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We study magnon bands in the slab geometry for the spin model on the pyrochlore lattice with
Heisenberg exchange, Dzyaloshinskii-Moriya interaction and spin-ice anisotropy. For a range of
model parameters, for both ferromagnetic and antiferromagnetic exchange, we evaluate spin wave
bands for slabs oriented perpendicular to the [111], [100] and [110] directions. We analyze magnon
dispersions for the ferromagnetic splay phase, the all-in-all-out phase and a coplanar phase. For
all the phases considered, depending on the slab geometry the magnon band structure can be non-
reciprocal and we locate regions of non-reciprocity in the surface Brillouin zones. We provide details
of the edge localized magnons in these phases associated with point degeneracies and different nodal
lines in the bulk spectra.

I. INTRODUCTION

A recent development in the field of magnetism has
been the entry of several magnetically ordered states and
the associated magnonic bands into the arena of topo-
logical phases. The analysis of geometric phases [1, 2]
of electronic wave functions on the Brillouin zone, which
offers a natural closed parameter space for lattice sys-
tems, gave rise to revolutionary advances leading to our
present understanding of topological insulators [3]. The
analogous approach for magnon bands has yielded rich
dividends in the magnetic case as well. Using the study of
spin wave band structures as opposed to electronic ones
ordered magnetic materials are now frequently investi-
gated for topologically non-trivial properties. The study
of spin waves or magnons, even without the topological
gaze, is of course indispensable for our understanding of
ordered quantum magnets. They are the elementary ex-
citations above the ground state and measured and eval-
uated spin wave spectra are important tools to extract
coupling constants of the underlying lattice model and
to understand their low temperature properties. Unlike
electrons, however, magnons obey bosonic statistics and
this plays a crucial role in the definition and analysis of
geometric phases for spin wave bands. A notable devel-
opment which helped initiate this line of study was the
prediction [4] and measurement [5] of the thermal hall
effect in a magnetically ordered insulator. The non-zero
value of the thermal hall conductivity in Lu2V2O7 [5],
an oxide with the pyrochlore structure, was shown to be
principally due to the magnonic degrees of freedom. Fol-
lowing the initial prediction [4] based on the presence of
non-zero chirality in ordered states of certain lattices with
corner-sharing units, it was soon clear that the transverse
thermal conductivity of magnons is directly related to
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the (suitably defined) non-vanishing Berry curvature of
the magnonic band of the underlying Hamiltonian [6, 7].
There have since been several works studying topological
properties of magnons on the pyrochlore lattice. The ini-
tial attempts to theoretically analyze the magnonic ther-
mal hall effect on the pyrochlore lattice focussed on the
[111] orientation of the lattice comprising of alternating
Kagome and triangular lattice planes. The properties of
the Dzyaloshinskii-Moriya interaction on the pyrochlore
lattice for an ordered ferromagnetic state along [111] mo-
tivated an analysis of the model by confining it to the
Kagome planes. The resulting studies yielded the mag-
netic analogues of Chern insulators in two dimensions
[8–11]. Subsequently, analysis of the magnonic spectra of
the full pyrochlore lattice resulted in the discovery of ana-
logues of other topological features in three dimensions
known for electronic band structures like Weyl points
[12–15] nodal lines [16], and triple point degeneracies [17].
Any analysis of topological properties of band structures
in the bulk involves, almost inevitably, an inspection of
the model in the slab geometry to probe the existence
of edge modes and bulk boundary correspondence. For
a class of models on the pyrochlore lattice, studying the
magnon spectra in the slab geometry is the principal ob-
jective of this work. We present a detailed study of the
magnon band structures on the pyrochlore lattice in the
slab geometry for a class of models containing Heisenberg
exchange, Dzyaloshinskii-Moriya interaction and spin-ice
anisotropy. We begin in the following section by defining
the Hamiltonian and present our evaluation methods and
derive some results about the bulk spin waves in the sys-
tem. In sections III and IV we present results about the
magnon spectra in the slab geometry for ferromagnetic
and antiferromagnetic exchange models respectively. Our
conventions for spin wave calculations and the data de-
picted in the main text are presented in the Appendices
A and B respectively.
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II. PRELIMINARIES

We begin with an introduction of the model Hamilto-
nian and a brief description of some aspects of the eval-
uation of the spin wave spectra. We study the following
spin Hamiltonian on the pyrochlore lattice:

H = J
∑

<iα,jβ>

Siα · Sjβ +
∑

<iα,jβ>

Diα,jβ · (Siα × Sjβ)

+K
∑
iα

(Siα · n̂α)2 (1)

The three terms are the nearest neighbor Heisen-
berg exchange, Dzyaloshinskii-Moriya interaction
(DMI) and the single-site anisotropy terms re-
spectively. Siα are spin-S vector operators at
Riα = Ri + α = (Ri,α) where Ri is a Bravais
lattice vector of the FCC lattice with primitive vectors
ai ∈

[
( 1

2 ,
1
2 , 0), (0, 1

2 ,
1
2 ), ( 1

2 , 0,
1
2 )
]

and α are the four
sublattice vectors corresponding to the vertices of the
tetrahedron, α ∈

[
(0, 0, 0), ( 1

4 ,
1
4 , 0), (0, 1

4 ,
1
4 ), ( 1

4 , 0,
1
4 )
]
.

