
Solution of Schrödinger’s equation for SHO

The classical 1-dim simple harmonic oscillator (SHO) of mass m and spring con-
stant k is described by Hooke’s law and the equation of motion is,

F = −kx = m
d2x

dt2
⇒ x = Aeikx +B e−ikx. (1)

The potential energy of such a SHO is,

V (x) =
1

2
k x2 ≡ 1

2
mω2x2 (2)

where ω is the angular frequency of the oscillator, ω =
√
k/m. The quantum problem

is to solve the Schrödinger equation for the potential (2). The time-independent
Schrödinger equation for SHO is,

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = E ψ. (3)

Generally there are two entirely different ways to solve this problem. The first is
the canonical approach involving solving differential equations as is exclusively done
before. The second one is the novel technique called factorization method.

One thing to note in brute force solving of the differential equation (3) is apparent
absent of boundary (and hence boundary condition(s)). Because of x2 in the potential,
the equation has singular points at ±∞ and therefore the boundary condition is
equivalent to having well-behaved wave function. In order to solve this differential
equation, we need to get its form right, i.e. equivalent to some standard form, at
least to attempt series solution. To do that let,

ξ = αx → d

dx
= α

d

dξ
and

d2

dx2
= α2 d

2

dξ2
.

The Schrödinger equation (3) becomes,

d2ψ(ξ)

dξ2
+

2mE

~2α2
ψ(ξ)− m2ω2

~2α4
ξ2 ψ(ξ) = 0.

The SHO Schrödinger equation can be written in terms of dimensionless varible by
making the coefficient of ξ2 unity and introducing a dimensionless number ε,

m2ω2

~2α4
= 1 ⇒ α2 =

mω

~
therefore, ξ =

√
mω

~
x, (4)

ε =
2mE

~2α2
=

2E

~ω
(5)

Hence, the equation (3) in terms of dimensionless variable becomes,

d2ψ

dξ2
+ (ε− ξ2)ψ = 0. (6)
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At very large ξ, hence at large x, the ξ2 � ε and the asymptotic form of the solution
is,

d2ψ

dξ2
≈ ξ2 ψ ⇒ ψ(ξ) ∼ ξn e−ξ

2/2, (7)

where ξn is the polynomial part of the solution. This suggest the general solution to
be

ψ(ξ) = u(ξ) e−ξ
2/2. (8)

Substituting the general solution (8) in (6), the Schrödinger equation for SHO be-
comes,

dψ

dξ
=

(
du

dξ
− ξ u

)
e−ξ

2/2,

and
d2ψ

dξ2
=

(
d2u

dξ2
− 2ξ

du

dξ
+ (ξ2 − 1)u

)
e−ξ

2/2,

⇒ d2u

dξ2
− 2ξ

du

dξ
+ (ε− 1)u = 0. (9)

This form of Schrödinger equation (9) is rather similar to the differential equation

d2H

dξ2
− 2ξ

dH

dξ
+ 2nH = 0, (10)

whose solution H is known to be Hermite polynomials if n is an integer. But whether
ε − 1 = 2n is an integer, is the question we want to address. For this, power series
solution in ξ, known as Frobenius method, is sought (assuming Frobenius method is
applicable in the present problem),

u(ξ) = ξs
∞∑
r=0

ar ξ
r, a0 6= 0. (11)

Putting the power series solution (11) into Schrödinger equation (9), we find∑
r

[
(r + s)(r + s− 1) ar ξ

r+s−2 − {2(r + s)− (ε− 1)} ar ξr+s
]

= 0. (12)

Since the above is valid for all ξ, coefficients of each power of ξ can be equated to
zero (uniqueness of power series expansions). Thus for r = 0 and r = 1 we get two
indicial equations,

s(s− 1)a0 = 0
s(s+ 1)a1 = 0

}
a0 6= 0 ⇒ s = 0 or 1. (13)

s = −1 is not an acceptable condition since it introduces new singularity at ξ = 0.
In general, for ξr+s,

(r + s+ 2)(r + s+ 1) ar+2 = [2(r + s)− (ε− 1)] ar (14)
ar+2

ar
=

2r + 2s+ 1− ε
(r + s+ 2)(r + s+ 1)

. (15)
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From the recursion relation (15) it follows that for s = 0 starting with a0 (a1) gener-
ates all the even (odd) numbered coefficients that go with the even (odd) powers of
ξ,

a2 =
1− ε

2
a0, a4 =

5− ε
12

a2 =
(5− ε)(1− ε)

24
a0, . . .

a3 =
3− ε

6
a1, a5 =

7− ε
20

a3 =
(7− ε)(3− ε)

120
a1, . . .

