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We generalize a class of Heisenberg antiferromagnets in one, two, and three dimensions, which have been
shown to exhibit magnetization plateaus for spin-1

2 . In a certain parameter range of the general model, which
is formally defined in D dimensions, we obtain the exact ground state�s� in the presence of an external
magnetic field for arbitrary values of spin. In this range, the magnetization remains a constant as a function of
the external field, except at some special values of the field where there is a jump from one plateau to the next.
The plateaus are formed at certain specific fractions of the full magnetization which are determined by the spin
and the lattice. Our general spin-S result reproduces the known cases for spin-1

2 in various lattices. Further-
more, we argue that outside the exact regime, the mechanism for the plateau formation is different. This results
in first order phase transitions along some of the plateaus as the coupling constant is varied. We rigorously
show the existence of such transitions for some particular cases. Finally, we numerically analyze a spin-1
model in one dimension using exact diagonalization to obtain its complete phase diagram. It agrees with our
analytic results.
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I. INTRODUCTION

Many low-dimensional spin systems, especially in one di-
mension, respond discontinuously to the variations of an ex-
ternal magnetic field.1 In such systems, magnetization curve
forms plateaus as a function of the field. In most cases, pla-
teaus are continuously connected to one another, whereas a
more interesting scenario is when there are abrupt jumps
between two plateaus. This usually happens at high fields in
systems with localized magnon excitations.2 There is a class
of models for which magnetization plateaus of the second
type are formed via a simple mechanism. The basic feature
of these models is that they consist of units of spins coupled
together such that the total spin of each unit is conserved.3–7

The first of its kind was introduced and studied at zero field
by Gelfand.3 The system consists of coupled dimers with the
following Hamiltonian �see Fig. 1�:

Hl = J��
i

S1,i · S2,i + J�
i

�S1,i + S2,i� · �S1,i+1 + S2,i+1� .

�1�

Note that the total spin on each dimer �S1,i
a +S2,i

a � is con-
served. A whole lot of eigenstates can be trivially constructed
for the above Hamiltonian. Any state in which each dimer
has a specific total spin and is maximally polarized in the
z-direction will be an eigenstate. Then, one expects the
ground state to be a product of dimer-singlets for J��J. A
lower bound on J� such that the dimer-singlet is the ground
state has been obtained by rewriting the Hamiltonian as sum
of units consisting of three spins,8 and is given by

J� � �2J , for S = 1
2 ,

2J�S + 1� , for S � 1.
�2�

For S= 1
2 , the ground state in fact remains to be the dimer

singlet for J��1.4J. For J��1.4J, all the dimers go into
triplets and form the ground state of a spin-1 uniform chain.

The lower-bound for J� given in Eq. �2� suggests that, the
higher the spin, the stronger the dimer bond needs to be for
the dimer-singlet to be the ground state. But it turns out that
the dimer-singlet is quite robust even for very large spins. In
this paper, we show that the lower bound on J� can be
pushed down to 2J for arbitrary values of spin, i.e., the
bound given by Eq. �2� for S= 1

2 is in fact true for all values
of S.

Honecker, Mila and Troyer6 �from hereon referred to as
HMT� have numerically studied the S= 1

2 system in the pres-
ence of magnetic field. For J��2J, the system starts with the
dimer-singlet ground state at zero field and the magnetization
per site �M� is zero. The system remains in the dimer-singlet
phase till a transition field Bc1

=J�, at which one set of alter-
nate dimers form triplets polarized in the direction of the
magnetic field �M = 1

2
�. For further increase in the field

strength, this state remains to be the ground state till a sec-
ond transition field Bc2

=2J+J�, at which the rest of the
dimers also become triplets and the system is fully polarized
�M =1�. This behavior has also been inferred on the basis of
a strong coupling analysis.9 For J��2J, gapless phases come
into play and the magnetization curve starts developing tails
between plateaus before the latter disappear altogether. HMT
also studied a three-leg ladder and obtained abrupt jumps
between plateaus in some range of the parameter. Similar
results for S= 1

2 have been obtained for a modified Shastry-
Sutherland model in two dimensions5 and a three-dimen-
sional version of Gelfand ladder.7

FIG. 1. The Gelfand ladder. The full lines represent the coupling
J� and the dashed lines J.
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In this paper, we define a general model in arbitrary di-
mensions which includes all the models mentioned above. In
a certain regime of the parameter space, we obtain the exact
ground state�s� in presence of magnetic field for arbitrary
values of spin. The magnetization curve forms plateaus and
they jump abruptly from one to another at certain special
values of the field. The magnetization on the plateaus are
some rational fractions of the full magnetization, which de-
pend on the underlying spin and the lattice.

