Ladder operators: The angular momentum eigenvalue equations (5) can also be solved by introducing ladder operators very similar to the one applied to SHO,

\[L_\pm = L_x \pm i L_y, \]

(28)

The commutation relations involving \(L_\pm \) and components of angular momentum are derived using the relations (4),

\[
\begin{align*}
[L_z, L_\pm] &= [L_z, L_x \pm i L_y] = \pm \hbar L_\pm \\
[L^2, L_\pm] &= 0 \\
[L_\pm, L_{\mp}] &= \pm 2\hbar L_z.
\end{align*}
\]

(29)

The ladder operators \(L_\pm \) also satisfy,

\[
L_\pm L_\mp = (L_x \pm i L_y)(L_x \mp i L_y) = L_x^2 + L_y^2 \mp i(L_x L_y - L_y L_x) \\
= L^2 - L_z^2 \pm \hbar L_z
\]

(30)

For the present purpose, let the angular momentum eigenvalue equations be written in the following form,

\[
L^2 f = \lambda \hbar^2 f \quad \text{and} \quad L_z f = \mu \hbar f
\]

(31)

Just as in SHO, if \(f \) is an eigenfunction of \(L^2 \) and \(L_z \), so also is \(L_\pm f \),

\[
L^2 (L_\pm f) = L_\pm (L^2 f) = L_\pm (\lambda \hbar^2 f) = \lambda \hbar^2 (L_\pm f) \\
L_z (L_\pm f) = \pm \hbar (L_\pm f) + L_\pm (L_z f) = (\mu \pm 1)\hbar (L_\pm f)
\]

(32)

Interestingly, \(L_\pm f \) is indeed an eigenfunction of \(L_z \) but with new eigenvalues, raised or lowered by one unit of \(\hbar \). Hence, \(L_+ \) (\(L_- \)) operator is called raising (lowering) operator and together are called ladder operator. Therefore, each time we apply \(L_+ \) or \(L_- \), the eigenvalue \(\mu \) increases or decreases by \(\hbar \). But can this continue indefinitely? The restriction on \(\mu \) follows from the observation,

\[
\begin{align*}
\langle L^2 - L_z^2 \rangle &= (\lambda - \mu^2)\hbar^2, \\
\langle L^2 - L_z^2 \rangle &= \langle L_x^2 + L_y^2 \rangle \\
&= \langle L_x^2 \rangle + \langle L_y^2 \rangle \\
&= \int d\tau f^* L_x L_x f + \int d\tau f^* L_y L_y f \\
&= \int d\tau (L_x f)^2 + \int d\tau (L_y f)^2 \quad \text{using hermiticity of } L_x, L_y \\
&\geq 0
\end{align*}
\]

(33)

where \(d\tau \) is some appropriate volume element. Comparing (33) and (34), we get,

\[
\lambda \geq \mu^2.
\]

(35)

Therefore, raising or lowering of \(\mu \) must stop to obey (35). Say raising must stop at some \(f_{\text{max}} \) and maximum value for \(\mu \) be, say, \(l\hbar \),

\[
L_\pm f_{\text{max}} = 0 \quad \Rightarrow \quad L_z f_{\text{max}} = l \hbar f_{\text{max}} \quad \text{and} \quad L^2 f_{\text{max}} = \lambda \hbar^2 f_{\text{max}}
\]

(36)
Using (30), it follows that,

\[L^2 f_{\text{max}} = \lambda \hbar^2 f_{\text{max}} \Rightarrow (L_- L_+ + L_z^2 + \hbar L_z) f_{\text{max}} = (0 + \ell^2 \hbar^2 + \hbar^2) f_{\text{max}} \]

and therefore, the eigenvalue \(\lambda \) of \(L^2 \) in terms of maximum eigenvalue of \(L_z \) is,

\[\lambda = l(l + 1) \hbar^2 \] \hspace{1cm} (37)

which is exactly what we got by solving angular part of Schrödinger equation in (21). Similarly, lowering also should end at some \(f_{\text{min}} \) and minimum value for \(\mu \) be \(\bar{l} \hbar \),

\[L_- f_{\text{min}} = 0 \Rightarrow L_z f_{\text{min}} = \bar{l} \hbar f_{\text{min}} \text{ and } L^2 f_{\text{min}} = \lambda \hbar^2 f_{\text{min}} \] \hspace{1cm} (38)

