
δ-function potential

A delta-function is an infinitely high, infinitesimally narrow spike at the x = a
say, where a can also be origin. Let the potential of the form,

V (x) = −α δ(x), (70)

where, α is some constant of appropriate dimension.

The Schrödinger equation for the delta-function well reads

− ~2

2m

d2ψ

dx2
− α δ(x)ψ = Eψ. (71)

This allows solutions for both the bound states E < 0 and scattering states E > 0.

Bound state E < 0: In both the regions x < 0 and x > 0, the potential is V (x) = 0
and, with κ2 = −2mE/~2,

d2ψ

dx2
− κ2ψ = 0

{
ψ(x) = Ae−κx +B eκx x < 0
ψ(x) = F e−κx +Geκx x > 0

(72)

However, the term A exp(−κx) blows up as x → −∞ and G exp(κx) blows up as
x→∞, therefore dropped A = G = 0. Hence the solution now is

x < 0 : ψ = B eκx x > 0 ψ = F e−κx.

To determine the coefficients and the energy of the bound state (if any), the boundary
conditions are used: ψ is always continuous and dψ/dx is discontinuous because of
infinite δ-potential (3). The continuity of wavefunction yields,

F = B ⇒ ψ(x) =

{
B eκx x < 0
B e−κx x > 0

(73)

The discontinuity in dψ/dx implies,

∆

(
dψ

dx

)
=

∂ψ

∂x

∣∣∣∣
+ε

− ∂ψ

∂x

∣∣∣∣
−ε

= − 2mα

~2
ψ(0)

x < 0 :
∂ψ

∂x

∣∣∣∣
−ε

= Bκ, x > 0 :
∂ψ

∂x

∣∣∣∣
+ε

= −Bκ, ψ(0) = B

⇒ ∆

(
dψ

dx

)
= − 2Bκ = − 2mα

~2
B ⇒ κ =

mα

~2
(74)
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Hence the allowed, and the only one available bound state energy is,

E = − ~2κ2

2m
= − mα

2

2~2
(75)

Normalizing the wavefunction ψ:∫ +∞

−∞
|ψ|2dx = 2|B|2

∫ ∞
0

e−2κxdx =
|B|2

κ
= 1 ⇒ B =

√
k =

√
mα

~
(76)

Therefore, the bound state solution of δ-potential is,

ψ(x) =

√
mα

~
e−mα|x|/~

2

and E = − mα
2

2~2
(77)

Scattering state E > 0: In both the regions x < 0 and x > 0, the potential is
V (x) = 0 and, with k2 = 2mE/~2,

d2ψ

dx2
+ k2ψ = 0

{
ψ(x) = Aeikx +B e−ikx x < 0
ψ(x) = F eikx x > 0

(78)

Imposing the boundary conditions the same way as bound state, from the continuity
of ψ at x = 0 we have,

F = A+B (79)

and the discontuity in dψ/dx at x = 0,

∂ψ

∂x

∣∣∣∣
+ε

− ∂ψ

∂x

∣∣∣∣
−ε

= − 2mα

~2
ψ(0)

ikF − ik(A−B) = − 2mα

~2
(A+B) (80)

Solving (79) and (80) for F and B in terms of A, and using β = mα/~2k,

F =
1

1− iβ
A and B =

iβ

1− iβ
A (81)

Therefore, the refelction and transmission coefficients are obtained as,

R =
|B|2

|A|2
=

β2

1 + β2
=

1

1 + (2E~2/mα2)
(82)

T =
|F |2

|A|2
=

1

1 + β2
=

1

1 + (mα2/2E~2)
(83)

The non-zero transmission probability gives us the tunneling phenomenon – higher
the energy greater is the probability of tunneling.

Double δ-function potential

Particularly interesting potentials having lot of practical relevances are double or
multiple (periodic) square well potentials. These kind of potentials are often found in
electronic arrangements in solids or in molecules. First consider an attractive double
δ-function potential given by,

V (x) = −α [δ(x+ a) + δ(x− a)] , where α = ~2/ma. (84)
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The interest is in E < 0 bound states and the Schrödinger equations are solved for
wave functions in the regions I : x < −a, II : −a ≤ x ≤ a and III : x > a. In all
these regions we have the same Schrödinger equation and the solutions are (discarding
those that blow up at ±∞),

d2ψ

dx2
− κ2ψ = 0, κ2 = − 2mE

~2

x < −a : ψ(x) = Aeκx (85)

−a ≤ x ≤ a : ψ(x) = C eκx +D e−κx (86)

x > a : ψ(x) = F e−κx. (87)

The boundary conditions are applied next to evaluate the unknown constants.

Continuity of ψ at x = −a :

Ae−κa = C e−κa +D eκa (88)

Continuity of ψ at x = a :

F e−κa = C eκa +D e−κa (89)

Discontinuity of dψ/dx at x = −a :

κ
(
C e−κa −D eκa

)
− κA e−κa = −2mα

~2
Ae−κa = −2

a
A e−κa (90)

Discontinuity of dψ/dx at x = a :

−κF e−κa − κ
(
C e−κa −D eκa

)
= −2mα

~2
F e−κa = −2

a
F e−κa. (91)

The discontinuous boundary equations can be simplified as,

For x = −a : Ae−κa
(
κ− 2

a

)
= κ

(
C e−κa −D eκa

)
(92)

For x = a : F e−κa
(

2
a
− κ
)

= κ
(
C e−κa −D eκa

)
. (93)

To determine th allowed energies, we solved the boundary equations (88, 89, 92, 93)
for C and D by eliminating A and F ,

C e−κa = D eκa(κa− 1)
D e−κa = C eκa(κa− 1)

}
C2 = D2 ⇒ C = ±D. (94)

This is nothing surprising, because of the symmetry of the potential, we have both
even and odd parity solutions

Even parity C = D : ψ = C (eκx + e−κx) = C ′ cosh(κx) (95)

Odd parity C = −D : ψ = C (eκx − e−κx) = C ′ sinh(κx) (96)
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As for solving for the bound state(s), we solve the transcendental equations,

Even − C = D : e−2κa = κa− 1 ⇒ e−2y = y − 1, where y = κa (97)

Odd − C = −D : e−2κa = 1− κa ⇒ e−2y = 1− y, where y = κa (98)

The only even bound state solution is y = κa ≈ 1.11 and therefore,

Eeven = − 1

2m

(
1.11~
a

)2

. (99)

However, we do not have any odd state since the solution corresponding to (98) is
y = κa = 0 and this leaves bound state wave function non normalizable. But for
α > ~2/ma, we can get one odd parity bound state also.

If we compare the bound state energy of single delta potential (75) with double
delta potential (99), we see double δ-function potential gives lower bound state energy
(with α = ~2/ma),

Es = − mα
2

2~2
= − ~2

2ma2
and Ed = − (1.11)2 ~2

2ma2
.
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