Outside the exact regime, we argue that the plateaus will
survive in the immediate neighborhood, quite possibly devel-
oping tails between successive ones. But the mechanism for
plateau formation in this case is different from the exact
regime and this results in first order phase transitions along
some of the plateaus. We rigorously show the existence of
such transitions for some special cases. Finally, we numeri-
cally analyse the ladder defined in Eq. �1� for S=1 using
exact diagonalization. We obtain the complete phase diagram
which confirms our analytic results.

II. THE GENERAL MODEL AND THE EXACT
GROUND-STATES

HMT have defined a general n-leg ladder in one dimen-
sion. We generalize further and formally define Hamiltonians
on an arbitrary bipartite lattice in D dimensions, where n
spins belong to each lattice-site which interact among each
other as well as with the spins belonging to the neighboring
sites. The reason for writing down the most general Hamil-
tonian is that, most of our analysis is independent of details
such as dimension, lattice, and spin.

Let S�,x ��=1,2 , . . . ,n� be the spins at the site x. Define,

Tx = �
�=1

n

S�,x. �3�

Then the Hamiltonian is defined as

H =
J�

2 �
x

Tx
2 + J �

�x,y�
Tx · Ty − B�

x
Tx

z , �4�

where �¯ , ¯ � denote nearest neighbors. We take both the
couplings to be positive. The models mentioned previously
are particular cases of the above Hamiltonian. For the Gel-
fand ladder and the three-leg ladder in HMT, the underlying
lattice is a simple chain and n=2 and 3, respectively. �The
Hamiltonian for the Gelfand ladder given in Eq. �1� differs
from that in Eq. �4� by a trivial constant.� Both for the modi-
fied Shastry-Sutherland model5 and the 3D model of
Sutherland,7 n=2. For the former the underlying lattice is
square and for the latter it is one-fourth depleted cubic.

The variables Tx
a’s are also SU�2� generators, and they can

take the representations having the Casimir Tx
2= j�j+1�,

such that j=0,1 , . . . ,nS, when nS is an integer; and j
= 1

2 , 3
2 , . . . ,nS, when nS is a half-odd integer. There are dif-

ferent ways for n spin-S’s to add up to j at each site and this
gives rise to an exponential degeneracy for each eigenstate.
Keeping this in mind, from hereon we shall not retain any
extra indices that may be required to label different states

with the same values for j and m �eigenvalue of Tz�. The
Hamiltonian in Eq. �4�, depends on the value of the underly-
ing spin only through the truncation of the values j can take.
This suggests that one can treat the problem for general val-
ues of spin.

Now we will use a method of divide and conquer8,10 to
solve for the ground state. If one can write H as a sum over
smaller units hi, such that there exists a state 	�0� which is
simultaneously a ground state of each and every hi, then 	�0�
will be a ground state of H. To this end, we rewrite H as a
sum over all the bonds of the underlying lattice. Let i label
the bonds and let z be the coordination number of the lattice.
Then,

H = �
i

hi, hi =
J�

2z
�T1,i

2 + T2,i
2 � + JT1,i · T2,i −

B

z
�T1,i

z + T2,i
z � ,

�5�

where T1,i and T2,i are the two degrees of freedom belonging
to the bond i. Note that the same spin will be shared by many
bonds and hence labeled in more ways than one. For the
Gelfand ladder, the underlying lattice is a simple chain with
two spins �a dimer� belonging to each site. Then the above
break-up of writing the Hamiltonian as a sum over bonds is
schematically represented in Fig. 2. One bond of the under-
lying lattice consists of two dimers as shown in the figure.

Now we will concentrate on a particular hi, and find its
ground state and energy as a function of B. For notational
convenience we shall drop the index i from hereon. After a
rearrangement of terms, the bond Hamiltonian can then be
rewritten as

h =
1

2z
�J� − zJ��T1

2 + T2
2� +

J

2
�T1 + T2�2 −

B

z
�T1

z + T2
z� .

