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We study the low-energy properties of a sawtooth chain with spin-1's at the bases of the triangles and spin-
%’s at the vertices of the triangles. The spins have Heisenberg antiferromagnetic interactions between nearest
neighbors, with a couplind, between a spin-1 and a sp%n-and a couplingl;=1 between two spin-1's.
Analysis of the exact diagonalization data for periodic chains containing Mg=td2 unit cells shows that the
ground state is a singlet for exchange couplings up to approximafel3.8, whereas for largel, the system
exhibits a ferrimagnetic ground state characterized by a net ferromagnetic moment per unit cell of 1/2. In the
region of small interactiond,, the mixed spin sawtooth chain maps on to an effective isotropic spin model
representing two weakly interacting and frustrated sjplﬁeisenberg chains composed of séirsites at odd
and even vertices, respectively. Finally, we study the phenomenon of a macroscopic magnetization jump which
occurs if a magnetic field is applied with a value close to the saturation field,foP.

DOI: 10.1103/PhysRevB.69.214406 PACS nunider75.10.Jm, 75.50.Ee, 75.30.Ds, 754p.

I. INTRODUCTION which cost a finite energy. The lowest excitation in a chain
with periodic boundary conditions is given by a kink-
There has been a great deal of interest in recent years @ntikink pair which has a dispersionless gap; the pair may be
one-dimensional quantum spin systems with frustratiohe ~ €ither a singlet or triplet. _ _ _
most common examples of such systems are those in which AS the couplings between the different spins are varied,
triangles of Heisenberg spins interact antiferromagneticallyPne-dimensional spin systems may undergo phase transitions

with each other. Some of the systems which have been stugtt Zero temperature, such as from.a gapless phascge? with long-
ied analytically or numerically so far are the sawtooth spin- range order to a gapped phase with short-range ofdee

chain®4 a chain of spink trianglesS frustrated mixed spin different phases can often be distinguished from each other
ferrimagnetic chaing,and the spirk kagoniestrip/® There by looking at properties such as the magnetic susceptibility

is al dv of in-1 di q at low temperatures.
is also a recent study of a spinspin-1 system on a diamon In this paper, we will carry out analytical and numerical

lattice which exhibits a number of phases as a function of they,dies of a mixed spin Heisenberg antiferromagnet on the

various couplings.Examples of quasi-one-dimensional frus- sawtooth lattice shown in Fig. 1. The arrows and angis (

trated spin systems which have been studied experimentalyhown in that figure refer to a canted state which will be

include a sawtooth spif-systen; a zigzag spin chain/®  discussed later. The sites at the vertices of the triangles have

and a mixed spirg-spin-1-systent! spin S,, and they are labeled 1,2.. N. The sites at the
Classically, i.e., in the limit in which the magnitudes of pases of the triangles have sy, and they are labeleN

the spinsS;— =, some of these frustrated systems have an+ 1N+2, ... ,N. The number of triangles is therefoh:

enormous ground-state degeneracy arising from local rotaFhe Hamiltonian governing the system is

tional degrees of freedom which cost no energy. Quantum oN N

mechanically, this degeneracy is often lifted due to tunneling _ 2 & 2 & &

between different classical ground states. However, one H _Jli:%Jrl S'Si+1+32i21 S+ (SantSienen), (D

might still expect a remnant of the classical degeneracy in

the form of a large number of low-energy excitations in the

quantum system. SpinS’s _»
Recently, the ground state of the sginsawtooth chain

has been numerically studied as a function of the r&fid,,

whereJ; is the coupling between pairs of spins at the basesgy;, g5

of the triangles, and, is the coupling between a spin at the 1 13y

base and a spin at the vertex of a triarfEhe system was 5

found to be gapless fa¥,/J;>2.052 and forJ,/J;<<0.65. :

The low-energy excitations have the same dispersion for sin- '

glets and triplets. Fad,/J; =1, the system has some special  FiG. 1. Picture of the first four triangles of a sawtooth chain

properties. The ground state of an open chain has an exagjith N=12 indicating the site labels for the spBy’s at the vertices

degeneracy which increases linearly with the number ofnd the spirs;’s at the bases of the triangles, and the couplihgs

trianglesz.'3 This degeneracy arises from the existence of l0-andJ,. For the numerical studies, we takg=1 andS,= 3. The

calized spins kinks which do not cost any energy regardlessarrows and anglesd indicate a canted state in which all the spin-

of their position in the chain. There are also spiantikinks  S,’s are aligned with each other.
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where the couplings; andJ, are positive. It is convenient perturbative expansion id, and an effective Hamiltonian

to setJ;=1 and to consider the properties of the system as @escription to provide some understanding of why this hap-

function of J,. We will impose periodic boundary conditions pens. This seems to be a remarkable property of the spin-

at the ends of the chain, so that the momentum is a good-spin-1 sawtooth system.

qguantum number. We will set Planck’s constdnt 1, and In Sec. V, we will consider the particular case Bbf=2

the nearest-neighbor lattice spacings equal to 1. where we find that the system shows an interesting behavior
The plan of our paper is as follows. In Sec. Il, we will if a magnetic field is applied with a strength which is close to

develop the spin-wave theoWT) for this system? tak-  the saturation valués, i.e., the value above which all the

ing the values of the spiB,; at the bases and the sgiy at  spins are aligned with the field. We will show that fds

the vertices of the triangles to be very large, &d-S,. If =2, the system displays a macroscopic jump in the magne-

J,>2S,/S,, we find that the system is a ferrimagnet, with atization as the magnetic field crosdes. This phenomenon

magnetization per unit cell &;-S,. If J,<2S,/S,, we find  is known to occur in some other strongly frustrated quantum

that there is an infinite number of classical ground states aspin system$?-1¢

mentioned above. For reasons explained below, we will con-

sider the classical ground states which are coplanar; the num- II. SPIN-WAVE ANALYSIS

ber of even this restricted set of states grows exponentially

with N. We perform a linear SWT about these coplanar 10 develop the SWT, we assume that the values of the

states, and find that the spin-wave zero point energy does néPinS; andS, are much larger than 1. We will describe how

break the classical degeneracy. Further, one of the spin-waJ@ obtain the spin-wave dispersion up to ordr This is

modes turns out to have zero energy for all momenta. weéalled linear SWT because interactions between the spin-

will also see that SWT picks out two other valueslef(i.e., Waves do not appear at this order. Since some of the classical