Diα,jβ are the Dzyaloshinskii-Moriya interaction vectors.

We follow the convention that (−D√
2
, D√

2
, 0) · (Si1 × Si,2)

is the DM term for the first two sublattices. The rest of
the vectors are determined by lattice symmetries. Both
D > 0 and D < 0 are allowed and have been called
”direct” and ”indirect” DMI terms respectively in [18],
a convention which we follow. The local anisotropy
axis unit vector for each spin, n̂α, points from the site
to the center of the tetrahedron. The symbols J,D,K
have dimensions of energy and the symbol S wherever it
appears is a pure number. For all the data sets presented
in this work we fix the magnitude of J to be 1 and study
the system for D values ranging from −0.5 to +0.5. For
each value of D the value of K is varied from −2.0|D|
to +2.0|D|. Both ferromagnetic and antiferromagnetic
models are considered.

For fully periodic boundary conditions (PBC), for all
the parameter regimes studied, the the classical ground
states of Eq. 1 can be found using the Luttinger-Tisza
(LT) approach [19]. For all the phases analyzed here
the ground state configuration (obtained from the LT
eigenvector which satisfies both the weak and strong con-
straints) is a q = 0 state where each sublattice of a tetra-
hedral unit points in a specified direction. We mainly an-
alyze three ground state phases: the ferromagnetic splay
phase, the all-in-all-out (AIAO) phase and a coplanar
phase. Some of these ground states have been discussed
earlier [20] in a study of this model for spin-1 moments
using flavor wave theory. Our primary interest in this
work is to probe the magnonic edge state structure as-
sociated with these phases. We consider terminations of
the lattice along three of the high symmetry directions
namely the [111], [100] and the [110] directions. We find
that generically, for open boundary conditions along the
termination direction, the Luttinger-Tisza method fails

to provide a ground state configuration (the strong con-
straint is violated by the LT eigenvector). As a result,
in order to evaluate the spin wave spectra in the slab ge-
ometry, we evaluate the classical ground state using nu-
merical optimization. We minimize the energy function
written in terms of the two angular variables associated
with each moment. We ensure that the minimizing spin
configurations obtained have a 2-norm of the gradient
function which is acceptably small and that the Hessian
at the extremum is positive definite in the sense that it
admits a Cholesky decomposition. The [111], [100] and
the [110] terminations result in effective two dimensional
triangular, square and rectangular Bravais lattices with
bases respectively. Our conventions for the new axes in
terms of which magnon spectra in the slab geometry are
presented are detailed in Appendix B. We have analyzed
results for Nl = 40, 60 and 80 layers. The number of
”sublattices” in the slab configuration are 4×Nl. Start-
ing with the computed classical ground states, we study
the Hamiltonian (both in the bulk and slab geometry
cases) in the standard form of linear spin wave theory
given below and analyze the magnon spectra:

H ≈ Hspin−wave

=
∑
iα, jβ

J33
iα;jβS

2−S
∑
iα, jβ

J33
iα;jβ

[
b†iαbiα + b†jβbjβ

]

+ 2S
∑
iα,jβ

J+−
iα;jβbiαb

†
jβ + J−+

iα;jβb
†
iαbjβ

+ 2S
∑
iα,jβ

J++
iα;jβbiαbjβ + J−−iα;jβb

†
iαb
†
jβ

= E0 +
∑
q

′ [
(b†q)T (b−q)T

] [ Aq Bq
B†q AT−q

] [
bq

b†−q

]
(2)

= Ezero−point + S
∑
q,α

[
ωqα f

†
qαfqα

]
The operators b†iα, biα are the Holstein-Primakoff (HP)

creation and annihilation operators associated with the
spin at the lattice site Riα. bq is a column vector of
Fourier transforms of HP annihilation operators and
b†q is a column vector with the corresponding creation

operators in Fourier space. The size of bq or b†q is the
number of sublattices associated with a given Bravais

lattice point. The symbol
∑
q

′
indicates that the sum

is over each distinct q and −q pair. A definition of a

new set of bosonic operators:

[
fq
f†−q

]
= Γq

[
bq

b†−q

]
and

a determination of Γq is made using a well established
diagonalisation procedure [21]. The optimization men-
tioned above to evaluate the correct ground states for
the slab geometry is critical to correctly implementing
the numerical Bogoliubov transformation outlined in
[21]. Hq, the matrix in Eq. 2 and referred to from
hereon as the dynamical matrix, needs to be positive
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definite for the procedure and this usually is not the
case for inaccurate evaluations of the slab geometry
ground state. The constants appearing in Eq. 2 are
functions of the original coupling constants in Eq. 1
and the orientations of the moments in the classical
ground state. The relevant Fourier transform conven-
tions, expressions for the various constants, matrices etc
appearing in Eq. 2 are presented in detail in Appendix A.