�6�

The four terms in h mutually commute and therefore the
spectrum is trivially solved. Let j1�j1+1�, j2�j2+1�, j�j+1�,
and m be the eigenvalues of T1

2, T2
2, �T1+T2�2, and �T1

z

+T2
z�, respectively. Here 	�j1− j2� 	 � j� �j1+ j2� and −j�m

� j. Then the spectrum for h is given by

E�j1, j2, j,m� =
1

2z
�J� − zJ��j1�j1 + 1� + j2�j2 + 1��

+
J

2
j�j + 1� −

B

z
m . �7�

Since the magnetic field couples to a conserved quantity, the
problem of finding the ground state at a given field strength

FIG. 2. Writing the ladder Hamiltonian as a sum over units of
two dimers. Full lines represent bonds of strength J� /2 and dashed
lines J.
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reduces to finding the lowest energy state in each j sector at
zero field, i.e., we need to minimize the field-independent
part of E with respect to j1 and j2. For nonzero field, the
degeneracy arising from the SU�2� symmetry will be lifted
and the ground state will have m= j. Next we consider the
case J��zJ, for which the coefficient of the first term in E is
positive.

When nS is an integer, j1 , j2=0 ,1 , . . . ,nS and for half-odd
integer values, j1 , j2= 1

2 , 3
2 , . . . ,nS. In both the cases, j

=0,1 , . . . ,2nS. Anticipating the solutions, we divide all pos-
sible cases into two: �1� Even j, integer nS; odd j, half-odd
integer nS, �2� Odd j, integer nS; even j, half-odd integer nS.

For case 1, E is minimized by the choice

j1 = j2 =
j

2
�8�

and for case 2, the minimum of E is when

j1 =
�j − 1�

2
, j2 =

�j + 1�
2

. �9�

There is one exception to the above general rule, though.
When nS is half-odd integer and j=0, Eqs. �9� give j1=− 1

2
and j2= 1

2 . This is not an admissible solution and the correct
solution is, j1= j2= 1

2 . We will have more to say about this
exceptional case later.

The ground state energies in the presence of field corre-
sponding to the solutions �8� and �9� are, respectively, given
by

E0
�1� =

1

4z
�J� − zJ�j�j + 2� +

J

2
j�j + 1� −

B

z
j , �10�

E0
�2� =

1

4z
�J� − zJ��j + 1�2 +

J

2
j�j + 1� −

B

z
j . �11�

Let 	l ,m�� denote the state with eigenvalues l�l+1� and m for
the operators T�

2 and T�
z , respectively. Then the correspond-

ing ground states are

	�0
�1��j�� = 	j/2, j/2�1 � 	j/2, j/2�2, �12�

	�0
�2��j�� = 	�j − 1�/2,�j − 1�/2�1 � 	�j + 1�/2,�j + 1�/2�2.

�13�

Since the field-independent part of E0
�1,2� are monotonically

increasing functions of j, as B is increased, j will go up
sequentially in steps. The value of the field at which the total
spin goes up to �j+1� from j can be obtained from Eqs. �10�
and �11�. For case 1, the transition field is

Bcj

�1� =
�J� + zJ�

2
j + J�. �14�

For case 2, it is given by

Bcj

�2� =
�J� + zJ�

2
�j + 1� . �15�

This completes the solution of the bond Hamiltonian �h�
for J��zJ. The important point to note is that the ground

states �12� and �13� are product states of the two sites con-
nected by the bond. In the context of the full lattice, this
means that we can put together these states on the bonds and
construct a state which will be a simultaneous ground state
of hi for every i. Consequently, it will be a ground state of
the full Hamiltonian H.

For case 1, the ground state consists of all dimers having
total spin j /2 and maximal polarization in the z direction,
i.e., T�

2 = �j /2��j /2+1� and T�
z = j /2. �Note that j denotes the

total spin on the bonds, which are not good quantum num-
bers. Here we merely use j to label the ground states.� Since
the ground state is unique for individual bond Hamiltonians,
this state has to be the unique ground state of the full Hamil-
tonian. The state can be written as

		0
�1��j�� = 


x
	j/2, j/2�x. �16�

For case 2, the ground state can be written as

		0
2�j�� = 


x�A

	�j − 1�/2,�j − 1�/2�x 

y�B

	�j + 1�/2,�j + 1�/2�y,

�17�

where A and B denote the two sublattices. The above ground
state breaks the translation symmetry and is therefore doubly
degenerate, the other ground state being the one in which the
two sublattices are interchanged. Equations �16� and �17�
give the ground states for all values of j ranging from 0 to
2nS. The fractions of the total magnetization at which the
plateaus form are

M =
j

2nS
, �18�

and the transition fields are given by Eqs. �14� and �15�. At
each jump of the magnetization, dimers belonging to one of
the sublattices alternately get excited to a total spin one unit
higher. These plateau transitions are similar to the macro-
scopic magnetization jumps discussed by Schulenburg et al.2

The difference being that, in our case the localization of
magnons arises from conservation laws.