J,=1 and 3, as being special. ground states considered in this section have a coplanar con-
In Sec. Ill, we use the Lanczos algorithm to perform anfiguration of the spins, it is convenient to use a technique for

exact diagonalizatiofED) of finite systems to study the low- deriving the spin-wave spectrum which can be applied to

energy excitations and two-spin correlations in the ground?oth collinear and coplanar configurations. For a coplanar

state as a function af, for S;=1 andS,=1/2. We find that configuration, let us assume that the spins lie in the

the system is a ferrimagnet fds=3.8 with a magnetization Plane. Consider a particular spin Qf magnituBewhich

per unit cell of 1/2. We see that the transition to a collinearpoints at an angle> with respect to the direction. Then we

ferrimagnetic state takes place at a smaller valug,oh the  can write the Holstein-Primakoff representation for that spin

guantum case than in the classical case where the transiti@s

occurs atl,=4. This effect has already been seen for other

systems exhibiting transitions between collinear and noncol- cos¢S,+sin¢S,=S-a'a,

linear stategsee, for example, Ref.)pand it indicates a ) ]

favoring of the collinear state by quantum fluctuations. There —sin¢S,+cos¢pS,+iS,=2S—a'aa,

seems to be a first-order transitiongt=3.8 with the total

spin of the ground state changing rather abruptly at that —sin$S,+cospS,—iS,=a’y2S-a'a, 2

value. ForJ,=3.8, the ground state is a singlet. We find thatwhere[a a']=1. We now introduce a coordinate and a mo-
there are two other value$;=1.9 and 1.1, where the nature mentum,q=(a+aT)/\/§ and p=i(a'—a)/y2, satisfying

of the spin correlations changes significantly. Many of the . ; ; :
correlations become very small or change sign at those tw q,dp;T |\}Vé)(r)1bi:;<ipr)]and|ng Eq(2) up to quadratic order im

points. The structure factor seems to indicate crossovers a

those points between ground states with different kinds of —cosdlS+ L —1(p2+a2)]—sind/S
short-range correlations. In the region £J1,<1.9, the > AStamz(pra)] ¢\/—q

canted spin configuration in Fig. 1 is consistent with the ED —sindl S+ L—2(p2+a2) 1+ cosd /S

data representing the short-range spin-spin correlations, S Stz —2(p7+ )] ¢\/—q,
whereas for larged, up to the ferrimagnetic phase transition s~ Jsp. &)

point, the commensurate spiral phase with a period of four

lattice spacings seems to be in accord to the ED dat&Nfor We now consider a general Heisenberg Hamiltonian of the

=12. It is clear, however, that the periodic boundary condi-form

tions imposed on the chain prevent the appearance of the

periodic structures with larger periods predicted by the clas- _ 2 2

sical analysis. H= %: %iSi-Sp, “)
ForJ,=1, the correlations between the sgirsites show - _

an unusual pattern, namely, the spirsites appear to decom- Where we count each bondj only once, and the spin at

pose into two sublattices such that each sublattice has a subite i will be assumed to have a magnitugge. Consider a

stantial antiferromagnetic coupling within itselfvith a  classical configuration in which the spin at sitges in the

strong frustration but the coupling between the two sublat- z-x plane at an angle; with respect to thez axis. The

tices is much weaker. We call this system the next-nearestondition for this configuration to be a ground state classi-

neighbor antiferromagnéNNN-AFM). In Sec. IV, we use a cally is that
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used in Fig. 1 to the site labels,(n) being used here is as
Ea( i) =2 J;;S'S; cog b — b)) () follows: n—(2n) if 1<n<N, andn—(1,n—N) if N+1
b <n=2N. We define the Fourier transforms
should be a minimum with respect to each of the angles

We must therefore have 1 i
pa,k:\/_ﬁ; Pa,n€ n
2 J;iS S sin(¢h— ;) =0 (6)
1 :
for every value ofi. Using Eq.(3) and keeping terms up to qa'k:\/_ﬁ > qa,ne"k“, (8)
n

orderS;, we find that the spin-wave Hamiltonian is given by
where— w<k=. These operators satisfy the commutation

cog ¢ — &) relation [0, k,Pp k' ]=18ap0k —k’ - L€t us now assume that
the cosines appearing in E(7) take the following simple

S S
HSW:% J”{(Sis]'f'?'f'ij

1 forms: they are equal to cesfor every pair of neighboring
- Ecog( bi— ¢j)(sjpi2+ qui2+3ip12+5«qj2 spin-S; sites, and equal to cgkfor every pair of neighbor-
ing spinsS;-spinS, sites.(We will see below that this may
happen even in situations where the anglgs, are them-
+ \/Si_Sjcoq di— ¢j)qiq;+ \/Si_Sjpipj . (7)  selves not the same in all the triangledp to terms of order
S, the Hamiltonian in Eq(1) takes the form

The factor ofSS; + §/2+ §;/2 in this expression appears on

expanding a product such as; { 1/2)(S;+1/2) coming _
from Eq. (4) and dropping the term of order 1. H E°'°'+% Ek [Pa.1Mab kPo.F Ga,~kNab.idlo il
We can obtain the spin-wave spectrum from Eg. as (9)

follows. The unit cell of our system is a triangle containing

the two sites with spin§; andS, which lie on its left edge. 5

Let us label the triangles by, wheren=1,2, ... N, and let Eoc=N| (S{+S;)cosa+2J;
a=1,2 denote the spinS; andS,, respectively; thus each

site is labeled asg,n). The mapping from the site labels whereE, is the classical ground-state energy, and

cosp

S S
S]_SZ'F?'F?

(Sl cosk—$S; cosa—J,S, cosp JZ\/Slsz(l+eik)/2)
M - i 1
i 3\SiS,(1+€%)12 1,5, cosB
S, cosacosk—S; cosa—J,S, cosB J,/S;S, cosp(1+ e“‘)/z)
Nabs= /S5, | : 10
e 3,VS;S, cosB(1+e™)/2 ~ 3,5, cosB (10

Note that the X 2 matricesM, and N, satisfy M _, =M/  coplanar configurations. Hence the zero-point energy given
andN_,=Nj . If we write p, , andq, as the columng, by (1/2)2, (w, « does not break the classical degeneracy be-

and qy, respectively, then the classical Hamiltonian equatween the different configurations. _ _ _
tions of motion take the form We can now obtain the spin-wave dispersion for various

values ofJ,. For large values ofl,, the classical ground

day dpy state is a collinear ferrimagnetic configuration in which the
_:ZMkpk and _:_Zquk' (11) . . . . . S .
dt dt S, spins point in one direction, say, thkedirection, and the

