * ht(x) = \varphi_{\alpha-i\rho} * ht(x) \to 0$ as $t \to \infty$, it is clear that $u * ht(x) \to 0$ as $t \to \infty$.

Consequently we get

$$\lim_{t \to \infty} f * ht(x) = 2 - \lim_{t \to \infty} u * ht(x) = 2,$$

for any fixed $x \in S$.

Muna Naik (HRI, Prayagraj)
Let $\varphi_{\alpha-i\rho}(x) = u(x) + i v(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$. Without loss of generality assume that $u * m_r(x)$ does not converge.

Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$.

Let $f(x) = 2 - u(x)$. Clearly f is a strictly positive function.
Let $\varphi_{\alpha-i\rho}(x) = u(x) + i\,v(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$. Without loss of generality assume that $u * m_r(x)$ does not converge.

Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$.

Let $f(x) = 2 - u(x)$. Clearly f is a strictly positive function and $f * m_r(x)$ does not converge to any value as $r \to \infty$.

Muna Naik (HRI, Prayagraj)
Large time behaviour of heat propagator
5th January, 2022
Let \(\varphi_{\alpha-i\rho}(x) = u(x) + i v(x) \). As \(\varphi_{\alpha-i\rho} * m_r(x) \) does not converge to any value, it follows that either \(u * m_r(x) \) or \(v * m_r(x) \) does not converge to any value as \(r \to \infty \). Without loss of generality assume that \(u * m_r(x) \) does not converge.

Since \(|\varphi_{\alpha-i\rho}(x)| \leq 1 \), \(|u(x)| \leq 1 \).

Let \(f(x) = 2 - u(x) \). Clearly \(f \) is a strictly positive function and \(f * m_r(x) \) does not converge to any value as \(r \to \infty \).

On the other hand, since

\[
 u * h_t(x) + i v * h_t(x) = \varphi_{\alpha-i\rho} * h_t(x) \to 0
\]

as \(t \to \infty \),
Let $\varphi_{\alpha-i\rho}(x) = u(x) + i v(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$. Without loss of generality assume that $u * m_r(x)$ does not converge.

Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$.

Let $f(x) = 2 - u(x)$. Clearly f is a strictly positive function and $f * m_r(x)$ does not converge to any value as $r \to \infty$.

On the other hand, since

$$u * h_t(x) + i v * h_t(x) = \varphi_{\alpha-i\rho} * h_t(x) \to 0$$

as $t \to \infty$, it is clear that $u * h_t(x) \to 0$ as $t \to \infty$.

Let $\varphi_{\alpha-i\rho}(x) = u(x) + i v(x)$. As $\varphi_{\alpha-i\rho} * m_r(x)$ does not converge to any value, it follows that either $u * m_r(x)$ or $v * m_r(x)$ does not converge to any value as $r \to \infty$. Without loss of generality assume that $u * m_r(x)$ does not converge.

Since $|\varphi_{\alpha-i\rho}(x)| \leq 1$, $|u(x)| \leq 1$.

Let $f(x) = 2 - u(x)$. Clearly f is a strictly positive function and $f * m_r(x)$ does not converge to any value as $r \to \infty$.

On the other hand, since

$$u * h_t(x) + i v * h_t(x) = \varphi_{\alpha-i\rho} * h_t(x) \to 0$$

as $t \to \infty$, it is clear that $u * h_t(x) \to 0$ as $t \to \infty$. Consequently we get

$$\lim_{t \to \infty} f * h_t(x) = 2 - \lim_{t \to \infty} u * h_t(x) = 2.$$

for any fixed $x \in S$.

Let f be a measurable function on S

Let f be a measurable function on S satisfying

$$|f(x)| \leq Ae^{B|x|}, \text{ for almost every } x \in S, \quad (5)$$

and for constants $A > 0$ and $B \in \mathbb{R}$.

Converse of the above theorem is not true.

The above theorem is not true for all complex number λ with nonzero real and imaginary parts, i.e. $\lambda \notin (i\mathbb{R} \cup \mathbb{R})$.

Let f be a measurable function on S satisfying

$$|f(x)| \leq Ae^{B|x|}, \quad \text{for almost every } x \in S,$$

and for constants $A > 0$ and $B \in \mathbb{R}$. Then for any $\lambda \in i\mathbb{R}$ and a point $x_0 \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L,$$

where L is a constant.