Rössler and Gottlieb11 have studied a similar, but more
general, model and illustrated without proof, the existence of
exact magnetization plateaus for a particular case. Here we
have rigorously solved the ground states and obtained a
bound on the parameters such that the solutions are valid.

The above solution for the ground state hinges on one
crucial aspect—the ground state of the bond Hamiltonian �h�
is a product state on the two sites. For half-odd integer nS
and j=0, we have seen that the ground state of h has j1= j2

= 1
2 . This is not a product state and thus cannot necessarily be

satisfied for all bonds. When nS is half-odd integer, the mini-
mum spin on any site is 1

2 and therefore at zero field the
system will be in the ground state of the spin-1

2 system on the
underlying lattice. This is gapless, even in one dimension,12

and therefore the magnetization will vary continuously with
the field. For j=1, the solution again has j1= j2= 1

2 . This is
the fully polarized state of the spin-1

2 system. The field at
which it becomes fully polarized is determined by the gap of
one-magnon states �i.e., all spins except one pointing up�.
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For a hypercubic lattice in D dimensions, this is calculated
to be

Bc

J
= 4SD . �19�

Our general expressions for the magnetization fractions
�Eq. �18�� and transition fields �Eqs. �14�, �15�, and �19��
check correctly with the results in HMT for spin-1

2 , two and
three-leg ladders. A comment is in order here regarding the
ground states at plateau transitions. Suppose the field is
tuned to Bcj

, i.e., the transition field at which j goes up to
j+1. Also let j be even �a similar argument holds for odd j as
well�. Then the state of each bond can be any one of the
following three states:

	�̃0�j��1 = 	j/2, j/2� � 	j/2, j/2� , �20�

	�̃0�j��2 = 	j/2, j/2� � 	�j/2 + 1�,�j/2 + 1�� , �21�

	�̃0�j��3 = 	�j/2 + 1�,�j/2 + 1�� � 	j/2, j/2� . �22�

This gives rise to a degree of degeneracy which grows ex-
ponentially with the system size. In HMT, it is mentioned
that the ground state of the spin-1

2 ladder is either all triplets
�not necessarily polarized� or a mix of singlets and fully
polarized triplets. They make an exception for those special
values of the field at which there is a jump in magnetization.
The above analysis shows that even at transition fields the
ground states belong to the aforementioned set.

III. BEYOND THE EXACT REGIME

The divide-and-conquer method we employed in the pre-
vious section to find the exact ground state worked because
the ground state of the bond Hamiltonian �h� is a product
state. This is no longer true for J��zJ. Then the ground state
of h for a particular j will have

T1
2 = nS�nS + 1�, T2

2 = nS�nS + 1� ,

�T1 + T2�2 = j�j + 1�, �T1
z + T2

z� = j . �23�

This state is not a product state unless j=nS. But this does
not necessarily mean that the product states cease to be the
ground state of H for all J��zJ. Now we will argue that the
product states, and hence the magnetization plateaus, do in-
deed survive for a while as J� goes below zJ. Significantly,
the solutions are not same as that for J��zJ as given by Eqs.
�16� and �17�. The new solutions also form plateaus at the
same fractions and it results in a first order phase transition
on each plateau �with certain exceptions� at J�=zJ.

For the proof of the existence of product state solutions
for J��zJ, we do the following. First we will show that, at
J�=zJ, the only solutions are a finite number of product
states, except at the transition fields. Then, by assuming these
states to be gapped, it will follow that there exists a positive
non-zero 
 such that the ground state at �z−
�J�J��zJ
will be among the ground states at J�=zJ.