) ] S, spins point in the opposite direction; the total spin of the
Eor each value ok, t_he harmonlc'solupons of thesg equa- ground state is therefore equalXgS;—S,). Hence the co-
tions have two possible frequencieg given by the eigen-  gjnes in Eq/(10) are given by coa=1 and cogg=—1. The
value equation spin wave dispersions are then given by

de(4M N, — w?1)=0. (12)
“ 0. =2\al— 2= 2Dy, (13
The quantum-mechanical energy levels are then given by

(Nak+1/2)w, i, Wheren, , is the occupation number of the 3 ‘

mode labeled asa(k), wherea can take two different val- ak=§2(31+52)—31 sinz(z),

ues. Note that the frequencies,  are the same in all the
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given by a configuration in which the sp8-makes an angle
of -6 with both the spinS;’s, while the angle between the
two spinS;’s is 26, where

J
282). (16)

_ —1
6=cos (231

Figure 1 shows a particularly simple example of such a con-
figuration in which all the spirg,’s are aligned with each

st 1 other; this is called the canted state. It is clear that there is an
Al ] infinite number of such configurations even in a system with

a finite number of triangles. This is because, in a triangle

labeled n, we can continuously rotate the spig, and

0 > = ; : ; 5 Sip+1 around the spir;, while maintaining the relative
k angles at the values given above. In many systems with such
FIG. 2. Spin-wave dispersions in the ferrimagnetic phase foAN ENOrmous grou_nd.-state degeneracy, it is known that the
J,=5, S;=1, andS,=0.5. zero-point energy in linear SWT breaks the degeneracy par-

tially by selecting only the coplanar ground states; this is
3 K called the order-from-disorder phenomertér.et us there-
be=—2(S,—S,)+S, sin2<—), fore consider only coplanar configurations, in which all the
2 2 spins lie in thez-x plane. Even with this restriction, there are
about 2 different configurations, because in trianglghere
k are two possible directions of the spiig, andS, ,,, for a
Ck232v3132005< 5)- given direction of the spir$, ,.
Let us compute the spin-wave dispersion in a coplanar
[We can show that the upper braneh. , corresponds to Cconfiguration. The cosines in E(LO) are given by
excitations with total spin one more than the ground-state
spin, while the lower branch_ , corresponds to excitations J§S§
with total spin one less than the ground-state bpihese cosa=cog26)= E‘l’
dispersions are shown in Fig. 2 fdp=5, S;=1 and S, !
=0.5. Atk=0, we find thatw, ;=2J,(S;—S;) andw_ 3,5,
=0. At k=7, w; ,=23,S; while w_ ,=2J,5,—4S,. Cosﬁz_cosgz_z_. (17)
When the ratiol, decreases to the values/S,, the lower 25

.branch_w_,k vanishes for all values ok. This signals an We then find that dé¥l,,= 0 for all values ok. Equation(12)
instability to some other state fd,b<2S,/S,. I ; a
For later use, we note that up to ord®r, the ground-state then implies that one of the frequencies, say,yk—_o for all .
S : . e I k. We thus have a dispersionless zero mode. This mode arises
energy per unit cell in the ferrimagnetic phase is given by due to the invariance of the classical ground-state energy
K under certain kinds of continuous rotations in each triangle
E: En+ E i d_( T ) as mentioned above. In the problem of the Heisenberg anti-
N 0cl™ 5 om Wy kT W f - . - . i
- erromagnet on the kagomattice, it is known that interac
tions between spin waves, which appear when we go to
’T% 72 higher orders in the §expansion, remove the degeneracy in
+ 4+/ay— Cy, . .
02w the zero-mode brancfi,and produce a low-lying spin wave
branch with an energy scale proportional $8°. We will
restrict ourselves to linear SWT here, and will not consider
such corrections to the zero-mode branch.

wherea, andcy are given in Eq(13). X - .
For J,<2S,/S,, the classical ground state is no longer aEqS(Tg)e:s_'k_O' the other frequency can be obtained from

collinear state. To see this, note that the Hamiltonian in EQ_.

(1) can be written, up to a constant, &k(llZ)EnWﬁ,
where

S
=S+ sl—sz( SiS,+ 5 + %

(14)

03 =4 t(MNy)

=2J5S5(cosk— J,)(1+ cosk) +4S? sin?k+ J5S3.
W, = JZSZ,n + S1,n + S1,n+ 1- (15) (18

Thus the classical ground state is one in which the vefk&or This dispersion is shown in Fig. 3 fa,=2, S;=1, and
has the minimum possible magnitude in each triamglEor  5,=0.5. Atk=, we havew+,w=\]§sz, while atk=0, we
J2<28,/S;, we find that the lowest-energy state in eachhavew, (=J,S,/2—J,|. We thus see that the gap vanishes
triangle is one in which the magnitude 1, is zero; this is atk=0 if J,=2.
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2N
Hmag= — hgl S (21)

where we have assumed the same value of the gyromagnetic
ratio g for spinsS; andS,, and we have absorbeglin the
definition of the magnetic field. If h is large enough, the
ground state is one in which the angtan Eq. (2) is equal to

zero for all the spins. Following the procedure described
above, we see that the matridds, , andN,j , are equal to
each other and are given by

08|
06
041

o2} M apk= Nap k

I o : : _[S1cosk=S1=3,8,+h2 1,S;Sy(1+e )12
IS S, (1+€e4)/2 —J,S;+h/2

FIG. 3. Nonvanishing spin-wave dispersion in the singlet phase
for J,=2, S;=1, andS,=0.5. (22

Up to orderS;, the ground-state energy per unit cell in the We then find that the spin-wave dispersions are given by
coplanar phase is given by
-+ =h=3(51+S,) — 255,

Eo 2 B mdk 2 Z 72
W:_Sl_sl_ E(Sz"‘sz)“‘JO o Otk (19 +\J5(S1+S2)%+43,51(S;— S - 1,S)) s+ 4SSy,
where w  is given in Eq.(18). One can check that the [k
expressiong14) and (19) match atl,=2S,/S,. Skzsmz(i)- (23
Let us now comment on a special feature of the value
J,=2. Within the set of ? classical coplanar ground states,
the total spin of the system can have a wide range of values . NUMERICAL RESULTS

depen_ding on t.he exact configurati_on of the sp_ins. YVe €A We have used the Lanczos algorithm to study the ground-

see ttns by noting that the total spin can be writterSas  gtate properties of the sawtooth chain wh=1 and'S,

=2pVy, wWhere =1/2 for even values dfl from 4 to 12 with periodic bound-
R . . ary conditions. To reduce the sizes of the Hilbert spaces, we
Vi=S;0+3(Sin+Sint1)- (200 work in subspaces with a given value of the total component

