
The Hydrogen Atom problem

The Hamiltonian for hydrogen atom, where electron of mass me is in the Coulomb field of
the proton of mass mp, is given by,

H = − ~2

2me
∇2
e −

~2

2mp
∇2
p + V (|~rp − ~re|), V (|~rp − ~re|) = − Ze

2

4πε0
1

|~rp − ~re|
(27)

Hence the Schrödinger equation for hydrogen atom is[
− ~2

2me
∇2
e −

~2

2mp
∇2
p + V (|~rp − ~re|)

]
Ψ(re, rp) = EΨ(re, rp), (28)

which cannot be solved by seperation of variables Ψ(re, rp) = ψe(re)ψp(rp) because of the
form of the potential. To get around this problem, the usual practice is to change over to
relative and center-of-mass (cm) coordinates, (xe, ye, ze) and (xp, yp, zp)→ ~r ≡ (x, y, z) and
~R ≡ (X,Y, Z),

~r = ~rp − ~re, ~R =
me~re +mp~rp
me +mp

(29)

In order to rewrite the hydrogen atom Schrödinger equation in terms of relative and cm
coordinates we find that,

∂Ψ
∂xp

=
∂Ψ
∂x

∂x

∂xp
+ · · ·+ ∂Ψ

∂X

∂X

∂xp
+ · · · =

∂Ψ
∂x

+
mp

mp +me

∂Ψ
∂X

∂Ψ
∂xe

= − ∂Ψ
∂x

+
me

mp +me

∂Ψ
∂X

∂2Ψ
∂x2

p

=
∂2Ψ
∂x2

+
(

mp

mp +me

)2 ∂2Ψ
∂X2

etc. (30)

The hydrogen atom Schrödinger equation now looks lot cleaner in terms of relative and cm
variables and on top of that it can now be solved by seperation of relative and cm coordinate
variables, [

− ~2

2M
∇2
R −

~2

2µ
∇2
r

]
Ψ(r,R) + V (r) Ψ(r,R) = EΨ(r,R) (31)

V (r) = − Ze2

4πε0
1
r
, (32)

M = me +mp, µ =
memp

me +mp
,

∇2
r ≡

∂2

∂x2
+ · · · , ∇2

R ≡
∂2

∂X2
+ · · · (33)

Ψ(~r, ~R) = Φ(~R)ψ(~r) and E = Er + Ecm (34)

The Schrödinger equations for center-of-mass and reduced mass are,

− ~2

2M
∇2
R Φ(~R) = Ecm Φ(~R) (35)

− ~2

2µ
∇2
r ψ(~r) + V (r)ψ(~r) = Er ψ(~r). (36)
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The center-of-mass equation (35) is just an equation for free particle and hence the center-
of-mass of hydrogen atom is basically a free particle. The solution for relative coordinate
equation (36) is the same as (13), i.e.

ψ(~r) ≡ ψ(r, θ, φ) = R(r)Y (θ, φ) =
u(r)
r

Y (θ, φ) (37)

The angular and radial equations for hydrogen atom are,

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂φ2
+ l(l + 1)Y = 0 (38)

− ~2

2µ
d2u

dr2
+
[
− Ze

2

4πε0
1
r

+
l(l + 1)~2

2µr2

]
u = E u (39)

The angular equation (38) can be solved by further seperation of variables Y (θ, φ) =
Θ(θ) Φ(φ) and the two seperated equations are,

d2Φ
dφ2

+m2Φ = 0 (40)

sin θ
d

dθ

(
sin θ

dΘ
dθ

)
+
[
l(l + 1) sin2 θ −m2

]
Θ = 0 (41)

Solving the Φ equation is trivial,

d2Φ
dφ2

+m2 Φ = 0 ⇒ Φ(φ) = Aeimφ (42)

exp(−imφ) is not included in the solution of (42) because by making m both positive and
negative can take care of that. Now, since the potential is symmetric in azimuthal angle φ,
we require,

Φ(φ+ 2π) = Φ(φ)
→ eim(φ+2π) = eimφ

or, ei2mπ = 1
⇒ m = 0, ±1, ±2, . . . (43)

where m is known as magnetic quantum number. The normalization of Φ determines the
constant A,∫ 2π

0
dφ |Φ|2 = 1 → A2

∫ 2π

0
dφ = 1 → A =

1√
2π

⇒ Φm(φ) =
1√
2π

eimφ (44)

Following residue theorem of complex integration, one can show orthogonality of Φ(φ),∫ 2π

0
dφΦ?

m(φ) Φn(φ) = δmn.