At J�=zJ, the bond Hamiltonian in Eq. �6� becomes

h =
J

2
�T1 + T2�2 −

B

z
�T1

z + T2
z� . �24�

The above Hamiltonian sees only the total spin of the bond,
but is independent of the spins of the sites. Then the ground
states of a given j sector are highly degenerate—there is a
freedom to choose j1 and j2 as long as they combine to form
total spin j. Among these states, there is a subset given by

	�0�p = 	l,l�1 � 	�j − l�,�j − l��2, l = 0,1, . . . , j , �25�

which constitutes all the product states. Next we will show
that the ground states of the full system at J�=zJ can be
written as product states on the sites. Let us consider two
neighboring bonds a connecting sites 1 and 2 and b connect-
ing sites 2 and 3. Also let ha and hb be the corresponding
bond Hamiltonians. Then, at J�=zJ any ground state, of
�ha+hb� has to satisfy the following conditions:

�T1 + T2�2	�0� = j�j + 1�	�0� , �26�

�T1
z + T2

z�	�0� = j	�0� , �27�

�T2 + T3�2	�0� = j�j + 1�	�0� , �28�

�T2
z + T3

z�	�0� = j	�0� , �29�

where j is determined by the field B. In the subspace of fixed
eigenvalues for T1

2, T2
2, and T3

2, Eqs. �26� and �27� imply that

	�0� = 	�0�12 � 	�0�3, �30�

where 	�0�12 is a state in the combined Hilbert space of the
sites 1 and 2 and 	�0�3 belongs to the Hilbert space of the site
3. This follows from the fact that for fixed values of j1 and
j2, there is a unique state in the Hilbert space of sites 1 and 2
which satisfies Eqs. �26� and �27�. Similarly Eqs. �28� and
�29� imply that

	�0� = 	�0�1 � 	�0�23, �31�

where 	�0�1 is a state in the Hilbert space of the site 1 and
	�0�23 belongs to the combined Hilbert space of the sites 2
and 3. Finally, Eqs. �30� and �31� imply that

	�0� = 	�0�1 � 	�0�2 � 	�0�3, �32�

i.e., 	�0� is a product state of the three sites. Since every site
is part of at least two bonds, this necessarily implies that the
ground states of H at J�=zJ are product states. These ground
states can be written as

		0�J� = zJ, j�� = 

x�A

	l,l�x � 

y�B

	j − l, j − l�y, l = 0,1, . . . , j .

�33�

What we have shown now is that, though the bond Hamil-
tonian �h� admits solutions which are not product states at
J�=zJ, such solutions are not admissible for the full Hamil-
tonian �H�.

At transition fields, there is a greater degree of degen-
eracy. Then the constraint on the ground state is more
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relaxed—the total spin on a bond can be j or j+1. This gives
rise to a degeneracy which is local and hence grows expo-
nentially with the system size. Away from the transitions
fields, the ground states are those given by Eq. �33� and are
not related to each other by any local transformation. It is
then fair to assume that there is a gap to excitations.

Now let us see why the existence of a gap at J�=J implies
the existence of a product ground state for �z−
�J�J�
�2J, for some positive 
. The three terms in H in Eq. �4�
mutually commute. This means that one can choose the
eigenstates to be independent of the three parameters J�, J,
and B. The energy spectrum will depend linearly on all the
three parameters and all transitions of the ground state are
via level crossings. �The transitions will be first order unless
there is a continuum of level crossings—a possibility in the
thermodynamic limit.� A gap to the ground states at J�=zJ
would then imply that there exists some nonzero positive
number 
, such that for �z−
�J�J��zJ the ground state�s�
will be among those at J�=zJ. Among the states in Eq. �33�,
the one with the lowest energy for J��zJ is given by

		0
��j�� = 


i�A

	j, j� � 

k�B

	0,0�, for j � nS , �34�

		0
��j�� = 


i�A

	nS,nS� � 

k�B

	�j − nS�,�j − nS��, for j � nS .

�35�

These states also have the same fractions for magnetization
as before. But, now the system prefers to put all the spin into
sites in one sublattice, if that is possible. This is in contrast to
the situation for J��zJ where it is energetically favorable to
distribute the spin equally among the two sublattices. At j
=nS, one sublattice will be saturated and then the other sub-
lattice starts getting excited to higher and higher spins.

