

Subject Code	Name of Subject	Sessions	Hours/ Week	Hours/ Semester (14 weeks)*	Credits	Subject Type
BFT504M	Introduction to Internet of Things	Lecture	1	28	2	Major Process based
		Practical	1			
		Tutorial	-			
		Demo	-			
		Studio Practice	-	_		
		Self-Study	-			

*Teaching sessions to be planned for 14 weeks, excluding visits to fairs/exhibition and end term examination week.

SUBJECT AIM

- Understand the basics of IoT& its design solution
- Application of IoT ideas in Business Domains

LEARNING OUTCOMES OF THE SUBJECT

Knowledge

- 1. Concept of IoT
- 2. Functional views of IoT
- 3. IoT and its Applications in Smart Factory & Smart Manufacturing

Skill

- 1. Ability to understand & conceptualize Smart Factory & Smart Manufacturing
- 2. Capability to transform automated environment to IoT enabled environment

Synthesis

- 1. Design and Develop basic IoT applications for a strategic development of Apparel industry
- 2. Combine IoT with other technologies like
 - Artificial Intelligence

To simulate and build applications required for Smart Factory & Smart Manufacturing

CONTENT

Session	Hours			Suggested	Self Study
No		Topic	Detailing	Pedagogy and	
NO.				Duration (Hours)	
1-2	4 hrs	What Is the Internet of Things (IoT)?	Overview Understanding the difference between Things and Things in IoT Real Life Examples, IoT Devices Trends GUI building Understanding embedded systems	Lecture& Demo 2 hrs.	Revise the sensor concepts as covered in the subject – Elements of Technology. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015 https://www.tuto rialspoint.com/e
					mbedded_system s/index.htm
2-5	6 hrs	IoT-	Understanding the Building blocks of IOT		Revise the

		Embedded	Sensing	Lecture 4 hrs	concept of DC,
		System -An	• Sensors can be either on-board the microcontroller or attached	/ Demo 2hrs.	servo and step
		Architectura	to the microcontroller.		up motors
		l Overview:	Actuation		
			 IoT devices can have various types of actuators attached that 		Revise the
			allow takingactions upon the physical entities in the vicinity of		concept of
			the device.		networking as
			Communication		taught in
			• Communication modules are responsible for sending collected		Elements of
			data to other devices or cloud-based servers/storage and		Technology.
			receiving data from other devices and commands from remote		
			applications.		Deployment',
					River Publishers,
					2014 5. N. Ida,
					Sensors,
					Actuators and
					Seitech
					Dublishors 2014
					Publishers, 2014.
					•
5 - 9	6 hrs.	Networking	Need to Network	Lecture/Demo/Ex	William Stallings,
		and	Networking components	pert Lecture	"Computer
		Internet	Bluetooth		Networking with
			WiFi, Ethernet		Internet
			Internet structure/ Protocols		protocols and
			Client Server Module offered by free space		Technology",
			Data capturing		Pearson
			TCP/IP Application Layers		Education, 6th
			НТТР		printing 2011.
			MOTT		

			CO-AP		
10-13	6 hrs	Design and implementa tion of IoT devices requiremen t	Building on embedded circuit Understanding the MIT inverter app.	. Transaction of curriculum in industry/ In house Lab with an expert	
13-16	8 hrs.	Design and implementa tion of IoT devices requiremen t	Circuit developed with the hardware and server API to connect to Bluetooth and Cloud services .	Lecture/Demo/la b exercises.	

NATURE OF ASSIGNMENTS

EVALUATION CRITERIA

Continuous Assignment 1 : 30 Marks (Mid Term)	Continuous Assignment 2 : 30 Marks (End Term)	End Term Jury : 40 Marks
Small Project proposal (Distributed in week-5) (30	Assignment-2 - Project Development will be evaluated in 3	Final project which is
marks)	phases marked for 10 marks each, wherein the groups can refine	a culmination of
Submit a project proposal in one page. The project	their work in each phase. Total Duration: Week 6 – 15	work developed as
proposal should follow a standard template with		assignment I and 2 is
the headers as abstract, components used and	a) During week 6-10, students will work on the project which	to be presented
proposed deliverables.	was proposed in week-5.	along with a report
This evaluation will be done on the basis of clarity	Deliverables: Submission of circuit diagram , User interface	submission for final
and scope of the project idea (aligned to the need	pages developed, (Marks – 10)	evaluation – jury

of the Apparel Industry).		based
Students can work in a group of 4.	b) Second project evaluation	
	: Due in Week 12 (10 marks)	
	Deliverables: connect the embedded system over a client server	
	model starting with connection to your phone using Bluetooth	
	or wifi	
	Third Project evaluation	
	:Due in Week 15 (10 marks)	
	Deliverables: connect the project to cloud.	

EVALUATION MATRIX

Mid-Term/ Mid-Module Assessment	End-Term/ End-Module Assessment	End Term Evaluation (Jury)	Total
30	30	40	100

REFERENCE MATERIAL

- a. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015
- b. https://www.tutorialspoint.com/embedded_systems/index.htm
- c. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies,
 - Protocols and Use Cases for Internet of Things, Cisco Press, 2017
- d. Deployment', River Publishers, 2014 5. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.
- e. William Stallings, "Computer Networking with Internet protocols and Technology", Pearson Education, 6th printing 2011.
- f. ArshdeepBahga, Vijay Madisetti, —Internet of Things A hands-on approach, Universities Press, 2015
- g. Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things Key applications and Protocols, Wiley, 2012 (for Unit 2).

BFT Curriculum 2018

- h. Jan Ho[°] ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Elsevier, 2014.
- i. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Things, Springer, 2011.
- j. Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.

INFRASTRUCTURE REQUIREMENT

• Computer lab with Ardiuno IDE downloaded

EQUIPMENT/TOOLS/MATERIAL

• IoT kit

CURRICULUM DEVELOPMENT TEAM

Faculty Anchor - Dr. S. Angammal Santhi – Professor, NIFT-Chennai Faculty Co-Anchor: Dr. Deepak Panghal - Assistant Professor, NIFT-Delhi Team Members: Mr. S. Prabakar - Assistant Professor, NIFT-Chennai