The Θ equation (41) can be solved using Frobenius method, and the solution is,

Θm
l (θ) = APml (cos θ), (45)
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where Pml (cos θ) is the associated Legendre polynomial of l degree and m order, and is
generated by,

Pml (x) = (1− x2)|m|/2
(
d

dx

)|m|
Pl(x) (46)

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l (47)

where l is integer and known as orbital angular momentum quantum number and the mag-
netic qunatum number m is restricted over −l ≤ m ≤ +l. Hence, the complete solution for
the angular equation (38) is,

Ylm(θ, φ) = Nlm e
imφ Pml (cos θ), (48)

where the normalized angular wave function Ylm is called spherical harmonics and Nlm is
the normalization constant. The orthogonalitiy of angular wave fuction is stated as,∫ 2π

0
dφ

∫ π

0
sin θ dθ Y ?

lm(θ, φ)Yl′m′(θ, φ) = δll′ δmm′

An interesting consequence of the angular solution follows from the allowed values of m –
the l-th eigenstate is degenerate and, because of −l ≤ m ≤ l, is 2l + 1-fold degenerate. A
few examples,

l = 0 m = 0, Y00 =

√
1

4π

l = 1 m = 0, Y10 =

√
3

4π
cos θ

m = ±1, Y1±1 = ∓
√

3
8π

e±iφ sin θ

l = 2 m = 0, Y20 =

√
5

16π
(3 cos2 θ − 1)

m = ±1, Y2±1 = ∓
√

15
8π

e±iφ sin θ cos θ

m = ±2, Y2±2 =

√
15

32π
e±i2φ sin2 θ etc.

The solution of the radial part (39) is rather illustrative since it leads to the quantization
of energy in hydrogen atom, the thing that Bohr attempted using semi-classical treatment,

d2u

dr2
+

2µ
~2

[
E +

Ze2

4πε0
1
r
− l(l + 1)~2

2µr2

]
u = 0. (49)

As is done in SHO, to cast the equation (49) in some standard form in terms of dimensionless
variable, we attempt a change of variable,

ρ = αr → d

dr
= α

d

dρ
and

d2

dr2
= α2 d2

dρ2

The radial equation (49) now becomes,

α2 d
2u

dρ2
+
[

2µE
~2

+
µZe2α

2πε0~2

1
ρ
− l(l + 1)α2

ρ2

]
u = 0

or,
d2u

dρ2
+
[

2µE
α2~2

+
µZe2

2πε0~2α

1
ρ
− l(l + 1)

ρ2

]
u = 0. (50)
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To simplify (50) let,

α2 = − 8µE
~2

and λ =
µZe2

2πε0α~2
=

Ze2

4πε0~

√
−µ
2E

(51)

and the radial Schrödinger equation for hydrogen atom now in terms of dimensionless vari-
able is,

d2u

dρ2
+
[
λ

ρ
− 1

4
− l(l + 1)

ρ2

]
u = 0 (52)

At large ρ, the asymptotic form of the solution is obtained from (52) as ρ→∞,

d2

dρ2
≈ u

4
⇒ u(ρ) ∼ e−ρ/2. (53)

The next obvious thing is to determine the behavior at ρ small, because singularity here is
at ρ = 0. But since such problem can still be dealt with Frobenius method, we assume the
general form of the solution to be,

u(ρ) = f(ρ) e−ρ/2 (54)

and consequently the radial differential equation in f(ρ) becomes,

d2f

dρ2
− df

dρ
+
[
λ

ρ
− l(l + 1)

ρ2

]
f = 0 (55)

The Frobenius method can be applied to solve the above equation (55), where f(ρ) can be
expressed as,

f(ρ) = ρs+1
∞∑
m=0

bm ρ
m. (56)

