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Local density of states and scattering rates across the many-body localization transition
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Characterizing the many-body localization (MBL) transition in strongly disordered and interacting quantum
systems is an important issue in the field of condensed matter physics. We study the single-particle Green’s
functions for a disordered interacting system in one dimension using exact diagnonalization in the infinite
temperature limit and provide strong evidence that single-particle excitations carry signatures of delocalization
to MBL transition. In the delocalized phase, the typical values of the local density of states and the scattering
rate are finite while in the MBL phase, the typical values for both the quantities become vanishingly small.
The probability distribution functions of the local density of states and the scattering rate are broad log-normal
distributions in the delocalized phase while the distributions become very narrow and sharply peaked close to
zero in the MBL phase. We also study the eigenstate Green’s function for all the many-body eigenstates and
demonstrate that both, the energy-resolved typical scattering rate and the typical local density of states, can track
the many-body mobility edges.
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The physics of Anderson localization [1] in noninteract-
ing disordered quantum systems has been a cornerstone of
condensed matter theory. Turning on interactions in these
disordered systems results in the many-body localized (MBL)
phase where the system lacks transport [2–7] up to a finite
temperature. In the MBL phase, the system ceases to act
as its own bath due to its nonergodic nature and hence an
isolated quantum system in the MBL phase cannot thermalize
[6,7]. Thus, the lack of ergodicity which is generally iden-
tified using the statistics of level spacing ratios [8–10] and
the violation of eigenstate thermalization hypothesis [11–13],
is among the crucial characteristics of the MBL phase. The
lack of ergodicity is also reflected in quantum quench stud-
ies where the system in the MBL phase shows a strong
memory of the initial state. This has made the time evo-
lution of the density imbalance a popular tool to analyze
the MBL phase both theoretically [14–20] and experimen-
tally [21]. The MBL phase has also been shown to have
local integrals of motion [22] which are exponentially lo-
calized operators which commute with each other and the
Hamiltonian.

The delocalization to localization transition is also tracked
using the statistics of eigenfunctions [5,23–26], scaling of
subsystem entanglement entropy [5,10,27–32], and extremal
statistics of entanglement eigenvalues, as recently proposed
[33]. Since the MBL transition is a dynamical transition that
involves many higher excited states, all the analysis of eigen-
function statistics or the entanglement entropy is done for the
entire many-body spectrum and not only for the ground state.
Dynamical quantities such as the return probability, which
gives the probability with which a quantum particle comes
back to its initial position at a later time [18,32,34–38], time
dependent density-density correlation functions [15,39–42],

and low-frequency conductivity [15,36,43–45] calculated in
the infinite temperature limit have also been useful to identify
the delocalized and the MBL phase.

In this work we study the single-particle excitations
through the analysis of single-particle Green’s function calcu-
lated for many-body eigenstates in the middle of the spectrum
and in the infinite temperature limit. We demonstrate that the
delocalization to MBL transition can be tracked using the
typical values of the local density of states (LDOS) of single-
particle excitations and the single-particle scattering rates. To
the best of our knowledge, single-particle excitations have
not been explored in the context of many-body localization
though recently there have been works on the evaluation of
the propagator in the Fock space by mapping the many-body
interacting Hamiltonian of the many-body localization prob-
lem to an effective noninteracting Anderson model [46,47].
Here, we focus on the single-particle Green’s function in
real space and show that the typical value of the single-
particle LDOS and scattering rate is finite in the delocalized
phase where single-particle excitations can propagate over all
the allowed many-body eigenstates while in the MBL phase
the typical values of the single-particle LDOS and the scat-
tering rates are vanishingly small. The probability distribution
of the LDOS and the scattering rate in the delocalized phase
is very well approximated by a log-normal distribution while
it becomes a very narrow distribution in the MBL phase. The
transition point obtained from this analysis is consistent with
the one obtained from the statistics of level spacing ratios. We
further analyzed the Green’s functions for all the many-body
eigenstates which carry signatures of the many-body mobility
edges that are broadly consistent with the location of the
mobility edges obtained from the energy-resolved statistics of
level spacing ratios.
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There have been earlier works on the single-particle LDOS
in the ground state of disordered interacting systems (with
spinful fermions) using various versions of dynamical mean-
field theory [48] as well as other approaches [49] for the
d � 2 Anderson-Hubbard model. Most of these studies have
focused on the single-particle Green’s function at T = 0 in the
thermodynamic limit treating interactions perturbatively and
disorder exactly. They show a transition from single-particle
Anderson localization to a Mott insulator via an intermedi-
ate metallic phase as the interactions strength is increased
for a fixed disorder strength. In this work, we analyze the
single-particle Green’s functions in the infinite temperature
limit of a finite-size system using exact diagonalization. For
a one-dimensional model of spinless fermions, treating both
interactions and disorder exactly, we calculate the eigenstate
Green’s function and the self-energy for all the many-body
eigenstates. Typical values of the LDOS and the scattering
rates calculated for the many-body eigenstates in the middle
of the spectrum as well as ensemble averaged over the entire
spectrum carry clear signatures of the MBL transition. Since
many-body states in the middle of the spectrum get localized
in the end as the disorder strength increases, our analysis
captures salient features of the MBL transition, which would
be missed if one restricts the analysis only to the ground state.