Spatial inversion and spin wave reciprocity: It is
necessary to state the properties of the spin wave Hamil-
tonian under spatial inversion to facilitate the study of
topologically non-trivial properties of bulk magnon bands
to be discussed below. The Hamiltonian in real space
mentioned in Eq. 2 can be written in an obvious matrix
form (we have omitted the constant term):

HSW
real−space =

[
(b†R)T (bR)T

] [ A B
B† AT

] [
bR

b†R

]
(3)

where we have introduced the real space counterparts
of bq, b†q. For all the phases considered, the matrix
shown above is invariant under permutations of site labels
corresponding to spatial inversion if the Hamiltonian in
Eq. 1 has periodic boundary conditions for all primitive
lattice directions. On the pyrochlore lattice, with our
convention for the sublattice vectors, the site obtained
by spatial inversion of (R,α) is (−(R + 2α),α). This
property of the lattice and the invariance of the matrix
in Eq. 3 together lead to the following in Fourier space:

Aq = Φ†q A−q Φq, Bq = Φ†q B−q Φq (4)

where Φq is a diagonal matrix with (Φq)i,j =
δi,j exp(−2 i αi · q). Defining the matrices:

Iz =

[
1 0
0 −1

]
, Pq =

[
Φq 0
0 Φq

]
, Ix =

[
0 1
1 0

]
(5)

it can be shown that the following holds:

Pq (IzHq) P
†
q = − [Ix (IzHq) Ix]

∗
(6)

where ∗ denotes complex conjugation. Eq. 6 guarantees
that if |Ψq

λ〉 is an eigenvector of IzHq with an eigenvalue

Eλ then [IxPq|Ψq
λ〉]
∗

is an eigenvector of IzHq with the
eigenvalue −Eλ. The positive eigenvalues of the spec-
trum of IzHq are the magnon frequencies corresponding
to q and the negative of the negative eigenvalues cor-
respond the magnon frequencies corresponding to −q.
Hence Eq. 6 guarantees that the magnon frequencies
obey reciprocity i.e. ωqα = ω−qα. We have derived
Eq. 6 and the reciprocity condition as a direct conse-
quence of the invariance of HSW

real−space under permuta-
tion of site labels corresponding to spatial inversion. We
do not impose any further restrictions on the underly-
ing classical ground state other than those required by

this invariance. The reciprocity of the spectrum, which
for the bulk case follows from Eq. 6, is not obeyed in
general in the slab geometry. Hence in the slab geom-
etry there can be regions in the surface Brillouin zone
(SBZ) where the spin wave spectrum is non-reciprocal.
We quantify in this work this non-reciprocity using the
quantity Rq = 2 ×

∑
α
|ωqα − ω−qα|. For any q-vector in

the surface Brillouin zone Rq is a measure of the devia-
tion from reciprocity over all the bands. In the following
sections when we analyze Rq for several phases of the
model.

Magnonic Berry curvature: The analysis of edge
magnons involves studying topological aspects of the bulk
spin wave spectrum with periodic boundary conditions
and a suitably defined magnonic Berry curvature. We
employ the definition using which Berry curvature is com-
monly computed numerically [3, 22]. We calculate the
Berry phase associated with a loop enclosing an elemen-
tary plane in the Brillouin zone and the Berry curvature
component perpendicular to the plane is the evaluated
Berry phase per unit area. Explicitly:

δφ =−= log [〈Ψi|Iz|Ψj〉〈Ψj |Iz|Ψk〉〈Ψk|Iz|Ψl〉〈Ψl|Iz|Ψi〉]
Ωq⊥ = δφ/(δA) (7)

Here, (i, j, k, l) denote the coordinates of an elemen-
tary parallelepiped formed using small translations along
any two of the three reciprocal lattice vector directions.
Ωq⊥ is then the component normal to the parallelepiped
at the point q, which is at the center. The |Ψi/j/k/l〉
are columns of the matrix Γ−1

i/j/k/l which are eigenvec-

tors of IzHi/j/k/l, the column index being determined
by the band for which Ωq⊥ is being evaluated. Hence the
underlying matrix whose eigenvectors are used to define
the curvature is in general non-Hermitian and requires a
suitable re-definition of the the inner product to the one
mentioned in Eq. 7 to define the Berry phase [23, 24].
Furthermore, the q and −q pairs are coupled with each
other in Eq. 2 via the dynamical matrix. In our eval-
uations throughout this work we define a single Hq for
each (q,−q) pair and evaluate properties of both the
wave vectors using that matrix.
We now present the results of our analysis of spin wave
spectra of Eq. 1 in the slab geometry for different phases
in three different slab orientations.

III. FERROMAGNETIC EXCHANGE

We first consider the case of ferromagnetic exchange in-
teraction J = −1.0. For ferromagnetic exchange, for the
range of DMI strengths studied in this work, the term
in the Hamiltonian responsible for driving the system
away from the purely aligned ground state is the spin-ice
anisotropy term K. In the absence of K, the the DMI
term on the pyrochlore lattice does not change the en-
ergy of the ferromagnetic state with fully aligned spins [5]
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FIG. 1: Magnons in the ferromagnetic splay phase for J = −1, D = −K = 0.3: A. Band degeneracy points in the 3D

Brillouin zone. Top to bottom: minimum gap between second and first band, the third and second band, and the fourth and

third band respectively. B. Rq = 2×
∑

α|ωqα − ω−qα|, α is the band index in the slab geometry. The [111] (left) and [110]

(right) geometries have regions of non-reciprocity. C. Magnon spectrum for a slab of 60 layers with the [100] termination. D.

