
Second order perturbation: To calculate correction in second order, we will make use
of λ2 equation (11),

(Ĥ0 − E(0)
n )ψ(2)
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Substituting the above expression for ψ(2)
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For k = n we get the second order correction to energy, keeping in mind that c(1)
n = 0,
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k Ĥ ′

nn

or, c
(2)
k (E(0)

k − E(0)
n ) = −

∑
m6=n
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′
nn

E
(0)
n − E(0)

k

or, c
(2)
k =

∑
m 6=n
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Therefore, the energy En and wavefunction ψn of the full Hamiltonian (1) to second order
in perturbation theory are,
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For perturbation theory to work, the corrections it produces must be small (not wildly
different from E

(0)
n ). But onward second order corrections in energy (24) and first order in

wavefunction (25) contain the term that must be small,∣∣∣∣∣ Ĥ ′
mn

E
(0)
n − E(0)

m

∣∣∣∣∣� 1, n 6= m

otherwise it has potential to grow large if E(0)
n ≈ E

(0)
m , i.e. when the energy levels are

about to be degenerate. Therefore, degenerate energy levels have to be treated differently
in perturbation theory.

Examples

1. Using first order perturbation theory, calculate the energy of the n-th state for a particle
of mass m moving in an infinite potential well of length 2L with wall at x = 0 and x =
2L, which is modified at the bottom by the perturbations: (i) λV0 sin(πx/2L) and (ii)
λV0δ(x− L), where λ� 1.

2. Calculate the energy of the n-th excited state to first order perturbation for a 1-dim
infinite potential well of length 2L, with walls at x = −L and x = L, which is modified at
the bottom by the following perturbations with V0 � 1,

Ĥ ′ =
{
−V0 −L ≤ x ≤ L

0 elsewhere
Ĥ ′ =

{
−V0 −L/2 ≤ x ≤ L/2

0 elsewhere

Ĥ ′ =
{
−V0 −L/2 ≤ x ≤ 0

0 elsewhere
Ĥ ′ =

{
V0 0 ≤ x ≤ L/2
0 elsewhere

3. For a 1-dim harmonic oscillator, the spring constant changes from k to k(1 + ε), where
ε is small. Calculate the first order perturbation in the energy.

4. Calculate the first order perturbation in the energy for n-th state of a 1-dim harmonic
oscillator subjected to perturbation β x4, β is a constant.

5. Consider a quantum charged 1-dim harmonic oscillator, of charge q, placed in an electric
field ~E = Ex̂. Find the exact expression for the energy and then use perturbation theory
to calculate the same.

6. For the following set of Hamiltonians, with λ� 1,

(i) E0

(
1 λ
λ 3

)
(ii) E0


1 + λ 0 0 0

0 8 0 0
0 0 3 −2λ
0 0 −2λ 7



(iii) E0


−5 3λ 0 0
3λ 5 0 0
0 0 8 −λ
0 0 −λ −8

 (iv) E0


3 2λ 0 0

2λ −3 0 0
0 0 −7

√
2λ

0 0
√

2λ 7

 ,

(a) find the eigenvalues and eigenvectors of the unperturbed Hamiltonian, (b) diagonalize
the full Hamiltonian to find the exact eigenvalues and expand each eigenvalue to the second
power of λ and (c) using the first and second order perturbation theory find the approximate
energy eigenvalues and eigenstates of the full Hamiltonian.
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