To be specific, we study the model often used to analyze
the MBL transition, namely, the one-dimensional model of
spinless fermions in the presence of random disorder and
nearest-neighbor repulsion. The Hamiltonian of the model
studied is

H = −t
∑

i

[c†
i ci+1 + H.c.] +

∑

i

εini + V
∑

i

nini+1 (1)

with periodic boundary conditions. Here, the on-site energy
εi ∈ [−W/t,W/t] is uniformly distributed, with W as the dis-
order strength, V is fixed to t (= 1) in the entire analysis, and
the system is half-filled. We solve the model using exact diag-
onalization, for several system sizes from L = 12 to L = 20,
to obtain the full set of energy eigenvalues En (for all system
sizes) and eigenfunctions |�n〉 (until L = 18). The model in
Eq. (1), which can also be mapped to a model of interacting
spin-1/2 particles by the Jordan-Wigner transformation [50],
has been extensively studied in the context of many-body
localization and a transition from the delocalized phase to
the MBL phase is seen as the disorder strength W increases
[10]. However, to the best of our knowledge, the analysis of
the single-particle excitations, their LDOS, and the scattering
rate for this model in the infinite temperature limit to look for
signatures of many-body localization has not been attempted
before and this is the main focus of our work.

The Green’s function in the nth eigenstate is defined as
Gn(i, j, t ) = −i�(t )〈�n|{ci(t ), c†

j (0)}|�n〉 where i, j are lat-
tice site indices. In the Lehmann representation, one can write
the Fourier transform of Gn(i, i, t ) as

Gn(i, i, ω) =
∑

m

|〈�m|c†
i |�n〉|2

ω + iη − Em + En
+ |〈�m|ci|�n〉|2

ω + iη + Em − En
.

(2)
Here if |�n〉 is the nth eigenstate of the Hamiltonian in
Eq. (1) for Ne particles in the chain, states |�m〉 used in
the first (second) terms in Eq. (2) are obtained from the

diagonalization of Ne + 1 (Ne − 1) particle systems. η is a
positive infinitesimal and is set to 10−2 in our simulations
to decide a finite broadening such that a sufficient number
of eigenstates fall in a bin of width η. The local density of
states is defined as ρn(i, ω) = (− 1

π
)Im[Gn(i, i, ω)] and the

self-energy matrix is obtained from the generalized Dyson
equation �n(ω) ≡ G−1

0 (ω) − G−1
n (ω) for the nth eigenstate.

Here, G0(ω) is the noninteracting Green’s function matrix
of the disordered system in Eq. (1). The scattering rate is
identified as 	n(i, ω) = −Im[
n(i, i, ω)].

In this work, we will mainly focus on the Green’s function
calculated for eigenstates in the middle of the many-body
spectrum to study the MBL transition. This is because many-
body density of states of Eq. (1) is sharply peaked in the
middle of the spectrum for a sufficiently large system, and
hence an infinite temperature limit, which basically gives
the average over the entire spectrum, will have a dominant
contribution from states in the middle of the spectrum. At
the end, we also present results obtained by averaging over
the entire many-body spectrum, which gives an exact infinite
temperature limit of the Green’s function and the scatter-
ing rates. Furthermore, we compare these results with the
behavior of a commonly used diagnostic of the transition,
namely, the statistical behavior of level spacing ratios rn =
min(δn,δn+1 )
max(δn,δn+1 ) , where δn = En+1 − En.