In the above states, when j�nS, sites in one sublattice
have spin nS and those in the other sublattice have spin �j
−nS�. On the plateau, each spin is maximally polarized in the
z direction. Below a critical field, gapless phase of the same
set of spins will have lower energy. The critical field, in units
of J, will be the gap in the spectrum of one-magnon �states
with all spins but one maximally polarized, the odd one hav-
ing one less than maximum z component�. For a hypercubic
lattice in D dimensions consisting of spins j1 in one sublat-
tice and j2 in the other, the critical field is given by

Bcrit

J
= 2D�j1 + j2� . �36�

HMT have numerically found such lines of transition for S
= 1

2 , two and three legged ladders and the formula above is
consistent with their results. For the two-leg ladder, the tran-
sition occurs when the fully polarized effective spin-1 chain

becomes gapless. Then j1= j2=1 and Bcrit=4J. For the three-
leg ladder there are three cases �a� j1= 1

2 , j2= 1
2 , �b� j1= 1

2 ,
j2= 3

2 , and �c� j1= 3
2 , j2= 3

2 . Then the transitions occur, respec-
tively, at Bcrit=2J, 4J, and 6J.

To summarize our results thus far, we first solved for the
ground states of the general spin-S model in arbitrary dimen-
sions for J��zJ. The product state solutions we obtain ex-
hibit magnetization plateaus. Then we argued that there exist
product state solutions and hence magnetization plateaus
even as J� goes below zJ, but the mechanism for plateau
formation is different from the case J��zJ. Thus, on a pla-
teau, there are first order phase transitions at J�=zJ.

HMT have obtained a similar first order phase transition
on the plateau for the three-leg, S= 1

2 model. In their case the
transition occurs on M = 1

3 plateau from a fully polarized S
= 1

2 chain to an alternating chain consisting of spins 1
2 and 3

2 .
The latter is not a simple product state.

The plateau solutions for J��2J, given by Eqs. �16� and
�17�, and that for J��2J, given by Eqs. �34� and �35�, coin-
cide for j=0, 1, �2nS−1�, and 2nS. For S= 1

2 ladder �n=2�,
all the plateaus belong to the above set and therefore there is
no first order transition at J�=2J along any of the plateaus.

From now we will concentrate on the two-leg ladder. First
we will show for some higher spin cases that first order tran-
sitions along the plateaus at J�=2J do indeed exist.

IV. PHASE TRANSITIONS FOR THE LADDER AT J�=2J

We have seen that the ground states of the bond Hamil-
tonian are not product states for J��2J. Therefore, to look
for product state solutions in this range, we try a different
divide-and-conquer scheme involving bigger units. To write
Hl as sum over units containing three dimers then suggests
itself �see Fig. 3�,

Hl = �
i

h̃i, �37�

h̃i =
J�

4
�T2i−1

2 + 2T2i
2 + T2i+1

2 � + JT2i · �T2i−1 + T2i+1�

−
B

2
�T2i−1

z + 2T2i
z + T2i+1

z � . �38�

As before, we drop the index i and write the three-dimer
Hamiltonian as

h̃ =
J�

4
�T1

2 + 2T2
2 + T3

2� + JT2 · �T1 + T3� −
B

2
�T1

z + 2T2
z + T3

z� .

�39�

T1
2, T2

2, T3
2, �T1+T3�2, and �T1

z +T2
z +T3

z� are mutually com-
muting conserved quantities and this essentially reduces the

FIG. 3. Writing the Hamiltonian as a sum
over units of three dimers. Bold full lines repre-
sent bonds of strength J�, thin full lines J� /2, and
dashed lines J.
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problem to that of two �variable� interacting spins coupled to
a magnetic field of unequal strengths at the two sites. Unfor-
tunately, the spectrum cannot be found analytically for arbi-
trary values of spin.

We have numerically diagonalized h̃ for spins up to 3. We
have found that the product state solutions given in Eqs. �34�
and �35� do indeed exist for some J��2J. �This diagonaliza-
tion can be easily performed for higher spins also, but we
chose to restrict it to reasonable values.� Note that the exis-

tence of the product state solutions for h̃ necessarily implies
their existence for the full ladder. This in turn confirms our
prediction of first order transitions on a plateau at J�=2J.
Next we study the particular case S=1. We numerically anal-
yse it to obtain the phase diagram in the complete parameter
space and thus confirm our analytic results.

V. SPIN-1 LADDER

The spin-1
2 ladder was numerically studied in great detail

by HMT to obtain the complete phase diagram. Our results
for J��2J and the arguments for the existence of the pla-
teaus beyond the exact regime are consistent with their phase
diagram. As we mentioned in the previous section, to obtain
the new phase predicted by us, one needs to look at spins
higher than 1

2 . In this section we present the results of an
exact diagonalization analysis of the spin-1 ladder.