In the same way as with \(L_+ \), using (30), it follows that,

\[L^2 f_{\text{min}} = \lambda \hbar^2 f_{\text{min}} \Rightarrow (L_+ L_- + L_z^2 - \hbar L_z) f_{\text{min}} = (0 + \ell^2 \hbar^2 - \bar{l} \hbar^2) f_{\text{min}} \]

and therefore, the eigenvalue \(\lambda \) of \(L^2 \) in terms of minimum eigenvalue of \(L_z \) is,

\[\lambda = \bar{l}(\bar{l} - 1) \hbar^2. \] \hspace{1cm} (39)

Since eigenvalue \(\lambda \) of \(L^2 \) does not change with action of \(L_\pm \), comparing equations (37) and (39), we see that \(l(l + 1) = \bar{l}(\bar{l} - 1) \) and solving for \(\bar{l} \) we get,

\[\bar{l} = -l \text{ and } \bar{l} = l + 1. \]

But \(\bar{l} = l + 1 \) is absurd since minimum eigenvalue cannot be larger than maximum eigenvalue, so the acceptable solution is

\[\bar{l} = -l \Rightarrow -l \leq \mu \leq +l \] \hspace{1cm} (40)

which the limit of \(\mu \) (the magnetic quantum number) we talked about before without actually showing it. So for a given value of \(l \), there are \(2l + 1 \) different values of \(\mu \) and, since \(\mu \) changes by one unit of \(\hbar \), it goes from \(-l \) to \(+l \) (or the other way round) in \(N \) (say) integer steps,

\[l = -l + N \Rightarrow l = N/2 \]

i.e. \(l \) must be an integer or a half-integer, \(l = 0, 1/2, 1, 3/2, 2, \ldots \) However, we have seen before when angular part of the Schrödinger equation was solved explicitly that \(l \) is an integer. Thus here we have determined the eigenvalues of generic angular momentum operator without even knowing its eigenfunctions.

The ladder operator when acted upon the eigenfunctions of \(L^2 \) and \(L_z \) changes the eigenvalues of \(L_z \) by one unit which can be represented as,

\[L_+ f_\mu = c_\lambda f_{\mu + 1} \text{ and } L_- f_\mu = d_\lambda f_{\mu - 1}. \] \hspace{1cm} (41)
The coefficient $c_{\lambda \mu}$ can be determined as,

$$L_+ f_\mu = c_{\lambda \mu} f_{\mu+1} \Rightarrow \int d\tau f_\mu^* L_- L_+ f_\mu = \int d\tau (L_+ f_\mu)^*(L_+ f_\mu) = |c_{\lambda \mu}|^2 \int d\tau |f_{\mu+1}|^2 = |c_{\lambda \mu}|^2$$

or,

$$\int d\tau f_\mu^* L_- L_+ f_\mu = \int d\tau f_\mu^* (L^2 - L_z^2 - \hbar L_z) f_\mu$$

$$= \left[l(l+1)\hbar^2 - \mu^2 \hbar^2 - \mu \hbar^2 \right] \int d\tau |f_\mu|^2$$

$$= (l-\mu)(l+\mu+1)\hbar^2$$

$$\Rightarrow c_{\lambda \mu} = \sqrt{(l-\mu)(l+\mu+1)\hbar}$$ \hspace{1cm} (42)

In the same way we can get $d_{\lambda \mu} = [(l+\mu)(l-\mu+1)]^{1/2}\hbar$. In short,

$$c_{\lambda \mu} f_\mu = \sqrt{(l-\mu)(l+\mu+1)} \hbar f_{\mu+1} \hspace{1cm} (43)$$

$$d_{\lambda \mu} f_\mu = \sqrt{(l+\mu)(l-\mu+1)} \hbar f_{\mu-1}. \hspace{1cm} (44)$$