Magnon spectrum for a slab of 60 layers with the [111] termination (Left) and the [110] termination (Right).

and hence for all the D values we analyze classical ground
state is still a state with all moments aligned. The contin-
uous degeneracy of this ground state is reduced to a dis-
crete degeneracy of six in the presence of the K term for
both direct and indirect DMI [20]. The resulting classical
ground state gives rise to a ferromagnetic splay phase.
The splay phase has a ground state spin configuration
where all the moments in the tetrahedral unit have a com-
mon ferromagnetic component and the finite transverse
components add to zero. The Luttinger-Tisza analysis
shows the moments in the tetrahedron to have a form:
α1 = (a, b, b) , α2 = (a, b,−b) , α3 = (a,−b,−b) , α4 =
(a,−b, b). The components a and b can be expressed in
terms of the coupling constants using a minimization of
classical energy and we omit the detailed expressions.
In the slab geometry, which is the case of interest for us
here, this discrete degeneracy where the ferromagnetic
components of the moments point along the Cartesian
axes remains unchanged for the [111] termination of the
lattice. This happens because the [111] direction is sym-
metrically placed relative to all the three Cartesian axes.
For our analysis in the slab geometry we work with the
numerically obtained ground states which deep in the
bulk have tetrahedra almost in the splay configuration

with the splay axis along the x-direction. This choice is
convenient because such ground states exist for all the
three slab geometries. As one moves closer to the sur-
faces the moments can deviate slightly from the splay
ground state in a manner that depends on the geometry
and the number of layers. The salient features of the
bulk and the corresponding edge spectrum for the ferro-
magnetic splay phase are presented in Fig. 1. On the
left we depict those q-values in the 3D Brillouin zone at
which there are band degeneracies. We depict the mini-
mum values of the three successive gaps in the spectrum
in the three images of the FCC BZ from top to bottom.
The points shown can either be an exact degeneracy as
in the case of the first and the third gap or a small gap at
finite sizes which goes to zero as the lattice dimensions
are increased. The lower two and the upper two bands
are seen to be degenerate along the X −W lines of the
Brillouin zone. This is a generic feature for all the phases
we analyze in this work. The second and third band are
degenerate at two equal and opposite q-vectors as shown.
This degeneracy is a vanishingly small gap at finite lattice
sizes which goes to zero in the large lattice size limit. For
the D = 0.3 and K = −D data presented in Fig. 1 the
point degeneracies appear at (±2.26195, 0, 0) for a lattice
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FIG. 2: A. Berry curvature directions on spheres enclosing the band degeneracies of the second and the third band (see Fig.

1). The left picture is for the second band the right one for the third band. B. Depiction of localized and extended modes in

the magnon spectrum. The plotted quantity is the absolute value of the magnon eigenvector of the λ-th mode at the wave

vector q of the SBZ. The insets show in a different color and thickness the particular magnon mode whose components are

being plotted. The colors of the markers in the main plot are chosen to coincide with the colors of the magnon modes of

interest in the inset. Also shown using a dot on the x-axis is the q value for which the analysis is being done. Data is shown

for the [111] (left) and [110] geometry (right). The number of layers in the slab is 60 and the parameters are

J = −1, D = −K = 0.3.

size of 100×100×100 Bravais lattice sites and the gap is
≈ 0.018. Such point degeneracies in the pyrochlore have
been investigated for other Hamiltonians earlier [12–15]
as examples of ”magnonic Weyl” points, which are mag-
netic analogues of the electronic Weyl points [25].

The two degenerate points in the bulk are along the
x− axis and hence their projections on the surface Bril-
louin zone for the [100] slab are at the origin. The spin
wave dispersion in the [111] and the [110] terminations
have regions which are non-reciprocal as depicted by the
patterns of Rq = 2×

∑
α|ωqα − ω−qα| in Fig. 1 (B). On

the other hand the [100] slab dispersion is fully recipro-
cal. This is evident in the edge spectrum for this slab
geometry as shown in Fig. 1 (C). As we will see, such
patterns of non-reciprocity exist also for other phases of
this model. In Fig. 2 (A), we depict the the Berry curva-
ture directions on spherical surfaces enclosing the point
degeneracies. The figures on the left and right are for
the second and third band respectively. We clearly see

the reversal of polarities of the curvature for the same
point for the two bands and for the two q-vectors in the
same band. We have evaluated numerically the topolog-
ical charge, the flux of Ωq over the enclosing spheres by
2π and found them to be ≈ ±1. In Fig. 2 (B) we depict
spatial extent of the several visible mid-gap states which
are clearly marked out in the insets with different col-
ors. We plot, for a slab of 60 layers and hence 240 spins
the absolute value of the components of the eigenstate
of IzHq corresponding to such a state at one q-value in-
dicated in the figure (see the marker on the x − axis of
the inset). We also depict for reference one state which
is inside the bulk bands for both slab geometries ([111]
and [110]). We note that the states away from the bulk
band localize very rapidly close to the edges whereas the
bulk band eigenvectors (green and black markers for the
[111] and [110] slab respectively) have finite contributions
throughout the slab. We note that for both the [111] and
the [110] SBZs the locations of the degenerate q-vectors
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FIG. 3: (A,C): Degeneracies of bulk bands in the AIAO phase for J = 1.0, D = 0.3,K = −0.3 (A) and