Let f be a measurable function on S satisfying

$$|f(x)| \leq Ae^{B|x|}, \quad \text{for almost every } x \in S,$$

and for constants $A > 0$ and $B \in \mathbb{R}$. Then for any $\lambda \in i\mathbb{R}$ and a point $x_0 \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi_{\lambda}(r)} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L,$$

where L is a constant.

- Converse of the above theorem is not true.

Let f be a measurable function on S satisfying

$$ |f(x)| \leq Ae^{B|x|}, \quad \text{for almost every } x \in S, \tag{5} $$

and for constants $A > 0$ and $B \in \mathbb{R}$. Then for any $\lambda \in i\mathbb{R}$ and a point $x_0 \in S$,

$$ \lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L, $$

where L is a constant.

- Converse of the above theorem is not true.
- The above theorem is not true for all complex number λ with nonzero real and imaginary parts,

Let f be a measurable function on S satisfying

$$|f(x)| \leq Ae^{B|x|}, \quad \text{for almost every } x \in S,$$

and for constants $A > 0$ and $B \in \mathbb{R}$. Then for any $\lambda \in i\mathbb{R}$ and a point $x_0 \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f * m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f * h_t(x_0) = L,$$

where L is a constant.

- Converse of the above theorem is not true.
- The above theorem is not true for all complex number λ with nonzero real and imaginary parts, i.e. $\lambda \notin (i\mathbb{R} \cup \mathbb{R})$.

Let \(f \) be a measurable function on \(S \) satisfying

\[
|f(x)| \leq Ae^{B|x|}, \quad \text{for almost every } x \in S, \tag{5}
\]

and for constants \(A > 0 \) and \(B \in \mathbb{R} \). Then for any \(\lambda \in i\mathbb{R} \) and a point \(x_0 \in S \),

\[
\lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L,
\]

where \(L \) is a constant.

- Converse of the above theorem is not true.
- The above theorem is not true for all complex number \(\lambda \) with nonzero real and imaginary parts, i.e. \(\lambda \notin (i\mathbb{R} \cup \mathbb{R}) \).
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p, \infty}(X) := \{ f : S \to \mathbb{C} \text{ measurable} \mid \sup_{t>0} t \{ x \mid \{ x \mid f(x) > t \} \}^{1/p} < \infty \}.$$
For \(p \in [1, \infty) \), we define the weak \(L^p \) space by

\[
L^{p, \infty}(X) := \left\{ f : S \rightarrow \mathbb{C} \text{ measurable} \mid \sup_{t > 0} t \left\{ x \mid |f(x)| > t \right\}^{1/p} < \infty \right\}.
\]

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a \(p > 2 \). Let \(\lambda = \pm i(2/p - 1)\rho \).
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p,\infty}(X) := \{ f : S \to \mathbb{C} \text{ measurable} \mid \sup_{t>0} t \{ x \mid |f(x)| > t \}^{1/p} < \infty \}.$$

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a $p > 2$. Let $\lambda = \pm i(2/p - 1)\rho$. Then for $f \in L^{p,\infty}(S)$ and a point $x_0 \in S$,
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p,\infty}(X) := \{ f : S \to \mathbb{C} \text{ measurable} \mid \sup_{t > 0} t \{ x \mid |f(x)| > t \}^{1/p} < \infty \}.$$

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a $p > 2$. Let $\lambda = \pm i(2/p - 1)\rho$. Then for $f \in L^{p,\infty}(S)$ and a point $x_0 \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi_{\lambda}(r)} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L,$$

where L is a constant.
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p, \infty}(X) := \{ f : S \to \mathbb{C} \text{ measurable} \mid \sup_{t > 0} t \{ x \mid |f(x)| > t \}^{1/p} < \infty \}.$$

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a $p > 2$. Let $\lambda = \pm i(2/p - 1)\rho$. Then for $f \in L^{p, \infty}(S)$ and a point $x_0 \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi_{\lambda}(r)} f * m_r(x_0) = L \text{ implies } \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f * h_t(x_0) = L,$$

where L is a constant.