The reason behind additional power in ρs+1 is the actual solution to radial Schrödinger
equation is r R(r) = u(r). Putting the power series solution (56) in equation (55), we find,∑
m

[
(m+ s+ 1)(m+ s)bmρm+s−1 − (m+ s+ 1)bmρm+s + λ bmρ

m+s − l(l + 1)bmρm+s−1
]

= 0∑
m

[
{(m+ s+ 1)(m+ s)− l(l + 1)} bm ρm+s−1 + {λ− (m+ s+ 1)} bm ρm+s

]
= 0 (57)

Since the above (57) is valid for all powers of ρ, coefficients of each power of ρ can be
equated to zero. The indicial equation is,

m = 0, and b0 6= 0 : s(s+ 1) = l(l + 1) ⇒ s = l, or − l − 1 (58)

The s = −l − 1 is not aacceptable since that would make the solution diverge at ρ = 0. In
general for ρm+s,

[(m+ s+ 2)(m+ s+ 1)− l(l + 1)] bm+1 + [λ−m− s− 1] bm = 0
bm+1

bm
=

m+ s+ 1− λ
(m+ s+ 2)(m+ s+ 1)− l(l + 1)

(59)

From the recursion relation (59) it follows that for s = l starting with b0 generates all the
coefficients of the power series. However, just as in SHO, not all the solution so obtained
are normalizable! For at very large m, the recursion formula (59) behaves as,

bm+1

bm

m→∞−→ 1
m
. (60)
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If we compare the adjacent coefficients of the series eρ, it is exactly 1/m, the one we got
in (60) and therefore, asymptotically f(ρ) is behaving as eρ and in turn, u(ρ) in (54) as
eρ/2, which diverges at large ρ. Hence our requirement of normalizable solution can be met
if the series (56) is made to terminate at some highest m, say m = nr, beyond which all
coefficient bnr+1 are zero. This results in,

λ = n = nr + l + 1, nr = 0, 1, 2, . . . , n = 1, 2, 3, . . . (61)

The integers nr and n are known as radial quantum number and principle quantum number.
The angular momentum quantum number l can take values

l = 0, 1, . . . , , n− 1 (62)

The λ determines the energy of hydrogen atom (51) with Z = 1 and is,

E = −
(
Ze2

4πε0

)2
µ

2~2λ2
⇒ En = −

(
e2

4πε0

)2
µ

2~2

1
n2
. (63)

This is same as the Bohr’s famous expression for hydrogen atom energy levels obtained
semi-classically. Before deriving the wave functions of hydrogen atom, let us discuss the
degeneracy in the energy of hydrogen atom. We know that the azimuthal quantum number
m can take values in [−l, +l], a total of 2l + 1. The orbital angular momentum quantum
number l can take values 0, 1, . . . , n − 1, as total of n. Therefore, the total degeneracy of
the energy level En is,

En degeneracy :
n−1∑
l=0

(2l + 1) = 2 · n(n− 1)
2

+ n = n2 (64)

The ground state n = 1 is obviously non-degenerate. Here we have neglected the spin of
the electron, but if we include it by neglecting its all possible effects, the degeneracy is 2n2.

The hydrogen atom wave function, for the state with quantum numbers (n, l, m) is,

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (65)

The Bohr’s radius is defined as

a0 ≡
4πε0 ~2

µe2
= 0.53× 10−10 m (66)

and in terms of Bohr’s radius,

α =
2
a0 n

→ ρ =
2r
a0 n

.

Let us construct a few wave functions for hydrogen atom before we generalize the solution.

R10(r): This implies n = 1, l = 0 and the series (56) terminates at max (m) = nr =
n− l − 1 = 0. Hence,

u10(r) = b0 ρ e
−ρ/2 = b0

2r
a0
e−r/a0 ⇒ R10(r) =

u10(r)
r

=
2b0
a0

e−r/a0 . (67)

Normalizing the wave function R10,

1 =
∫ ∞

0
|R10|2 r2 dr =

4|b0|2

a2
0

∫ ∞
0

e−2r/a0r2 dr =
4|b0|2

a2
0

a3
0

4
⇒ b0 =

1
√
a0
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therefore, the ground state radial wave function of hydrogen atom is,

R10(r) =
2√
a3

0

e−r/a0 . (68)