J = 1.0, D = 0.3,K = 0.12 (C). Points indicated denote degenerate q vectors for the lowest two bands (left), the second and

third bands (middle) and the top two bands (right). (B, D) Rq = 2×
∑

α|ωqα − ω−qα| for the [111] slab. The [100] and the

[110] geometries have reciprocal bands in this phase. The data shown is for 60 layers.

are along the the y-axis, and hence the regions of non-
reciprocal spin waves contain the point degeneracies for
the [110] geometry but not for the [111] geometry. This
can be seen clearly in the dispersion of the mid-gap states
in the two geometries. Finally, we note that in the regions
where the spectrum is non-reciprocal, even though Rq

when it is non-zero is dominated by the mid-gap states
the contribution of the bulk states is not negligible. We
have illustrated the general properties of this phase us-
ing a specific value of D,K in Figs. 1, 2. These broad
features remain the same throughout the phase even for
other values of D ∈ [−0.5, 0.5],K ∈ [−2 |D| , 2 |D|] that
we have investigated.

IV. ANTIFERROMAGNETIC EXCHANGE

A. D > 0: All-in-All-out phase

The classical ground state and the magnon spectrum
in the case of antiferromagnetic exchange depends on the
sign of DMI. For direct DMI (D > 0) the classical ground
state is the AIAO state till K

|D| ≈ 1.4. The broad features

of the bulk magnon spectrum, which is gapped, show two
kinds of triple point degeneracies as K is varied. As an
illustrative case let us consider D = 0.3. In the range
of K values studied (K ∈ [−2.0 |D| , 2.0 |D|]) the system
has a triply degenerate Γ point with the higher three
bands degenerate from K = −0.6 till K ≈ −0.048. At

this K value the Γ point is almost four times degenerate
and the lower two and the higher two bands form two
sets of doubly degenerate bands respectively. Beyond
this point the system transitions to a phase with multi-
ple triple point degeneracies. The triple point degeneracy
at Γ now shifts to the lower three bands and three sets
of new triple points emerge along the Γ−X lines where
the upper three bands are degenerate. For K = 0 such
a transition between states with different kinds of triple
points, as a function of D, has been reported in [17].
Interestingly, in the thin film limit of two or three lay-
ers Chern bands have been reported in another related
model [26]. Beyond K

|D| ≈ 1.4 the minimum Luttinger-

Tisza eigenvalue is degenerate along continuous lines of
the Brillouin zone indicating a magnetically disordered
quantum ground state. Since we are concerned with or-
dered states here, we do not analyze that regime in this
paper.
The magnon band degeneracy structure in the two phases
is depicted in Fig. 3 for K = |D|. As is clear in the first
phase with a single triple point at Γ the triple point lies
at the junction of three nodal lines along the Γ−X direc-
tions with the third and fourth bands being degenerate
along these nodal lines. On the other hand in the second
phase with additional triple points along the Γ−X direc-
tions these nodal lines split into two parts. On moving
away from the triple points on the Γ − X line the sec-
ond and the third bands are degenerate along the path
to Γ and the third and fourth bands are degenerate along
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FIG. 4: The magnon spectrum in the slab geometry in the AIAO phase for J = 1.0, D = 0.3,K = −0.3. The spectra from

left to right are for the [111], [100] and [110] slabs of 60 layers respectively.

the path to X. Thus the nodal lines in the phase with
a single triple point at Γ are unbroken throughout the
whole zone and connect opposite ends of the Brillouin
zone (and hence are closed loops). In the second phase
with multiple triple points all nodal lines are finite open
segments. The lines corresponding to the the degenera-
cies of the second and third bands (which include the
origin) and those corresponding to the third and fourth
bands meet at the set of triple points along the Γ − X
directions. This can be seen in Fig. 3 (C). Also shown
in Fig. 3 (B, D) are the non-reciprocal regions of the
spectrum in the slab geometry. We find clearly visible
regions of non-reciprocal spectrum near the corners of
the Brillouin zone for the [111] termination of the lat-
tice. There is clearly very little difference in the struc-
ture of non-reciprocity in the phase with a single and
multiple triple points. Notably, the regions around the
surface Brillouin zone which are projections of the nodal
lines just discussed above have reciprocal magnon spec-
trum. Furthermore, we find that for both the [100] and
the [110] terminations the spectrum is reciprocal. In Fig.
4 we depict the magnon spectrum in the slab geometry
for the phase with unbroken nodal lines described above.
From left to right are magnon spectra for 60 layers for
the [111], [100] and [110] terminations respectively. For
the [111] slab we note the presence of two edge states
which cross as the wave vector changes along the −M ′K
segment of the path. We find that both these states are
localized at the two opposite edges but the location of the
edge states is exchanged after the crossing. The broad
features of the edge magnon spectrum is very similar for
the phase with finite nodal lines, though the absolute
value of magnon frequencies are different. We also note
the presence of edge states below all the bands (for all the
phases). These can vary widely in dispersion depending
on the termination direction and the phase.