. ' of the spinS, and the momentum, since these operators com-
In any of the classical ground states Br= 25, /S,, we find mute with the Hamiltonian. I15,=0, we reduce the Hilbert

that the magnitude of this vector is given WY,=|S,  gpace further by working in subspaces in which the spin
+S; c0spB|=($/2)[2~J;|. Depending on how the vectors parity P, is equal to+1; under the transformatioRs, the

V, in different triangles add up, the total spin of the systemvalues ofS, at all the sites are flipped fro®,— —S;,. (Ps
can therefore range from 0 tiNG,/2)|2—J,|. However, if  transforms the operato&,— — S, andS,— — S, leaving
J,=2, we see that?n is proportional toWn in Eq. (15); Sy invariant. It therefore corresponds to a rotation by
hence all the classical ground states have zero spin since vé®out they axis). One can show that the eigenvalueRyfis
know that each of the vectow,, has zero magnitude. Quan- related to the total spi§ of the state by

tum mechanically, we expect the exponentially large classi-

cal degeneracy to be broken by tunneling; however we P=(—1)NG1tS2)-S, (24)
would still expect an unusually large number of low-energy
singlet excitations fod,=2. Figure 4 shows the total ground-state energy as a function

Another special value o8, is given byJ,=1. At this  of J, for N=8. The solid line shows the numerical data,
point, the Hamiltonian of a single triangle is given by the while the dashed line shows the spin-wave results obtained
square of the total spi6,=S,,+S;,+S; 1. Thus the to-  from Eq.(19) for J,<4, and from Eq(14) for J,=4. We do
tal spin of each triangle vanishes in any of the classicahot present the data fdd=12 since the latter are almost
ground states. indistinguishable from those presented in Fig. 4. In the inset,

Finally, we can use this formalism to obtain the spin-wavethe solid lines show piecewise linear fits to the numerical
dispersion close to the fully aligned ferromagnetic statedata to the left and right od,= 3.8, while the dotted lines
which is the ground state when a sufficiently strong magnetishow the continuations of the same two straight lines to the
field is applied; this will be useful for the discussion in Sec.right and left of J,=3.8, respectively. This shows a small
V. Let us consider a Hamiltonian which is the sum of the onediscontinuity in the slope atJ,=3.8; we find that
given in Eq.(1) and a magnetic field term given by (1/N)dEy/dJ, is equal to—1.25 and—1.45 to the left and
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-20

gy

Ground state ener

-45

FIG. 4. Total ground-state energy as a functiodofThe solid line shows the numerical data from exact diagonalization for a chain with
eight triangles, while the dashed line shows the spin wave results. In the inset, the solid lines show piecewise linear fits to the numerical data
to the left and right of),=3.8, while the dotted lines show the continuations of the same two straight lines to the right andJgft of
=3.8, respectively. This shows a small discontinuity in the slop& at3.8.

right, respectively, ofl,=3.8. These numbers agree with the accurate for large values & andS,. The total spin of the
nearest neighbor spib-spin-1 correlations discussed in Eq. first excited state, however, shows a more complicated be-
(25) and Fig. 7 below. havior asl, is varied; this is plotted in Fig. 5 fal=8. For

For bothN=8 andN=12, we find that the total spin of J,=3.9, the first excited state has a spin of 3 as expected
the ground state changes abruptlyJat=3.8. ForJ,=3.8, from the spin-wave calculations. Fdr<2.9, the first ex-
the ground state spin has the ferrimagnetic valueN($,; cited state is a singlet. For 22),=<3.9, the spin of the first
—$S,)=N/2. ForJ,=3.8, the ground state is a singlet. The excited state fluctuates considerably. The fluctuations near
number 3.8 compares reasonably with the SWT value o8,=3.9 may be due to the finite size of the system, and they
2S,/S,=4, considering that SWT is only expected to be may disappear in the thermodynamic limit.

3 T T T T T T T

o
o
T
1

il

Total spin of the first excited state
- 12

o
«
T
1

0.5 1 1.5 2 25 3 35 4 45 5

FIG. 5. Total spin of the first excited state as a functiorgfor a chain with eight triangles.
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0.4

I I T T T T T
—©— First non-singlet state
—%— First excited state

0.35

o
(%
T

cged states
[
(4]

I
N
T

Energy gaps to some ex
(=] e
o o

0.05

FIG. 6. Energy gaps between the ground state and the first excitedlstaéz curve and the first nonsinglet statepper curveé as a
function ofJ, for a chain with 8 triangles. The ground state is a singlet for the range sfiown in the figure. Fa3,<<2.9, the first excited
state is a singlet, while fo3,>2.9, the first excited state is the same as the first nonsinglet state.

For J,<3.8 and N=8, the energy gaps between the finite-sized system are often a sign of a spiral phase in the
ground state and the first excited stétgose spin is shown thermodynamic limi€® we will discuss this possibility in
in Fig. 5 and the first nonsinglet state are plotted as funcmore detail below. o
tions of J, in Fig. 6; the two gaps are shown by stars and Next, we examine the two-spin correlatiof - S;) in the
circles, respectively. From Fig. 5, we see that the first excite@round state. These are of three types: spipin-1, spin-1-
state is a singlet fod,<2.9 and is nonsinglet fod,>2.9  SPin-1, and spiry-spin. These are shown in Figs. 7-9 for
(except for a few values af, close to 3.9). Hence, the first N=12. We have only shown six correlations in each case.
excited state is the same as the first nonsinglet statd for All the other correlations are related to these by translation

>2.9 as shown in Fig. 6. Although the gap to the first exciteaﬁggsriﬂzs\tl'?; Sé/rgrr]r;itns:.n'(l;r; ttr)]ergzwc;rr\:,icojl :rll thIi cor(;;ela-
state fluctuates, we see that it is particularly small nkar g 9 P %,

—1 and 2. These small gaps may represent either IeV(?r]amely, 1.1, 1.9, and 3.8. For instance, many of the correla-