Converse of the above theorem is not true.
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p,\infty}(X) := \{ f : S \rightarrow \mathbb{C} \text{ measurable} \mid \sup_{t>0} t \mid \{ x \mid |f(x)| > t \} \mid^{1/p} < \infty \}.$$

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a $p > 2$. Let $\lambda = \pm i(2/p - 1)\rho$. Then for $f \in L^{p,\infty}(S)$ and a point $x_0 \in S$,

$$\lim_{r \rightarrow \infty} \frac{1}{\psi_{\lambda}(r)} f \ast m_r(x_0) = L \text{ implies } \lim_{t \rightarrow \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L,$$

where L is a constant.

- Converse of the above theorem is not true.
- The above theorem is also not true for all complex number λ with nonzero real and imaginary parts,
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p,\infty}(X) := \{ f : S \to \mathbb{C} \text{ measurable} \mid \sup_{t>0} t \{ x \mid |f(x)| > t \}^{1/p} < \infty \}.$$

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a $p > 2$. Let $\lambda = \pm i(2/p - 1)\rho$. Then for $f \in L^{p,\infty}(S)$ and a point $x_0 \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f \ast m_r(x_0) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f \ast h_t(x_0) = L,$$

where L is a constant.

- Converse of the above theorem is not true.
- The above theorem is also not true for all complex number λ with nonzero real and imaginary parts, i.e. $\lambda \not\in (i\mathbb{R} \cup \mathbb{R})$.
For $p \in [1, \infty)$, we define the weak L^p space by

$$L^{p,\infty}(X) := \{ f : S \to \mathbb{C} \text{ measurable} \mid \sup_{t>0} t \{ x \mid |f(x)| > t \} \}^{1/p} < \infty \}.$$

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a $p > 2$. Let $\lambda = \pm i(2/p - 1)\rho$. Then for $f \in L^{p,\infty}(S)$ and a point $x_o \in S$,

$$\lim_{r \to \infty} \frac{1}{\psi(\lambda)(r)} f * m_r(x_o) = L \implies \lim_{t \to \infty} e^{t(\lambda^2 + \rho^2)} f * h_t(x_o) = L,$$

where L is a constant.

- Converse of the above theorem is not true.
- The above theorem is also not true for all complex number λ with nonzero real and imaginary parts, i.e. $\lambda \notin (i\mathbb{R} \cup \mathbb{R})$.

Muna Naik (HRI, Prayagraj)
Large time behaviour of heat propagator
5th January, 2022
20 / 25

Fix $\lambda \in i\mathbb{R}$.

Fix a $\lambda \in i\mathbb{R}$. Let f, g be measurable functions on S such that f satisfies one of these three conditions:

(a) $|f(x)| \leq B \phi(\lambda)(x)$ for almost every $x \in S$, for a constant $B > 0$,

(b) $f \in L^p(S)$ for some $p \in (2, \infty)$ satisfying $|\lambda| = (1 - 2/p) \rho$,

(c) $f \in L^\infty(S)$ and $|\lambda| = \rho$.

If $\lim_{r \to \infty} \psi_{\lambda}(r) f^* m_r(x) = g(x)$, for almost every $x \in S$, then

$$\Delta g = - (\lambda^2 + \rho^2) g.$$

Fix a \(\lambda \in i\mathbb{R} \). Let \(f, g \) be measurable functions on \(S \) such that \(f \) satisfies one of these three conditions:

(a) \(|f(x)| \leq B\varphi_\lambda(x) \) for almost every \(x \in S \), for a constant \(B > 0 \),

Fix a \(\lambda \in i\mathbb{R} \). Let \(f, g \) be measurable functions on \(S \) such that \(f \) satisfies one of these three conditions:

(a) \(|f(x)| \leq B \varphi_\lambda(x) \) for almost every \(x \in S \), for a constant \(B > 0 \),

(b) \(f \in L^{p,\infty}(S) \) for some \(p \in (2, \infty) \) satisfying \(|\lambda| = (1 - 2/p)\rho \),

(c) \(f \in L^\infty(S) \) and \(|\lambda| = \rho \).

If \(\lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f_m^r(x) = g(x) \), for almost every \(x \in S \), then \(\Delta g = -\left(\lambda^2 + \rho^2\right) g \).