B. D < 0: Coplanar phase

For antiferromagnetic exchange and indirect DMI the
bulk classical ground state for K > 0 can be chosen from
a two dimensional space. This two dimensional space
contains three different coplanar configurations of spins
in which the four spins of the tetrahedron lie in the x−y,
y − z, or the z − x plane. The two dimensional space
containing these coplanar configurations can be obtained
from the ground states discussed in a different context
[27] for the pyrochlore lattice by reversing two of the
anti-aligned spins. The resulting spin orientation vec-
tors (three vectors of 12 elements) can be seen to span
a space of dimension two which contains the above men-
tioned coplanar states. For our analysis of bulk magnons
we work with the coplanar ground state with the spins
in the y − z plane. In the slab geometry this configura-
tion with deviations in the spin orientations as one moves
from from the bulk to the surface (determined by numeri-
cal optimization) yields a classical ground state for all the
slab geometries considered. Fig. 5 shows the salient fea-
tures of the magnon spectrum in this phase. The magnon
spectrum for this phase is gapless. For a given value of
D as K is made positive we first observe an almost four
times degenerate spectrum at the X point which evolves
into a triply degenerate point along one of the Γ−X lines
in the 3D Brillouin zone. The upper three bands are de-
generate at this triply degenerate point. As the value of
K increases this triply degenerate point travels towards
the Γ point. Thus we have a triple point at a finite q-
vector along the ΓX path in the Brillouin zone with a
partner triple point at the inverted point and both these
points are connected by a nodal line as in the case with
direct DMI. Which of the three ΓX lines gets chosen for
the nodal line depends on which of the coplanar ground
states one evaluates the spectrum with. Fig. 5 (A) il-
lustrates what we have described above. In Fig. 5 (B)
we depict the pattern of non-reciprocity of the magnon
spectrum in this phase. We note that unlike in the AIAO
phase, the region around the nodal line in the SBZ of the
[111] slab does have non-reciprocal spectrum. The [110]
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FIG. 5: A. Degeneracies of bulk bands in the coplanar phase for J = 1.0, D = −0.3,K = 0.3. Points indicated denote

degenerate q vectors for the lowest two bands (left), the second and third bands (middle) and the top two bands (right). B.

Rq = 2×
∑

α|ωqα − ω−qα| for the [111] and [110] slab geometries. The [100] geometry spectrum (not shown) is reciprocal

over the whole zone. C. The magnon spectrum in the slab geometry in the coplanar phase for D = −0.3,K = 0.3. The

spectra from left to right are for the [111], [100] and [110] slabs respectively. The data shown is for 60 layers.

slab indicates a pattern of non-reciprocity in almost the
entire zone. Fig. 5 (C) depicts the edge state structure in
this phase for a system of 60 layers in all the three geome-
tries. We note for the [111] geometry (Fig. 5 (C) (left))
a clear non-dispersive magnon mode around ωq ≈ 2.03
which is on the projection of the nodal line on which the
third and fourth band are degenerate. This mode is dis-
tinct from the other non-dispersive bulk magnon modes
also visible in the plot. Such non-dispersive modes are
considered to be characteristic features of nodal lines in
fermionic bulk band structures under suitable conditions
[28]. We also note the presence of several point degen-
eracies in Fig. 5 (C) with edge modes traversing between
them. These point degeneracies do not appear in Fig. 5
(A) because that figure depicts the wave vectors with the
minimum gap for a system size of 100 × 100 × 100 unit
cells and hence an exact degeneracy if present, is depicted
even though the same two bands might also be degener-
ate in the thermodynamic limit at isolated points which
at finite lattice sizes have a very small but finite gap. We
note that this occurrence of multiple point degeneracies
is also a feature of the J > 0 model with indirect DMI
but with K < 0. For that combination of parameters
the system is again in a splay phase. However, unlike
the ferromagnetic splay phase discussed in Section. III
the common ferromagnetic component is much smaller in
magnitude than the transverse antiferromagnetic compo-
nents. This phase also has point degeneracies along the
ΓX path. Thus the spin-ice anisotropy on changing from

negative to positive values drives a transition from the
antiferromagnetic splay phase to the coplanar phase dis-
cussed above. Since we have discussed point degeneracies
and splay phases in Section. III, in the interest of brevity,
we have not presented the more involved band structures
of the antiferromagnetic splay phase in the slab geom-
etry. Thus, as noted above, the topological structure
of the phases with indirect DMI and antiferromagnetic
exchange has even richer nature than what we have dis-
cussed here which needs to be investigated in detail. As
in the case of ferromagnetic exchange the broad details
mentioned for specific D,K values remain valid for the
parameter ranges that we have investigated.