. fh d st di d bel i ons approach zero or change sign near these three values.
crossings or the ground s a(ms diIscussed be O_W’,r genuine It is particularly instructive to look at the nearest-neighbor
low-lying singlet excitations; it is difficult to distinguish be-

spin-4- spin-1 correlation, i.e(S;-S,,) in Fig. 7. By the

tween thgse two possibilities W'th.OUt going o m_uch IargerFeynman—HeIImann theorem, this is related to the derivative
system sizes. We note that low-lying singlet excitations are

known to occur in the spig-Heisenberg antiferromagnet on with respect tap of the ground-state energy per triangle,
a kagomdattice which is a well-known example of a highly 1 dE, .
frustrated systen? For 0.5sJ,=<2.5, we see that the gap to NdJ, 2(S;-Sya), (25
the first excited statéwhich is a singletis typically much
smaller than the gap to the first nonsinglet state. In fact, we TABLE I. Ground-state momentum for various valuesJef for
find that in this range of,, there are several singlet excita- & chain with 12 triangles.
tions which lie below the first nonsinglet excitation. For in-
stance, foN=12, we find four and eight singlet excitations
lying below the first nonsinglet excitation d6=1 and 2, 0<J,<0.95
respectively. 0.95<J,<1.05
For N=12, the ground state has the following properties.1.05<J,<1.26
For J,=3.85, the ground state is a singlet, and the parity1.26<J,<1.78
symmetry in the subspace with,=0 is given byPs=1. 1.78<J,<1.82
However, the momenturk of the ground state repeatedly 1.82<J,<1.99
changes between 0 and. This is shown in Table I. We 1.99<J,<3.75
observe that there are several crossings, particularly hear 3.75<3,<3.85
=1.1 and 1.9. Repeated level crossings such as this in &

Range ofJ, Ground-state momentum

o3 o3 o3 o3
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FIG. 7. The spin%-spin-l correlations as functions @§ for a FIG. 8. The spin-1-spin-1 correlations as functionsleffor a
chain with 12 triangles. chain with 12 triangles.
where we have used the fact that all the nearest-neighbavhere we define
spin4-spin-1 correlations are equal. We can see from Fig. 7
that the derivativg25) shows a jump af,=3.8, which in- r=i—1 for 1<|<E
dicates a first-order transition; we know that the ground-state ' 2’
spin changes abruptly at that point froNf2 to 0 without
ing through any of the intermediate values. The jump in . N .
going throug  any of the inte _edate_ aues. ej_u p CN+1-i for ~+1s=i=N, 27
the values of S, - S;,4) atJ,=23.8 is consistent with the jump 2

in the slope of the ground state energy in Fig. 4 as discuss% I~ -
account for the periodic boundary conditions, anidkes
above. AtJ,=1.25 and 1.75, Eq(25) seems 1o show a the values 2rn/N pWheren=0 1 ..¥N—1. We have in-

change of slope but no jump. This could indicate either a :
second-order transition or a crossover at those points; it iglu_deldlzthe factotr_s of & t:]eqqalr]tt()hl Zmd. d4 forfsEpmé)l tand
difficult to distinguish between these two possibilities since aopin-1/<, respec ivejyon the right-hand sides of E(6) to

change of slope can also arise due to finite-size effects. make it easier to compare the magnitudesSbi(q) and

1. SA).
For small values of),, we observe that the spin-1- :
spin-1 correlations in Fig. 8 decay rapidly with the In Fig. 10, we show the values ofwhere the two struc-

: . qaralure factors are maximumgg,,,) as a function ofJ, for N
separationn between the two sites, and they also oscillate a . 2
P y =12. For 0<J,=<1, Qmax= 7/2 for spin$ and for spin-1.

as (—1)". This is expected for small, because the spin-1 ; I .
chain is only weakly coupled to the spin-1/2's: a pureThe NNN-AFM behavior of the spig:s discussed in the

spin-1 antiferromagnetic chain exhibits a Haldane gadollowing section will explain Wi)qma)(:?T/Z_fOI' spin%_folr
and a finite correlation length of about six lattice small values of,. For 1.255J,=1.75, Gmax=0 for spin;

spacing€t?2 The weak coupling also explains why the and 7 for spin-1; this suggests that the ground state is in a
spin+-spin-1 correlations in Fig. 7 are small. However, the Santed state Vi'th a peno_d of two unit cells as shown in Fig.
spinL-spint correlations in Fig. 9 show an unexpected == 7O 1.85J,=3.8, Qmay= /2 for both spinz and spin-1;
behavior for smalll,. We find that the spin-1/2's on even NS Suggests a spiral phase with a period of four unit cells.
and odd sites appear to decouple into two separate chain'g',r.]auy' fr(]).r ‘].2?‘3'8' qmgx.'s Equfal t_o 0 for poth spir-and
with the correlation being very small between spinsSPIN-1; this is expected in the ferrimagnetic state.

belonging to different chains; within each chain, the correla- hl't r|18 possible tha:jtge p:}enod two ar}d pe”r?bi fourhstates
tions have an antiferromagnetic character. In other wordsVNich are suggested by the structure factor Nor 12 (the

(S5i-Sy;) is small if i-j is odd, and it oscillates as

(—1)0=1)2jf j-j is even. We call this the NNN-AFM. In the 0.2 foa
following section, we will provide some understanding of 0.1 |
this behavior. 0}
To understand better the nature of the changes in the

ground state, we looked at the structure factors for the spin- Z’; oLy
1-spin-1 and spi-spin+4 correlations. These are respec- Vo029
tively defined as 03 -

1 N 0.4

(o) =5 2 (SvearSywi)codar), 05
4 N
Szz(q)= _ 2 <§1 §i>005(qri)a (26) FIG. 9. The spin-1/2-spin-1/2 correlations as functions.pfor
i=1 a chain with 12 triangles.
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Quay fOT spin 12 —— TABLE II. The correlations of a spir%—with its two neighboring
1 WMI Gmax forspin 1 —<— spin4's in the ground state|1)), first excited state|2)), and the
0s | ] twg linear combinations|2+) and|2—)) atJ,= 1 and 2, forN
£ o6t T ] - —
cg | ) Js State ($-S) (S;-Sg)
04T | 1 |1) —0.00562 —0.00561
02 - 1 [2) —0.07239 —0.07240
T 1 |2+) -0.15152 0.07350
0 . e : ) "k * 1 [2—) 0.07351 —0.15151
05 1 15 2 25 3; 35 4 45 5 5 1) 0.04198 0.04195
2 2 |2) 0.06867 0.06871
FIG. 10. Values ofq where the structure factorS'(q) and 2 |2+) 0.09063 0.02004
S?(q) are maximum as functions af, for a chain with 12 tri- 2 [2—-) 0.02002 0.09062

angles.

periodic boundary conditions only allow some limited peri- can think of these two states as arising from tunneling be-

odicities for small systemswill turn into states with longer fween the two dimerized states which would be eigenstates

periods(which change more smoothly with,) if we go to of the Hamiltonian for the infinite system. Although the

larger system sizes. The repeated level crossings betweenstates|1) and|2) would be eigenstates of momentum and

=0 and+ shown in Table | also support this scenaiio. therefore translation invariant, the linear combinatig@s
Figure 11 shows the values 8f (g @s a function of  +)=(1)+]2))/y2 and [2—)=(|1)—|2))/\2 would not