Fix a $\lambda \in i\mathbb{R}$. Let f, g be measurable functions on S such that f satisfies one of these three conditions:

(a) $|f(x)| \leq B \varphi_\lambda(x)$ for almost every $x \in S$, for a constant $B > 0$,
(b) $f \in L^{p,\infty}(S)$ for some $p \in (2, \infty)$ satisfying $|\lambda| = (1 - 2/p)\rho$,
(c) $f \in L^\infty(S)$ and $|\lambda| = \rho$.

Fix a $\lambda \in i\mathbb{R}$. Let f, g be measurable functions on S such that f satisfies one of these three conditions:

(a) $|f(x)| \leq B \varphi_\lambda(x)$ for almost every $x \in S$, for a constant $B > 0$,
(b) $f \in L^{p, \infty}(S)$ for some $p \in (2, \infty)$ satisfying $|\lambda| = (1 - 2/p)\rho$,
(c) $f \in L^\infty(S)$ and $|\lambda| = \rho$.

If $\lim_{r \to \infty} \frac{1}{\psi_\lambda(r)} f \ast m_r(x) = g(x)$, for almost every $x \in S$, then

$$\Delta g = -(\lambda^2 + \rho^2)g.$$

Fix a $\lambda \in i\mathbb{R}$. Let f, g be measurable functions on S such that f satisfies one of these three conditions:

(a) $|f(x)| \leq B\varphi_{\lambda}(x)$ for almost every $x \in S$, for a constant $B > 0$,
(b) $f \in L^{p,\infty}(S)$ for some $p \in (2, \infty)$ satisfying $|\lambda| = (1 - 2/p)\rho$,
(c) $f \in L^\infty(S)$ and $|\lambda| = \rho$.

If

$$\lim_{r \to \infty} \frac{1}{\psi_{\lambda}(r)} f \ast m_r(x) = g(x),$$

for almost every $x \in S$, then

$$\Delta g = -(\lambda^2 + \rho^2)g.$$
Estimate of heat kernel

$$h_t(r) \approx t^{-\frac{3}{2}} (1 + r)^{-\frac{1}{4}} (1 + 1 + r t)^{n-\frac{3}{2}} e^{-r^2/4t - \rho^2 r}.$$

$$(n = \dim(S), r \geq 0)$$

Exponential factors:

- $R_n: p_t(r) = e^{-r^2/4t},$ (peak is always at 0).
- $S: p_t(r) = e^{-(r - 2\rho t)^2/4t},$ (peak is at $2\rho t$).
Estimate of heat kernel

\[h_t(r) \propto t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1+r}{t}\right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{-\rho r}, \quad (n = \dim(S), r \geq 0) \]
Estimate of heat kernel

\[h_t(r) \asymp t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t}\right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{-\rho r}, \quad (n = \dim(S), \ r \geq 0) \]

\[= t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t}\right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{\rho r} e^{-2\rho r} \]
Estimate of heat kernel

\[h_t(r) \asymp t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1 + r}{t}\right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{-r}, \quad (n = \text{dim}(S), \ r \geq 0) \]

\[= t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1 + r}{t}\right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^\rho e^{-2\rho} \]

\[= t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1 + r}{t}\right)^{\frac{n-3}{2}} e^{-\frac{(r-2\rho t)^2}{4t}} e^{-2\rho r}. \]
Estimate of heat kernel

\[h_t(r) \propto t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{-\rho r}, \quad (n = \dim(S), r \geq 0) \]

\[= t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{\rho r} e^{-2\rho r} \]

\[= t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{(r-2\rho t)^2}{4t}} e^{-2\rho r}. \]

- Exponential factors:
 - \(R_n \): peak is always at 0.
 - \(S \): peak is at \(2\rho t \).
Estimate of heat kernel

\[h_t(r) \asymp t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{-\rho r}, \quad (n = \dim(S), r \geq 0) \]

\[= t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^\rho e^{-2\rho r} \]

\[= t^{-\frac{3}{2}}(1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{(r-2\rho t)^2}{4t}} e^{-2\rho r}. \]

- Exponential factors:

 \[\mathbb{R}^n : \quad p_t(r) = e^{-\frac{r^2}{4t}}, \quad (\text{peak is always at 0}). \]
Estimate of heat kernel

\[h_t(r) \asymp t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^{-\rho r}, \quad (n = \dim(S), r \geq 0) \]

\[= t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{r^2}{4t}} e^{-\rho^2 t} e^\rho e^{-2\rho r} \]

\[= t^{-\frac{3}{2}} (1 + r) \left(1 + \frac{1 + r}{t} \right)^{\frac{n-3}{2}} e^{-\frac{(r-2\rho t)^2}{4t}} e^{-2\rho r}. \]

- **Exponential factors:**
 - \(\mathbb{R}^n : p_t(r) = e^{-\frac{r^2}{4t}}, \) (peak is always at 0).
 - \(S : p_t(r) = e^{-\frac{(r-2\rho t)^2}{4t}}, \) (peak is at \(2\rho t \)).
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$.