V. DISCUSSION

The interplay of Heisenberg exchange, Dzyaloshinskii-
Moriya interaction and the spin-ice anisotropy on the py-
rochlore lattice results in several kinds of ordered states.
We have presented here a detailed analysis of the spin
wave spectrum associated with several of those ordered
states for the three commonly studied slab geometries
of the lattice. Our principal motivation was to study the
edge spectra in light of topologically non-trivial point de-
generacies and nodal lines in the bulk spectra. The py-
rochlore lattice has been a very rich source of topological
magnonic phases because of its very natural tendency,
thanks to anisotropic terms like the DMI and the spin-
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ice term, to host non-collinear ordered states which give
rise to spin wave dynamical matrices with the required
properties. There are several directions of study starting
from our analysis which are immediately relevant. At the
level of linear spin wave theory it would be important to
understand the effects of magnetic fields oriented along
different directions relative to a particular slab geome-
try. In fact, the initial measurements of the thermal Hall
coefficient for this lattice were indeed carried out with
fields oriented along the directions studied in this work
[5]. Thus the study of the field dependence and the anal-
ysis of the thermal Hall physics in this class of models
might legitimately be considered to be the next order of
business. Finally, for any conclusions drawn on the ba-
sis of linear spin wave theory, one needs to confront the
question of the effects of magnon-magnon interactions.
The analyses along these lines promise to be productive
avenues for forthcoming work on this interesting class of
systems.

Appendix A

We provide in this Appendix details of our notation
used to present spin wave analysis and related data in
the main text. This Appendix and Appendix B are
statements of all our conventions to enable the reader
to reproduce the expressions and data sets presented in
the text. Though the data presented in this paper is for
the pyrochlore lattice what we say below is stated in
general terms and is true for all systems which satisfy
the specified broad conditions.

We consider a generally defined Hamiltonian that is
bilinear in spin operators defined on a Bravais lattice
where every Bravais lattice site is occupied by a certain
number of sublattices:

H =
∑
iα, jβ
λ,µ

Jiα;jβ(λ, µ) Sλiα S
µ
jβ (A1)

Here i, j denote the Bravais lattice site indices, α, β
denote the sublattice indices and λ, µ denote Cartesian
components of the corresponding spin operators. We
assume periodic boundary conditions in all the primitive
lattice vector directions of the Bravais lattice. The sums
in Eq. A1 are all unrestricted. Any double counting re-
sulting from the same is to be accounted for by choosing

the values of the coupling constants Jiα;jβ(λ, µ) to be
half of the actual values. We note here that (iα) = (jβ)
is allowed, and hence the Hamiltonian can accommodate
single site anisotropy terms. Translation invariance is
assumed and hence Jiα;jβ(λ, µ) = Jiα+R;jβ+R(λ, µ)
where R is any Bravais lattice vector.

Hermiticity of the Hamiltonian demands:

Jjβ;iα(µ, λ) = [Jiα;jβ(λ, µ)]
∗

(A2)

The classical ground state about which we develop
spin wave theory is assumed to be a state with the trans-
lational invariance of the underlying Bravais lattice.
Hence every sublattice spin has a specific orientation
which is the same for all the Bravais lattice sites. Many
commonly occurring periodic states on Bravais lattices
can be represented in this way and also of course
non-Bravais lattices like the honeycomb, Kagome and
the pyrochlore lattices.

We specify the orientation of each sublattice spin
α using two angles (θα, φα), using standard spheri-
cal polar coordinates notation. We define the lo-
cal orthogonal right handed axes for each sublattice:

êmα ,
(
ê1
α, ê2

α, ê3
α

)
=
(
θ̂α, φ̂α, r̂α

)
. Thus ê3

α points

along the direction of the sublattice spin in the clas-
sical ordered state. The vector operator of each

spin is given by: Siα =
∑
λ

Sλiα êλ =
∑
m

Smiα êmα where

êλ ∈ (x̂, ŷ, ẑ). Using Sλiα = Siα · êλ in Eq. A1 we ar-
rive at:

H =
∑
iα,jβ
m, n

Dmniα;jβ Smiα Snjβ (A3)

where m,n ∈ [1, 2, 3] and

Dmniα; jβ =
∑
λ,µ

Jiα;jβ(λ, µ) (êmα · êλ)
(
ênβ · êµ

)
Eq. A2 implies

Dmnjβ; iα =
[
Dnmiα; jβ

]∗
(A4)

We express the Hamiltonian in terms of the ladder oper-
ators S+

iα = S1
iα + iS2

iα = (S−iα)† :

H =
∑
iα, jβ

[
J33
iα;jβS

3
iαS

3
jβ + J++

iα;jβS
+
iαS

+
jβ + J−−iα;jβS

−
iαS
−
jβ + J+−

iα;jβS
+
iαS
−
jβ + J−+

iα;jβS
−
iαS

+
jβ

]
+
∑
iα, jβ

[
J+3
iα;jβS

+
iαS

3
jβ + J3+

iα;jβS
3
iαS

+
jβ + J−3

iα;jβS
−
iαS

3
jβ + J3−

iα;jβS
3
iαS
−
jβ

]
(A5)
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where the different coefficients are:

J±±iα;jβ =
1

4

[
D11
iα;jβ ∓ iD12

iα;jβ ∓ iD21
iα;jβ −D22

iα;jβ

]
; J±∓iα;jβ = 1

4

[
D11
iα;jβ ± iD12

iα;jβ ∓ iD21
iα;jβ +D22

iα;jβ

]
;

J33
iα;jβ = D33

iα;jβ ; J±3
iα;jβ =

1

2

[
D13
iα;jβ ∓ iD23

iα;jβ

]
; J3±

iα;jβ = 1
2

[
D31
iα;jβ ∓ iD32

iα;jβ

]
; (A6)

We introduce Holstein-Primakoff bosonic opera-

tors

(
S3
iα = S − b†iαbiα, S

+
iα =

√
2S − b†iαbiα biα

)
in the

usual manner and evaluate the effective bosonic Hamil-
tonian and restrict ourselves to second order terms in the
bosonic operators. Minimization of the energy in Eq. A5
in the classical limit and demanding that the minimizing
spin orientations be along ê3

α result in all terms that are
linear in the bosonic operators being zero.