The typical values for LDOS and scattering rates are
obtained by calculating the geometric average over all the
lattice sites and independent disorder realizations, e.g., the
typical value of the LDOS for the nth eigenstate is given by
ρtyp(n, ω) = [

∏
Cα

∏L
i=1 ρi(n, ω)]

1/CL
, where C is the num-

ber of independent disorder configurations and Cα denotes a
particular configuration. The definition for the typical scat-
tering rate 	typ(n, ω) is completely analogous. We obtain the
disorder-averaged values by averaging over a large number of
independent disorder configurations, the details of which are
given in the Supplemental Material (SM) [51].

Figure 1 depicts a comparison of these quantities as
a function of the disorder strength in the middle of the
many-body energy spectrum. The transition from ergodic to
nonergodic behavior is clearly seen in the disorder-averaged
level spacing ratio rn as the transition from Wigner-Dysonian
(WD) to Poissonian statistics (PS). For W < Wc ∼ 6.0t ,
as expected, the disorder-averaged rn increases with the
system size approaching the average value for the WD
distribution (≈0.5295) while for W > Wc, rn decreases
as the system size increases and approaches the average
value for the PS (≈0.3863). The second and third panels
of Fig. 1 show the most important results of our work,
namely, the ratio of the typical to the average value for
the LDOS ρtyp(ω = 0)/ρavg(ω = 0) and the scattering rate
	typ(ω = 0)/	avg(ω = 0) calculated at the middle of the
many-body spectrum and for ω = 0. In the delocalized phase
for very weak disorder, the typical value is of the order of
the average value, both for the local DOS and the scattering
rate. As the disorder strength increases, while still being less
than Wc, the ratio of the typical to the average value increases
with the system size. In marked contrast to this, in the MBL
phase for W > Wc, the typical value of the local DOS and the
scattering rate becomes much smaller than the corresponding
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FIG. 1. First panel: The disorder-averaged level spacing ratio as a function of disorder strength W for various system sizes. Delocalization to
MBL transition occurs at W ∼ 6.0t . Second panel: the ratio of the typical to average local DOS ρtyp(ω = 0)/ρavg(ω = 0) at ω = 0, as a function
of the disorder strength. The ratio is of order one for W � Wc and increases with L. For W > Wc, the ratio is vanishingly small and does not
show any system size dependence. A similar trend is seen in the ratio of typical to average value of the scattering rate 	typ(ω = 0)/	avg(ω = 0).
All quantities are computed for states in the middle of the eigenspectrum for a rescaled energy bin E ∈ [0.495, 0.505].

average values such that the ratio of typical to average values
for both the quantities show a clear approach to almost zero
without any significant dependence on the system size.

To understand this, let us consider creating a particle-hole
pair on top of a many-body eigenstate |�n〉. The resulting
many-body state can be written as a linear combination of
various many-body eigenstates. If |�n〉 is a localized eigen-
state, the number of eigenstates contributing to the excited
state is also of measure zero. Hence, the excitation cannot
propagate over all the many-body eigenstates allowed by the
energy conservation such that 〈�m|c†

i |�n〉 and 〈�m|ci|�n〉
vanish. Thus the typical LDOS [as obtained from Eq. (2)]
for low-energy single-particle excitations is vanishingly small
for many-body localized states. On the other hand, if |�n〉
is an extended state, the excited state obtained by creating a
particle-hole pair on it will get contributions from a significant
fraction of many-body eigenstates making the typical LDOS
finite in the delocalized phase. Note that the average value of
LDOS remains finite even in the MBL phase due to rare region
effects which make the distribution broad and asymmetric
(as shown below) though the average value also decreases as
the disorder strength increases. The quasiparticle relaxation
rate is governed by the typical value of the imaginary part of
the self-energy 	 which is of the order of broadening η in
the MBL phase while it is finite in the delocalized phase.