J,. Once again, we see large fluctuations nbar 1.1, 1.9, be translation invariant, and may therefore exhibit different

and 3.8. The structure factors are relatively large for bottvalues of the parametet. We are motivated here by the

large (ferrimagneti¢ and small values of,, and is smaller Majumdar-Ghosh model; this is a Heisenberg antiferromag-

for intermediate values af,. netic spin3 chain in which the next-nearest-neighbor cou-
Finally, we examined the possibility of dimerization, Pling has half the value of the nearest-neighbor couptfng.

namely, whether the ground state spontaneously breaks tHdVis model is known to have two degenerate ground states

invariance of the Hamiltonian under translation by one unitdiven by the direct products

cell. The unit cell of our system has half-odd-integer spin,

and such systems are quite susceptible to dimerizationinone |y y= J] lans1) and |W_)= IT s 1)

dimension. A simple way to study this question is to see if nodd neven

the difference between the spjaspin4 correlations be- (28

twefn 9S|te 1@ arld |t§ neighbors at sites 2 awdi.e., d ~ where |l/fn,n+1>5(|Tnln+1>—|lnTn+1>)/\/§- We observe
=(S1-$;) —(S1-Sy). is not equal to zero. The problem is that| ¥, ) and|¥ _) show dimerizatior(namely, the param-
that the energy eigenstates we have found are also eigegter d takes the valuest3/4), but are not invariant under
states of momentum and are therefore translation invarianransiation by one site. On the other hand, the linear combi-

hence the dimerization order paramedewill vanish in such  nations |W,)=|¥_,)+|¥_) and |¥,)=|¥.,)—|¥_) do
states. A finite system cannot spontaneously break a symmeot show dimerization, but are translation invariant.
try such as translation invariance. However, if dimerization Returning to our system, we see from Fig. 6 that the
does occur, we expect that the ground statdled|1)) will  ground state is almost degenerate with the first excited state
be almost degenerate with an excited statlled|2));**we  (and both are singletst two values ofl,, namely, 1 and 2.

We therefore examine the two correlations mentioned above

0.9 " S () Tor spin 172 —— in the four statedl), [2), |2+), and |2—) at those two

0.8 | S (Gmae) forspinl ~ —>— 7 values ofJ,. The results are shown in Table Il. We see that

0.7 ¢ the state$2+) and|2—) do show an asymmetry in the two

0.6 t nearest-neighbor correlations, and the values of the correla-
75 05 - tions are exchanged between the two states. However, the
= o4l numerical values of all the correlations are quite small, so
@ 03 | there is no clear evidence for dimerization.

02 -

o1 & IV. NEXT-NEAREST-NEIGHBOR ANTIFERROMAGNET

o NEAR J,=0

05 1 15 2 25 3 35 4 45 3 In this section, we will study the system for small values
of J, using perturbation theory and the idea of an effective
FIG. 11. The structure facto&"Y(Omay) andS?A(amay) as func-  Hamiltonian. A more detailed discussion of the ideas in this

tions of J, for a chain with 12 triangles. section is given in Ref. 25. We write the Hamiltonian in Eqg.
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(1) as the sunH=Hy+V, where sumed in the summations ovierFor a periodic system with
N N spin<’s, the subscript of ¢; goes from 1 td\/2 (sinceN
_ 2 2 is even, so a total of 2-N/2 numbers have to determined.
Ho_i:N+l S Sie1 These numbers will depend on the system size; however,

since the ground state of a spin-1 chain has a finite correla-

N tion length, we would expect these numbers to converge
V=03, §-(Sint+Sinin)- (290  quickly to some values d$ becomes larggWe will assume
=1 thatJ, is small enough so that terms of ordléand higher

ForJ,=0, we have an antiferromagnetic spin-1 chain with acan be neglected in comparison with the terms of otdfer

coupling equal to 1, anN decoupled spirk’s. Every state of which we are interested jn

the system will have a degeneracy df 8ue to the decou- A direct computation of the constanasb,c; in Eq. (32)

pled spind’s. It is known that the ground state of a spin-1 using the expression in Eq31) is difficult because we

chain is a singlet with an energ?yéz —1.401 48\, and itis would need to accurately determine all the energy levels and

separated by a gap &fE'=0.41050 from the first excited eigenstates of a spin-1 chain as well as all the matrix ele-

state which is a triplet? ments appearing in that expression. We therefore assume the
Let us denote the eigenstatesHyf for the spin-1 chain by form in Eq. (32) (which we have so far found purely on

|4ty with energyE?, wherei=0 denotes the ground state. grounds of symmetjy and numerically determine the con-

The states of the spif-sites will be denoted bvl/,jl@_ The Stantsas follows. To determine the first numaén Eq. (32),

eigenstates of the full Hamiltonia can therefore be written W€ S€J2=0 and numerically find the ground-state energy
as linear combinations of the form which is equal toNa. Next, we turn on thel, couplings on

the bonds connecting only two of the sgits, say at sites 1
andn+ 1, to the spin-1's. In other words, we set four of the

— / ) ' .
|‘//a>_i2j Caijlui) @]y}, (300 spint-spin-1 couplings equal td,, and keep all the other
’ spin+4-spin-1 couplings equal to zero; let us call this trun-
where thec, ; ; are appropriate coefficients. cated perturbatioN;+V,,,; (thus,V=2;V;). We ignore the

We will now expand up to second order in the perturba-N—2 spin4’s which are not coupled to the spin-1's. The
tion V to find an effective HamiltoniarHq¢; which acts  energy levels of the system consisting of the spin-1 chain and
within the subspace of the'Zground states which are degen- two spins’s will have four low-lying states which would be
erate forJ,=0. The HamiltoniarH¢; will only act on the  degenerate with an energy Nfa if all the J,’s had been set
spin4’s. To first order inV, we haveHlleff=<¢é|V|¢(1)>. equal to zero. These four states are described by an effective
SinceV involves both sping and spin-1 operators, and the Hamiltonian involving the two spif-s of the form
expectation value irH, o¢; is being taken in a spin-1 state,

H1es Will only involve spin+ operators as desired. Now, the Hij eri=Na+ J§(2b+cn§l- §n+1). (33
expectation value irH, o¢¢ is equal to zero, becausé is ] o ) .
linear in the spin-1 operatosvhich are not rotationally in- The important point is that the constartisand c;, in this

variand, while |42) is a singlet and is therefore rotationally €XPression have the same values as in(B8). where all the
J, couplings are turned on. The reason for this can be traced

invariant. S )
We therefore have to go to second ordeMinWe then ~ Pack to the expression in E¢31) which can be used for
have either the full perturbatior’V or the truncated perturbation