We now express the Hamiltonian in Fourier space. Our
conventions for Fourier transforms of operators and vari-
ous coupling constants appearing in the Hamiltonian are
the following:

Ôqα = 1√
N

∑
i

Ôiα exp(−iq ·Ri)

T̃αβ(q) =
∑

∆αβ

T (∆αβ) exp [−iq ·∆αβ ] (A7)

Here, N =
∏
i

Ni is the number of Bravais lattice sites

(Ni sites in each primitive lattice direction) and q ∈∑
i

mi
Ni

Ki, mi ∈ [0, Ni − 1], which are all in (or can be

brought using lattice translations into) the first Brillouin
zone. Oiα is any operator associated with the site (iα).
T (∆αβ) can be any coupling constant appearing in Eq.
A6 and ∆αβ is the Bravais lattice vector Rj −Ri, where
we have used the assumed translation invariance to drop
individual indices.

Using Eqs. A7, the assumption of periodic boundary
conditions and standard Fourier identities, the Hamilto-
nian (Eq. A5) has the following form in Fourier space
:

H = E0+
∑
q

′ [
(b†q)T (b−q)T

] [ Aq Bq
B†q AT−q

] [
bq

b†−q

]
(A8)

where,

E0 = NS(S + 1)
∑
αβ

J̃33
αβ(0) + 2S

∑
q,α

′
ηq

[
J̃+−
αα (q)− J̃−+

αα (q)
]

[Aq]αβ =− ηqS
∑
β′

[
J̃33
αβ′(0) + J̃33

β′α(0)
]
δαβ + 2S ηq

[
J̃+−
βα (q) + J̃−+

αβ (−q)
]

[Bq]αβ = 2S ηq

[
J̃−−αβ (−q) + J̃−−βα (q)

]
(A9)

The matrix in Eq. A8 is of order 2×nsub where nsub is
the number of sublattices. bq and b†q are column vectors

with entries {bqα} and {b†qα} respectively. The symbol∑
q

′
indicates that the sum is taken over all distinct pairs

(q,−q). ηq is 1
2 for those vectors in the Brillouin zone

for which q and −q differ by a reciprocal lattice vec-
tor and 1 otherwise. It is straightforward to show using
Eq A4 and its implications for lattice Fourier transforms
that Aq is Hermitian and hence the matrix in Eq. A8 is
Hermitian. We rewrite the Hamiltonian in terms of new

bosonic operators

[
fq
f†−q

]
= Γq

[
bq

b†−q

]
:

H = Ezero−point + S
∑
q,α

[
ωqαf

†
qαfqα

]
Ezero−point = E0 + S

∑
q,α

′
ηq ω−qα

Here Γq is a transformation matrix from the old to
the new bosonic operators, Ezero−point is the zero-point
energy, and ωqα are the magnon frequencies. The prob-
lem of diagonalisation of a Hamiltonian of the form in
Eq. A8 by constructing the required transformation ma-
trix Γq was considered in detail in [21] and we follow the
method outlined there.

Appendix B: Lattice vectors and axes conventions
for slab geometries

We present here the conventions used to calculate
the spin wave spectra in the slab geometry of the lat-
tice depicted in the main text. Evaluations of the
magnon spectra in the slab geometry require the spec-
ification of two primitive lattice vectors to define the
effective two dimensional Brillouin zone and a vector
to specify how the 2D layers are stacked to build the
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FIG. B.1: The bulk Brillouin zone and the surface Brillouin zones for the [111], [100] and the [110] slab geometries. The

notation and locations of high symmetry points used to plot or describe band structures in the main text are indicated.

full three dimensional lattice. The primitive vectors of
the three dimensional lattice are the FCC basis vectors:
ai ∈

[
( 1

2 ,
1
2 , 0), (0, 1

2 ,
1
2 ), ( 1

2 , 0,
1
2 )
]
, where the side length

of the cubic unit cell is set to 1. For the three different
slab geometries used in this work the effective 2D prim-

itive vectors aeff1 ,aeff2 and the stacking vectors aS are
the following:

[111] : aeff1 = a1 − a3, aeff2 = a2 − a3

aS = a1

[100] : aeff1 = a2, aeff2 = a3 − a1

aS = a1

[110] : aeff1 = −a1 + a2 + a3, aeff2 = −a2 + a3

aS = a3 (B1)

In all the figures in the text depicting data for the slab
geometry we use a set of rotated axes to denote the high
symmetry points. For all the slab geometries the new

x-axis is along aeff1 and the new z-axis, is along the ter-
mination direction. For any slab geometry we truncate
the lattice along the termination direction without any
further deletion of sites at the end. Thus for Nl layers we
have 4×Nl bands in each case. The bulk Brillouin zone
and the three surface Brillouin zones with the high sym-

metry points mentioned in the main text are presented
for reference in Fig. B.1.
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