Since the individual dimer spins are conserved, we need
to analyze only effective spin chains consisting of spins of
varying values �0,1 ,2� at each site. We have employed the
Lanczos algorithm to exactly diagonalize the Hamiltonian
and obtain the ground state energies. We have worked with
10 dimers �20 spins� and used periodic boundary conditions.
For the finite system that we studied, we have checked that
all the relevant states are such that the spins of the dimers
belonging to a given sublattice are the same. There are ex-
ceptions to this at plateau transitions, arising from the local
degeneracy which has been discussed in Sec. II. In the phase
diagram �see Fig. 4�, �j1− j2�p and �j1− j2�g, respectively, de-

note the fully polarized and the gapless phases of an alter-
nating chain consisting of spins j1 and j2. In Fig. 5, the
magnetization is plotted as a function of B /J for various
values of J� /J.

For J��2J the analytic results from Sec. II are very ac-
curately reproduced. Since all the relevant states are product
states, there are no finite-size corrections and agreement with
the analytic results is exact up to numerical inaccuracies.
There are five plateaus at the fractions 0, 1

4 , 1
2 , 3

4 and 1. The
successive transitions occur at the following values of the
field

Bc1

J
=

J�

J
,

Bc2

J
= 2 +

J�

J
, �40�

Bc3

J
= 2 + 2

J�

J
,

Bc4

J
= 4 + 2

J�

J
. �41�

On the M = 1
2 plateau, �1−1�p phase gives way to �2−0�p at

J�=2J, as we expect from our analysis in Sec. III. From
�2−1�p and �2−2�p phases there are second order transitions
to the corresponding gapless phases �2−1�g and �2−2�g, re-
spectively. The lines of these transitions, obtained from Eq.
�36�, are given by Bcrit=6J and 8J, respectively. These lines
meet the lines separating plateaus, given in Eq. �41� at J�
=2J.

For J��2J, all the dimers have spin 2. Then the ground
state at zero field is the Haldane phase of the uniform spin-2
chain.13,14 When the field is turned on, the magnetization
remains zero till a critical field at which the system becomes
gapless.15 Then with further increase in field, the magnetiza-
tion continuously increases and finally reaches saturation
��2−2�p�. In the plot for magnetization curves in Fig. 5, there
are discernible steps even in the gapless phases �2−1�g and
�2−2�g. These are spurious jumps arising from finite-size
effects. To obtain more accurate results, it will be necessary
to employ techniques such as DMRG.

FIG. 4. Phase diagram for the spin-1 ladder. Thick and thin lines
denote first and second order transitions, respectively.

FIG. 5. Magnetization curves for the spin-1 ladder. The frac-
tional values of magnetization are denoted on the plateaus.
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In the intermediate range, i.e., around J��1.6J, just as in
the S= 1

2 case in HMT, with changing field, the system goes
in and comes out of various gapped and gapless phases. At
zero field, �0−0� phase goes into spin-2 Haldane phase at
J��1.5975J.

For higher spins, there will be �4S+1� plateaus for J�
�2J as discussed in Sec. II. First order transitions of the
type, �1−1�p to �2−0�p will then happen at all plateaus ex-
cept the first two and the last two. There will also be second
order transitions of the type �2−1�p to �2−1�g, between
�2S− �j−2S��p and �2S− �j−2S��g for �2S+1�� j�4S. Thus
we expect most features of the phase diagram in Fig. 4 to be
generic for all spins.

VI. SUMMARY AND CONCLUSION

We have generalized a class of existing spin-1
2 models in

various dimensions, which exhibit magnetization plateaus, to
arbitrary values of spin. By using simple techniques we are
able to analytically solve the spin-S model in a substantial

regime of the parameter space. Our approach also throws
light upon the phases beyond the exact regime. In particular,
we are able to predict that there will be a new type of plateau
phase. Such phases cannot exist for the spin-1

2 ladders stud-
ied in HMT. We have tested our results numerically for the
particular case of S=1, two-leg ladder.

Though our general model is defined on arbitrary bipartite
lattices, each site has a sub-structure which includes n spins.
Therefore, constructing physically feasible models, where
bonds of equal strength have equal length, is a nontrivial
task. As far as we know, the one-dimensional linked tetrahe-
dra introduced by Gelfand3 and Sutherland’s7 generalization
of the same to 3D are the only possibilities.
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