
Einstein’s equation for photoelectric effect

Photoelectric effect: The ejection of electrons from a metal surface by light is
called the photoelectric effect. It has been observed that

1. there is a minimum or cut-off or threshold frequency ν0, specific to the metal
surface, below which no emission of electrons takes place, no matter what the
intensity of the incident radiation is or for how long it falls on the surface,

2. the maximum kinetic energy of the emerging electrons is independent of inten-
sity of incident radiation but depends linearly on the frequency of the radiation,

3. electrons start emitting immediately after the light shines on surface without
detectable time delay,

4. for a given frequency of incident radiation, above ν0, the number of electrons
emitted per unit time is proportional to the intensity of incident radiation.

Classical wave theory of light, however in direct conflict with above observations, tells
us

1. photoelectric effect should occur for any frequency of light provided only the
light is intense enough to give energy needed to eject photoelectrons,

2. kinetic energy of the emitted electrons should depend on intensity of incident
radiation since more intensity implies more imparted energy and

3. if the incident light is too feeble there would be a measureable time lag between
incidence of light and ejection of photoelectrons, since electrons cannot emit
unless it has absorbed enough energy.

Planck restricted energy discretization to the oscillators, representing the source
of electromagnetic fields, that can radiate electromagnetic energy in quantum, which
once radiated spreads as wave. Einstein proposed (1905) discrete quanta for
electromagnetic field itself, which later came to be called photon, each
carrying energy hν as it moves away from source with velocity c. Einstein
also assumed that in the photoelectric process one photon (of appropriate
frequency) is completely absorbed by one electron in photo-cathode or none
at all. The maximum kinetic energy of the emitted electrons is, therefore,

Kmax = e V0 = hν −W = h (ν − ν0), (20)

where W is the characteristic energy of the metal called work function and is defined
as the minimum energy needed by an electron to liberate from the metal, Kmax =

1



0 ⇒ W = hν0 where ν0 is the cut-off frequency. The V0 is the stopping potential,
the reverse potential at which photoelectric current goes to zero. The present day
accepted value of Planck’s constant is h = 6.62 × 10−34 joule-sec. Intensity of light
beam is merely the number of photons in the beam, doubling the light intensity simply
doubles the number of photons and thus doubles photoelectric current. It does not
change the energy hν of the individual photons. The photon hypothesis thus explains
all the features of photoelectric effect.

1. It follows from eqn. (20) if the frequency of incident radiation is reduced below
ν0, the individual photons, no matter how many of them there are (i.e. no
matter how intense the radiation is), will not have enough energy individually
to liberate photoelectrons.

2. Kmax is completely independent of intensity and depends linearly only on the
frequency of the incident radiation.

3. When the photons above cut-off frequency strike the metal, there is either hit or
no-hit with the electrons and when hit, the photon will be absorbed immediately
leading to immediate emission of photoelectron.

The Compton effect

Another important demonstration of corpuscular nature of radiation is the Compton
effect (1923). Upon incident on a block of material, the x-ray of wavelength λ0 scatters
and the intensity of scattered radiation is found to peak at two wavelengths – one
is the same as the incident wavelength λ0 while the other is λ1, where λ1 > λ0. The
shift ∆λ = λ1 − λ0 is called Compton shift and depends only on the scattering
angle and not on the initial wavelength λ0 and material of the target.

Classically, the oscillating electric field of the incident radiation, of specific fre-
quency ν0 = c/λ0 interacts with the electrons contained in the atoms of the target and
forces them to vibrate with same frequency, thus scattering at the same wavelength
λ0 as the incident x-ray. Hence, classical picture cannot explain the presence of larger
wavelength λ1.
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Compton and Debye regarded the incident x-ray beam as a collection of photons,
and not as waves, each of energy E0 = hν0 = hc/λ0. They suggested that λ1 could
be attributed to scattering of x-ray photons from loosely bound electrons in the atom
of the target, where they loose some of its energy in the inelastic collision, E1 < E.
Therefore, their frequency is reduced implying larger wavelength λ1 = c/ν1 = hc/E1.
Since the electrons participating in the scattering process are treated almost free and
initially stationary (binding energy of the electrons are small compared to the energy
of the x-ray photons) and does not involve entire atoms, this kind of explains why
∆λ is independent of the material of the scatterer.

To calculate the Compton shift, let a photon of total energy E0 and momentum
p0 is incident on a stationary electron of rest mass energy m0c

2,

E0 = h ν0 =
hc

λ0

and p0 =
E0

c
=

h

λ0

. (21)

After the collision, the photon is scattered at an angle θ and moves off with total
energy E1 and momentum p1,

E1 = h ν1 =
hc

λ1

and p1 =
E1

c
=

h

λ1

. (22)

and electron recoils at an angle φ with kinetic energy K, total energy E and momen-
tum p,

E2 = p2c2 +m2
0c

4 and K = E −m0 c
2. (23)

Momentum conservation leads to,

p0 = p1 cos θ + p cosφ

0 = p1 sin θ − p sinφ.

Squaring and adding the above two equations, we get

p2 = p2
0 + p2

1 − 2p0p1 cos θ. (24)

From conservation of energy in the collision, it follows that

E0 +m0c
2 = E1 + E ⇒ E = (E0 − E1) +m0c

2 (25)

and using equations (21) and (22), we obtain(
p2c2 +m2

0c
4
)1/2

= c(p0 − p1) +m0c
2 (26)
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which upon squaring gives us,

p2 = (p0 − p1)
2 + 2m0c(p0 − p1). (27)

Comparing equations (24) and (27), we have

(p0 − p1)
2 + 2m0c(p0 − p1) = p2

0 + p2
1 − 2p0p1 cos θ

which reduces to
1

p1

− 1

p0

=
1

m0c
(1− cos θ). (28)

Multiplying through by h and applying (21) and (22) we obtain the Compton equation

∆λ = λ1 − λ0 = λc (1− cos θ) (29)

where, λc is the Compton wavelength defined as,

λc ≡
h

m0c
= 0.0243Å. (30)

A few more lines of calculation gives us the relation between scattering and recoil
angle and kinetic energy of the recoiled electron (using α = λcν0/c = λc/λ0),

cotφ = (1 + α) tan
θ

2
, (31)

K = hν0
α(cos θ − 1)

1 + α(cos θ − 1)
. (32)

To explain the presence of peak at unchanged photon wavelength λ0, we observed
that if the electron involved in scattering are particularly strongly bound to the atom
in the target then the whole atom recoils. Therefore, the electron rest mass m0 in
Compton equation (29), has to be replaced by mass of the atom M � m0 and hence
the Compton shift becomes way too small, ∆λ ∼ 1/M .
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