This means that heat produced initially at the origin $o \in S$ does not diffuse homogeneously but concentrates asymptotically in an annulus of width $s(t)$ moving to infinity with speed 2ρ. Such behavior sharply contrasts to that of the Euclidean space \mathbb{R}^n.

The above result was first proved by Davies et al for hyperbolic spaces [2] and by Anker and Setti for all symmetric spaces of noncompact type [1].
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$. Then

$$\mathbb{R}^n : \lim_{t \to \infty} \int_{r > s(t)} h_t(r) \, dr = 0.$$
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$. Then

$$
\mathbb{R}^n : \lim_{t \to \infty} \int_{r > s(t)} h_t(r) \, dr = 0.
$$

$$
S : \lim_{t \to \infty} \int_{|r - 2\rho t| > s(t)} h_t(r) \, dr = 0.
$$

This means that heat produced initially at the origin $o \in S$ does not diffuse homogeneously but concentrates asymptotically in an annulus of width $s(t)$ moving to infinity with speed 2ρ.

Such behavior sharply contrasts to that of the Euclidean space \mathbb{R}^n.

The above result was first proved by Davies et al for hyperbolic spaces [2] and by Anker and Setti for all symmetric spaces of noncompact type [1].
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$. Then

$$\mathbb{R}^n : \lim_{t \to \infty} \int_{r > s(t)} h_t(r) \, dr = 0.$$

$$S : \lim_{t \to \infty} \int_{|r - 2\rho t| > s(t)} h_t(r) \, dr = 0.$$

This means that heat produced initially at the origin $o \in S$ does not diffuse homogeneously but concentrates asymptotically in an annulus of width $s(t)$ moving to infinity with speed 2ρ.
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$. Then

$$\mathbb{R}^n : \lim_{t \to \infty} \int_{r > s(t)} h_t(r) \, dr = 0.$$

$$S : \lim_{t \to \infty} \int_{|r - 2\rho t| > s(t)} h_t(r) \, dr = 0.$$

- This means that heat produced initially at the origin $o \in S$ does not diffuse homogeneously but concentrates asymptotically in an annulus of width $s(t)$ moving to infinity with speed 2ρ.
- Such behavior sharply contrasts to that of the Euclidean space \mathbb{R}^n.
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$. Then

$$\mathbb{R}^n : \lim_{t \to \infty} \int_{r > s(t)} h_t(r) \, dr = 0.$$

$$S : \lim_{t \to \infty} \int_{|r-2\rho t| > s(t)} h_t(r) \, dr = 0.$$

- This means that heat produced initially at the origin $o \in S$ does not diffuse homogeneously but concentrates asymptotically in an annulus of width $s(t)$ moving to infinity with speed 2ρ.
- Such behavior sharply contrasts to that of the Euclidean space \mathbb{R}^n.
- The above result was first proved by Davies et al for hyperbolic spaces [2]
Let $s(t)$ be a positive function such that $\frac{s(t)}{\sqrt{t}} \to \infty$ as $t \to \infty$. Then

\[
\mathbb{R}^n : \lim_{t \to \infty} \int_{r > s(t)} h_t(r) \, dr = 0.
\]

\[
S : \lim_{t \to \infty} \int_{|r - 2\rho t| > s(t)} h_t(r) \, dr = 0.
\]

- This means that heat produced initially at the origin $o \in S$ does not diffuse homogeneously but concentrates asymptotically in an annulus of width $s(t)$ moving to infinity with speed 2ρ.
- Such behavior sharply contrasts to that of the Euclidean space \mathbb{R}^n.
- The above result was first proved by Davies et al for hyperbolic spaces [2] and by Anker and Setti for all symmetric spaces of noncompact type [1].

Thank You