V;+V,:1. A comparison between the two second-order ex-
(B VDV ) pressions shows that the constararises from the product
Hoetr= 2, T 1 : (3D of a spin4 operator at site 1 with itself when we take the
170 Eo—E product of the two matrix elements in E@Q1); that is why it
Clearly, this will be an operator which is of degree 2 or lessappears with a factor dfl in Eq. (32) and a factor of 2 in Eq.
in the spin} operators. Since the stategg), the sum over (33). On the other hand, the constantcomes from a prod-
statesS, o| 1) |/(ES— EL) andV are all invariant under Uct of a spins ‘operator at site 1 with a sp|§_1-operator at
rotations and translations, o must have the same invari- Sittn+1, and it comes with the same factor in EC&2) and
ances. The only operators which are of degree 2 or less iB3)- . )
spin4’s and are rotationally invariant are a constant and e can numerically determine the constabtsand c,

products of the forrrﬁi-é . Using translation invariance, we fr°”? the energies .Of ’the four low-lying states of.the spin-1
see thaH must takel the form chain plus two spirg’s; three of these states will form a
2eff

triplet with the same energy and one will form a singlet, so
Lo Lo that there will be only two equations in two unknowns. We
Hoerr=Na+NJI2b+32>, (¢,S-S:116,S-S o can then repeat the procedure and determine all the constants
! c; by successively coupling various pairs of sgis-to the
2 & spin-1 chain; in each case, we only have to look at the four
TS Siat o) (32 low-lying energy levels to find andc;. (The values ob
wherea,b,c;,c,, ... are numbers which are independent ofthat we get in the different cases should of course agree with
J,, and appropriate periodic boundary conditions are aseach other This procedure will work provided thal, is
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small enough that the four-low lying energy levels lie far  TABLE IIl. The correlations of the spig-s at sites 1 and 2 with
below the gap\E* of the pure spin-1 chain, and the terms of their two next-nearest-neighboring spifs in the ground state
third and higher orders are much smaller than those of sed}1)), first excited states|2) and|3)), and the four linear combi-
ond order. On the other hand, if we choadeto be too nations (2+) and[3+)) atJ,=0.1, forN=8.

small, the energy splittings al3 are very small, and the B — — —
determination of the constartisandc; will suffer from large ~ State (S1- Sg) (S1Sp) (S Sy) (Sy Sg)
numerical unqertainties. Eor our calculations witk-8, we 1) 049765 —049765 —049765 —0.49765
founc_j that takingl,= 0.1 gives reasonab_ly accurate and self-|2> 024630 —024629 —024630 —024631
consistent results. We found the following values of the six

numbers: 13) —0.24639 —0.24638 —0.24625 —0.24624
' |2+) —0.06774 —0.67620 —0.67620 —0.06775
a=-1.41712, b=-0.12665, [2—) —-0.67621 —0.06774 —0.06775 —0.67621

[3+) —0.06781 —-0.67622 —0.06765 —0.67624

c,=0.0183, ¢,=0.1291, [3—) —0.67623 —-0.06781 —0.67625 —0.06765

C3=—0.0108, c,4=0.0942. (34) S o
We see that the value affound forN=8 agrees quite well iu(‘; rllt,lt\ll(\,ajﬂsnld?ﬁgt iﬁérié' ;ﬁén?;gé:r?edrgé g?r'gﬁnzoét\;zle
with the thermodynamic valudN—) of —1.40148 quoted  ang two degenerate excited stat¢®)(and |3)) which are
earlier. , separated from the ground state by a small gap of 0.000 674.
Looking at the values of; in Eq. (34), we observe the (the next excited statdd), is separated from the ground
curious pattern that, is the largest number, followed By siate by a gap of 0.001277; for simplicity, we will not in-
the numbers, andc, are much smaller in comparison. Thus ¢),qe this state in the following computationdhe states
the spinz’s governed by the effective Hamiltonian in Eq. |1y |2y, and|3) are all translation invariant, and therefore

(32) seem to break up into two chains, one consisting of th&.annot show dimerization. We therefore consider the four
odd numbered sites, and the other with the even numberq ear combinations|2i)=(|1>i|2>)/\/§ and|3+)=(|1)

sites. Each of the chains has a nearest-neighbor coupling of
c,J5 which is antiferromagnetic; we therefore call this the
NNN-AFM. This explains the numerical result that the struc-
ture factor of the spirys is peaked atj= /2 and that the
next-nearest-neighbor correlation is the largest in magnitud
(and has a negative sigfor small J,.

Note, however, that the next-nearest-neighbor coupling in
each chair(proportional toc, which is about 0.73 times,)
is also antiferromagnetic and is not much smaller than the I I
nearest-neighbor coupling, so each of the spiohains is d2=(Sy S4) —(S2- ), (39
strongly frustrated. For such a strong frustration, it is known S .
that gipin% chain is disordered wﬁh a small correlation '© S€€ that the dimerizations in stafes-) and|3) are

engh of about o atice spacings impies @ corela- B SAUAL (0 Sbout 00065, Futher he corelatons
tion length of about four lattice spacings in the sawtoothiza,[ion which can occur for two chgins P
system, and is also strongly dimerizéd The small correla- '

tion length is supported by the correlation data k12 The occurrence o_f a NNN'AF.M with _strong frustration
A X . : S for small values ofl, is one of the interesting features of the
andJ,=0.1; we find that the ratio of spiR-spin+ correla-

i LS : _ i spin4-spin-1 sawtooth chain. Although the spin-1 chain is
tions (S; - S5)/(S;- Sg)=—0.411, while the ratio of spin-1-  g535ned and therefore plays no direct role at energy scales
spin-1 correlationg S,z Sy5)/(S13- S14)=—0.552. Thus the much smaller thard;=1, it perturbatively induces an un-
spin correlations(within each chaindecay faster with in- usual kind of interaction between the sgils-which leads to
creasing distance than the spin-1 correlatiomsich have a  a nontrivial behavior for that subsystem.
correlation length of six lattice spacings

To examine the possibility of dimerization, we use a
method similar to the one used at the end of Sec. Il to look
for dimerization atl,=1 and 2. However, the present case is In this section, we will discuss the phenomenon of a mac-
different for the following reasons. First, we are now consid-roscopic magnetization jump which occurs in the sawtooth
ering a NNN-AFM, so we have to check if the spirspin-4 chain for arbitrary values 08, andS, if J,=2. In general,
correlations between a site and its next-nearest-neighbors atféis phenomenon can occur in highly frustrated quantum an-
equal. Secondly, we have to simultaneously look for dimertiferromagnets in which one of the spin wave modaisove
ization in the two sping chains which are almost decoupled the fully polarized ferromagnetic stats completely disper-
from each other. If there is dimerization, we expect four low-sionless. When a uniform magnetic field is applied to the
lying states which are almost degenerate with each other. Faystem, the magnetization can show a macroscopic jump at
N=8, these four states will exhibit dimerization in the four the saturation fielchy (defined as the minimum field for

|3))/\/2 which are not translation invariant. We then com-
pute the four correlations mentioned above in all the seven
states; the results are shown in Table Ill. We observe a sub-
stantial amount of dimerization in the stat¢+) and
f3+). If we define the dimerization in the two chains t¢'be

d1:<§1'%>_<§1'§7>’

