
de Broglie’s hypothesis: wave-particle duality

Light behaves as wave when it undergoes interference, diffraction etc. and is com-
pletely described by Maxwell’s equations. But then, the wave nature of electromag-
netic radiation is called into question when it is involved in blackbody radiation,
photoelectric effect and such. Einstein forwarded his idea of photon, bundle of quan-
tized radiant energy localized in a small volume, as a way to describe particle-like
nature of light. The energy and momentum of such a photon was proposed to be,

E = hν and p =
E

c
=

h

λ
.

de Broglie (1924) made a great unifying, speculative hypothesis that just as radiation
has particle-like properties, electrons and other material particles possess wave-like
properties. For free material particles, de Broglie assumed that the associated wave
also has a frequency ν and wavelength λ related to its energy E and momentum p,

ν =
E

h
and λ =

h

p
. (60)

For non-relativistic particles having mass m and moving with a velocity v and kinetic
energy Ek = mv2/2, the de Broglie wavelength is

λ =
h

mv
=

h√
2mEk

(61)

For high energy particles, E2 = p2c2 + m2
0c

4, having kinetic energy Ek = E −m0c
2,

the momentum is p c =
√
Ek(Ek + 2m0c2) and hence the de Broglie wavelength is,

λ =
h

p
=

hc√
Ek(Ek + 2m0c2)

. (62)

For instance, the de Broglie wavelength of an object of mass m = 1.0kg and moving
with a velocity v = 10m/s is (h = 6.6× 10−34J-s)

λ =
h

mv
=

6.6× 10−34J− s

1.0× 10kg −m/s
= 6.6× 10−35m = 6.6× 10−25Å.

The de Broglie wavelengths of an electron (m = 9.1 × 10−31kg) at kinetic energy
100eV and 0.1MeV are (1eV = 1.6× 10−19J),

λ =
h√

2mE
=

6.6× 10−34

(2× 9.1× 10−31 × 100× 1.6× 10−19)1/2
= 1.2Å

λrel =
ch√

E(E + 2m0c2)
= 0.037Å

λnr =
h√

2mE
= 0.038Å

Sure enough, de Broglie’s hypothesis of wave-particle duality was confirmed by Davis-
son and Germer (1927) and G.P. Thomson (1927) [refer Eisberg & Resnick, pg 64 –
67].
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The de Broglie hypothesis gives an interesting physical insight into Bohr’s quan-
tization rule (34),

mvr = pr =
nh

2π
,

where p is the linear momentum of an electron in an allowed orbit of radius r. If we
use equation (60), the expression for p in terms of de Broglie’s wavelength p = h/λ,
Bohr’s quantization rule can be written as,

hr

λ
=

nh

2π
⇒ 2πr = nλ n = 1, 2, 3, . . . (63)

implying the allowed orbits are those in which the circumference of the orbit can
contain exactly an integral number of de Broglie wavelengths.

Let us express the de Broglie wave of a free micro particle by a plane wave of
constant amplitude A, which will represent a particle of energy E = hν = ~ω and
momentum p = h/λ = ~k,

ψ(~r, t) = Aei(~k·~r−ωt) in 1− dim ⇒ ψ(x, t) = Aei(kx−ωt) (64)

Assuming |ψ(x, t)|2 gives the probability of finding the particle at space-time point
(x, t) (according to Max Born’s idea that came much later), it is constant A2 every-
where. This implies that probability of finding our particle is same everywhere or,
in other words, we do not know where it is. But our idea of particle is one having
definite momentum and at the same time a specific position i.e. it is localized. If we
know the position of the particle fairly accurately, then probability of finding it in
different place must be confined to that space (say, ∆x) outside which the probability
is zero. Therefore, the matter wave must somehow be retricted in that space with
the particle ⇒ we have a wave train of length ∆x and wavelength of the wave train
corresponds to particle momentum.

In order to manufacture a wave train we revoke the idea of group of moving waves
of classical wave motion. Suppose we have two waves of (ω, k) and (ω + dω, k + dk)
and for simplicity let them be represented as

ψ1 = A cos[kx− ωt] and ψ2 = A cos[(k + dk)x− (ω + dω)t]

We superpose these two waves, considering dω � ω and dk � k, to obtain,

ψ = ψ1 + ψ2

= 2A cos

[
dk

2
x− dω

2
t

]
cos

[
2k + dk

2
x− 2ω + dω

2
t

]
≈ 2A cos

[
dk

2
x− dω

2
t

]
cos[kx− ωt]. (65)
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From the plot of above function ψ we see that two waves of slightly different frequency
and wavelength, interfere and reinforce in such a way as to produce a series of groups.
These groups, and the individual waves they contain, are both moving in the same
direction. The velocity of the group, called group velocity vg and velocity of the
individual waves, called phase velocity vp, are given by,

vg =
dω

dk
vp =

ω

k
(66)

If the particle of mass m is moving with a velocity v so the kinetic energy E = mv2/2
and momentum p = mv, then

ω =
E

~
⇒ dω =

dE

~
and k =

p

~
⇒ dk =

dp

~
which leads to,

vg =
dω

dk
=

dE

dp
=

mv dv

mdv
= v

i.e. the velocity of the particle is equal to velocity of the group of matter wave
describing the particle. The same is true for relativistic particle.

The superposition of two matter waves of slightly varying frequency and wavenum-
ber k manage to create succession of groups but not one group which is the wave train.
To obtain a wave train or a wave packet of finite extent in space, we need superposition
of large number waves with different but slightly varying frequency and wavenumber,

ψ(x, t) =
1√
2π

∫ ∞
−∞

dk A(k)ei(kx−ω(k)t).
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Assuming A(k) is nonzero and constant only in an interval, k0 − ∆k/2 ≤ k ≤ k0 +
∆k/2, if ∆k is not too large, we can expand ω(k) about k0,

ω(k) = ω(k0) + (k − k0)

(
dω

dk

)
k=k0

+ . . .

and write the above wave function as,

ψ(x, t) =
1√
2π

∫ k0+∆k/2

k0−∆k/2

dk A ei(kx−ω(k)t)

=
A√
2π

ei(k0x−ω(k0)t)

∫ k0+∆k/2

k0−∆k/2

dk ei(k−k0)[x−(dω/dk)0t]

=

√
2

π
A

sin[∆k(x− (dω/dk)0t)/2]

x− (dω/dk)0t
ei(k0x−ω(k0)t) (67)

The equation (67) defines a wave packet of finite extent, ∆x ≈ 2 × 2π/∆k, whose
group velocity is vg = (dω/dk)k=k0 and phase velocity is vp = ω(k0)/k0 as before.

A very interesting illustration of wave-nature of microscopic particle is Feynman’s
thought experiment – double-slit experiment with classical and quantum particles –
for details of which see Feynman’s Lecture vol 3.
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