The full ground state wave function of hydrogen atom is,

ψ100(r, θ, φ) = R10(r)Y00(θ, φ) =
1√
πa3

0

e−r/a0 . (69)

R20(r): This implies n = 2, l = 0 and the series (56) terminates at max (m) = nr =
n− l − 1 = 1. Hence we need to know b1 from (59),

b1
b0

=
0 + 0 + 1− 2

2 · 1− 0
= −1

u20(r) =
(
b0 ρ+ b1 ρ

2
)
e−ρ/2 = b0ρ(1− ρ) e−ρ/2 =

b0 r

a0

(
1− r

a0

)
e−r/2a0 (70)

Therefore the radial wave function of first excited state R20 is,

R20(r) =
b0
a0

(
1− r

a0

)
e−r/2a0 normalization → R20(r) =

1√
2a3

0

(
2− r

a0

)
e−r/2a0

(71)
The full first excited state wave function of hydrogen atom is,

ψ200(r, θ, φ) = R20(r)Y00(θ, φ) =
1

4
√

2πa3
0

(
2− r

a0

)
e−r/2a0 (72)

R21(r): This implies n = 2, l = 1 and the series (56) terminates at max (m) = nr =
n− l − 1 = 0. Hence,

u21(r) = b0 ρ
2 e−ρ/2 =

b0
a2

0

r2 e−r/2a0 ⇒ R21(r) =
u21(r)
r

=
b0
a2

0

r e−r/2a0 (73)

Normalizing the wave function R21 in (73),

1 =
∫ ∞

0
|R21|2r2 dr =

|b0|2

a4
0

∫ ∞
0

r4 e−r/2a0 dr =
|b0|2

a4
0

24a5
0 ⇒ b0 =

1√
24a0

,

therefore the radial wave function R21 is,

R21(r) =
1√
24a3

0

r

a0
e−r/2a0 . (74)

Hence the full n = 2, l = 1 and m = 0, ±1 wave functions of hydrogen atom are,

ψ210(r, θ, φ) = R21(r)Y10(θ, φ) =
1

4
√

2πa3
0

r

a0
e−r/2a0 cos θ (75)

ψ21±1(r, θ, φ) = R21(r)Y1±1(θ, φ) = ∓ 1
8
√
πa3

0

r

a0
e−r/2a0 sin θ e±iφ (76)

The normalized general solution for Rnl(r) follows from combining (54) and (56), which is,

Rnl(r) = Nnl
f(ρ)
r

e−ρ/2 = Nnl ρ
l e−ρ/2 L2l+1

n+l (ρ) (77)
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where Lpq(x) is an associated Laguerre polynomial, generated by

Lpq(x) =
dp

dxp
Lq(x) and Lq(x) = ex

dq

dxq
(e−x xq). (78)

With all the normalizations thrown in, the general hydrogen atom wave function is rather
intimidating,

Ylm(θ, φ) = (−1)m
[

(2l + 1)(l −m)!
4π(l +m)!

]1/2

Pml (cos θ) eimφ (79)

Rnl(r) = −

[(
2
na0

)3 (n− l − 1)!
2n{(n+ l)!}3

]1/2 (
2r
na0

)l
e−r/na0 L2l+1

n+l (2r/na0) (80)

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ). (81)

Probability density of finding an electron in hydrogen atom in the n, l,m quantum state is

|ψnlm|2 = ψ?nlm(r, θ, φ)ψnlm(r, θ, φ),

and probability of finding electron in n, l,m state in volume element dτ = r2dr sin θdθdφ is

|ψnlm|2 dτ. (82)

The above probability density (82) is not very illuminating since such multi-dimensional
object cannot be plotted. To visualize the angular dependence of |ψnlm|2, density or orbital
plot of Ylm is employed. To visualize the radial dependence, the radial probability density
is defined as, regardless of direction (θ, φ), the probability of finding electron between r and
r + dr,

Dnl(r) dr = |Rnl(r)|2 r2 dr
∫ π

0
sin θ dθ

∫ 2π

0
dφ |Ylm|2

= r2 |Rnl(r)|2 dr (83)

A few visulaization frames for hydrogen atom wave functions follow.
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