V. MACROSCOPIC MAGNETIZATION JUMP AT = J,=2
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which all the spins are aligned in the ground 9tafe'®By  in disconnected regions of a chain withiriangles. The low-
macroscopic we mean that the magnetization per unit cekst energy of a state with magnons will be less than the
jumps by a finite amounAm at h=hg. This occurs if(i) energy of the fully aligned state by an amount equattb
there is a special kind of ferromagnetic one-magnon eigen—4(S;+S,)] as long an<N/2. Once the number of mag-
state of the Hamiltonian which is spatially localizéalfew  nons exceed®/2, some of them will be close enough to
lattice spacings (ii) this eigenstate has the lowest energyinteract(repulsively with each other, and we no longer ex-
amongst all the one-magnon eigenstatés) the energy of pect the energy to vary linearly with the number of magnons.
this one-magnon state is negative with respect to the fulljHence, when the magnetic field is lowered slightly below
aligned state ifh<hg, and(iv) there are no multimagnon hg, we expect the magnetization to abruptly drop from the
bound states with energy lower than the sum of the indimaximum possible value oM, =N(S;+S,) t0 Max
vidual one-magnon states. If all these conditions are satis—N/2. The magnetization jump is therefore given &

fied, then for a certain range of values of the magnetic field=N/2. The ratioAM/M ,,,=1/2(S;+S,) goes to zero in
below hg, the lowest energy state is one in which there is athe classical limitS;,S,—=. The magnetization jump is
macroscopic number of these magnons localized in disjointherefore a true quantum effect as emphasized in Ref. 14.
regions of the lattice. Eventually, as the fid¢lds increased, For general values d§, andS,, we have not analytically
the energy of these magnons will cross zerchathg and  checked conditiorfiv) that there are no multimagnon bound
then turn positive; foh>hg, therefore, the lowest energy states with energy lower than the sum of one-magnon bound
state will be the one in which all the spins are aligned withstates. However, this is numerically found to be true in many
the field. Hence there will be a macroscopic magnetizatiormodels due to the absence of attractive interactions between

jump athg. the magnond*~*%This is also found to be true in our system
For the sawtooth chain with spil®& andS,, we consider with S;=1 andS,=1/2, as the data given below shows.
a Hamiltonian which is the sum of the ones given in Hds. For N=12, we numerically find that in the absence of a

and (21). The spin wave dispersion in this case is given inmagnetic field, the lowest enerds, in subspaces with dif-
Eq. (23). For J,=2, we see that the one-magnon statesferent values of the tota$, is given by, Eq(S,=18)= 36,
(above the fully aligned statehave two branches with the E(S,=17)=30, E,(S,=16)=24,..., E(S,=12)=0,
dispersionsy_ =h—4(S,;+S;) (which is independent of the and E,(S,=11)=—5.167392. Thus, when the magnetic
momentum and is equal to the energy of the localized onefield strength is lowered just belola= 6, the magnetization
magnon state |¢,) discussed beloyy and w.=h  jumps abruptly from 18 to 12 in accordance with the argu-
— A4S, sirf(k/2) which is greater tham _ for all values ofk.  ments given above. We would like to note here that since the
On the other hand, the special one-magnon Setteve the one-magnon state in E¢36) is strongly localized, the phe-
fully aligned stat¢ is a superposition of three statd&,n nomenon of macroscopic magnetization jufimp particular,
—1) in which the spinS, in trianglen—1 hasS,=S,—1 the value ofh,) is free of finite-size effects.
(and all the other spins have the maximum possible values of
S,), |1,n) in which the spinS,; in triangle n has S,=S;
—1, and|2,n) in which the spinS, in triangle n has S,
=S,—1. The particular superposition of these three states We have studied the ground-state and low-energy proper-
which is an eigenstate of the total Hamiltonian is given by ties of a spins-spin-1 sawtooth chain using SWT and exact
diagonalization of finite systems. Linear SWT shows that

S, there are two phases, the ground state being ferrimagnetic in
|l//n>=|2,n—l>+|2,n>—2\/S:1|1,n>_

VI. DISCUSSION

(36) one phase and a singlet in the other phase, separated by the
value ofJ,=4. In addition,J,=2 is special because all the

. . . classically degenerate states have total spin equal to zero at
The energy of this state with respect to the fully aligned statey, ¢ point, andl, =1 is special because the total spin in each

is given byE=h—4(S,+S;). The total spin of this state is iangle is zero in all the classical ground states.

N(S;+S;) -1, since it has totab,=N($;+S;)—1 and is Numerically, we have studied the model for only three
annihilated by totalS, . We thus see that the special one- 5 es ofN, namely, 4, 8, and 12, for the following reasons.
magnon state has the lowest energy amongst all the ongye pext-nearest-neighbor antiferromagnetic behavior dis-
magnon eigenstates. cussed in Sec. IV implies that the spirsubsystem would be

We thus see that the stalg,) meets the condition§)  frystrated by the periodic boundary conditions for odd values
and(ii) given above, and its energy is lower than that of theyt N/2: hence, numerical results for small valueshoguch

fully aligned state ith<hs, where as 6 and 10 would not provide an accurate guide to the prop-
erties of the model in the thermodynamic limit. Hence, we
hy=4(S5;+S,). (37) have restricted ourselves to even valuesNé2. The next

possible value oN=16 is beyond our existing computa-
We therefore identifyhg as the saturation field, and we ex- tional resources.
pect a macroscopic jump in the magnetization when Our numerical studies indicate that there are four distinct
crossedhg The magnitude of the magnetization jump can beregions. Ford,= 3.8, the ground state is ferrimagnetic, while
found as follows. Since each of the special one-magnoffor J,=<3.8, it is a singlet. The structure factors suggest that
states involves three sites, at md8R such states can exist the ground state is in a short ranged spiral state with a period
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of four unit cells for 1.8J,=<3.8, and in a short ranged =<1, the ground state of this system has a short correlation
canted state with a period of two unit cells for £, length and is strongly dimerized.

=<3.8. NearJ,=1 and 2, the gap between the ground state
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