Actually without requiring a1 6= 0, we can generate the whole of the odd coefficients
and hence odd powers of ξ from a0 for s = 1 solution of the indicial equations (13).
Obvious as it is, we have both even and odd solutions for (9) built on a0 and a1 for
s = 0 or on a0 for s = 0 and s = 1,

u(ξ)even = a0 + a2 ξ
2 + a4 ξ

4 + . . . (16)

u(ξ)odd = a1 ξ + a3 ξ
3 + a5 ξ

5 + . . . (17)

or a0 ξ + a3 ξ
3 + a5 ξ

5 + . . . (18)

u(ξ) = ξs
[
(a0 + a2 ξ

2 + a4 ξ
4 + . . .) + (a1 ξ + a3 ξ

3 + a5 ξ
5 + . . .)

]
. (19)

Therefore, the full solution u(ξ) can be determined from two constants a0 and a1 which
is expected for a secon-order differential equation. However, not all the solutions so
obtained are normailizable! For at very large r, the recursion formula (15) behaves
as,

ar+2

ar
=

2 + 2s
r

+ 1−ε
r

r
(
1 + s+2

r

) (
1 + s+1

r

) r→∞−→ 2

r
. (20)

Now if we look for a series,

eξ
2

= 1 + ξ2 +
ξ4

2!
+ . . . ≡

∑
r=0,2,4,...

brξ
r, where br = 1/(r/2)!

Therefore the ratio of two adjacent coefficients is,

br+2

br
=

(r/2)!

[(r + 2)/2]!
=

1

r/2 + 1

r→∞−→ 2

r
(21)

Hence asymptotically, u(ξ) is behaving like exp(ξ2) and, in turn, ψ(ξ) in (8) goes like
exp(ξ2/2) something that we do not want as solution. Our requirement of normaliz-
able solution can be met if the series is made to terminate. The series must end at
some highest r, say r = n′ beyond which all other coefficients an′+2 are zero. This
will truncate either the series u(ξ)even or the u(ξ)odd and the other one must be zero
from the start. Because s = 0 and 1 give both even and odd solutions, we choose

a1 = 0 ⇒ a3 = a5 = = a7 = · · · = 0.

For acceptable, normalizable solutions, equation (15) requires,

2r + 2s+ 1− ε = 0 → 2(n′ + s) + 1 = ε.
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Since s = 0 or 1 we can write n′ + s = n where n is any integer,

ε = 2n+ 1 =
2E

~ω
⇒ En =

(
n+

1

2

)
~ω, n = 0, 1, 2, 3, . . . (22)

So the bottomline is, the energy eigenvalues of SHO are quantized and for n = 0 we
have E0 = ~ω/2 as zero-point energy. The wave functions are,

ψ(ξ) = u(ξ) e−ξ
2/2 = e−ξ

2/2
∑
r

ar ξ
r+s with

ar+2

ar
=

2r + 2s− 2n

(r + s+ 1)(r + s+ 2)
.

(23)
For the two solutions of the indicial equation (13), the wave functions are

s = 0 : ψ(ξ)even =
(
a0 + a2ξ

2 + a4ξ
4 + . . .+ anξ

n
)
e−ξ

2/2, n = 0, 2, 4, . . . (24)

s = 1 : ψ(ξ)odd =
(
a0ξ + a2ξ

3 + a4ξ
5 + . . .+ an−1ξ

n
)
e−ξ

2/2, n = 1, 3, 5, . . .(25)

The coefficients a0, a2, a4, . . . in (24) are very different from those a0, a2, a4, . . . in
(25).
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