There are some common features in the behavior of the
infinite temperature LDOS for the MBL system and the LDOS
of the noninteracting Anderson localized systems in higher
dimensions [52–64]. In both cases the typical LDOS acts as
the order parameter across the localization transition rather
then the average LDOS. This is simply because the physical
quantities in a disordered system are broadly distributed and
the average values are not characterisitc for the distributions
with long tails. But there are crucial differences in the physics
of interacting and the corresponding noninteracting system.
In noninteracting disordered systems, the LDOS is simply
ρ0(ω) = ∑

n |�0
n |2δ(ω − En) where |�0

n 〉 is the single-particle
wave function. In the strongly localized phase of the Anderson
transition, the single-particle wave function is exponentially
suppressed at sites away from the localized site which results
in vanishingly small values of the typical LDOS [52–54].

However, in the interacting system, the LDOS of the single-
particle excitations is a nontrivial function of many-body wave
functions [see Eq. (2)], which are most naturally localized
or extended in the Fock space. Hence, for the noninteracting
problem LDOS follows the scaling of the inverse participation
ratio [65] but the LDOS for the MBL system does not in gen-
eral follow the scaling of the many-body wave functions. For
V = 0, there are no low-energy single-particle excitations that
can propagate in the Fock space for any strength of disorder
in one dimension for the model in Eq. (1). The presence of
finite interactions helps in creating propagating single-particle
excitations first in the middle of the many-body spectrum and
then in the entire spectrum as the interaction strength V/W
increases.

It is instructive to investigate the complete probability
distribution of the LDOS and the scattering rate rather than
just looking at the typical and the average values. In Fig. 2
we have shown the probability distribution functions of ρi =
ρn(i, ω = 0) and the scattering rate 	i = 	n(i, ω = 0) for
eigenstates with En in the middle of the many-body spectrum.
For weak disorder, both the quantities have broad distribu-
tions with the arithmetic mean and the typical value being
close to the most probable value of the distribution. Fits of
our numerical data (shown in the figure as solid lines) re-
veal that the distribution functions are close to a log-normal
distribution for both the quantities in the delocalized phase.
It is interesting to note that near the localization transition
the (2 + ε)-dimensional Anderson model is known to have
log-normal distribution of LDOS [58]. Though for the nonin-
teracting Anderson localization, the log-normal distributions
are associated with multifractality of critical wave functions
and the LDOS [58], for the interacting system even deep in-
side the delocalized phase we find probability distributions to
be close to log-normal, where the eigenfunctions are extended
in the conventional sense.

As the disorder strength increases such that W < Wc, the
peak of the distribution shifts towards lower values and a long
tail develops which is induced due to enhanced rare region
effects. As W increases further beyond Wc, more weight gets
transferred to extremely low values of both the LDOS and
the scattering rates and the width of the distribution reduces
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FIG. 2. Probability distribution functions of the LDOS and the scattering rate at ω = 0 for disorder strengths W = 2, 3, 5, 8 and L = 18.
These probability densities have been calculated in the middle of the spectrum for a rescaled energy bin E ∈ [0.495, 0.505].

significantly. Thus in the strong MBL phase the distribution
is almost a delta distribution and the typical value vanishes
but the arithmetic average remains finite. This trend of the
probability distribution of the scattering rates is qualitatively
consistent with the analysis by Basko et al. [2]. Though
we have primarily focused on the properties of low-energy
excitations, that is, ω ∼ 0 behavior of the LDOS and the
scattering rates, we have also investigated the higher energy
single-particle excitations through finite frequency behavior
of the typical LDOS ρtyp(ω) and the typical scattering rate
	typ(ω) (shown in Fig. 3 in the SM [51]). More or less the
same features as the zero-frequency case are seen in the LDOS

and the self-energy for finite ω as well. This is clear from the
fact that at all ω within the band width, ρtyp(ω) as well as
	typ(ω) decreases as the disorder strength increases.

So far we have presented results for various physical quan-
tities calculated in the middle of the many-body spectrum. In
order to see whether the LDOS and the scattering rate carry
signatures of a transition across the many-body spectrum and
particularly whether one can identify many-body mobility
edges with these quantities, we analyzed the single-particle
Green’s functions in the entire many-body spectrum. Figure 3
shows the typical value of the LDOS ρtyp(E , ω = 0) and
scattering rate 	typ(E , ω = 0) vs the rescaled energy E . As the

FIG. 3. The typical LDOS ρtyp(E , ω = 0) and typical scattering rate 	typ(E , ω = 0) vs the rescaled eigenenergy E for three disorder
strengths and various system sizes. Typical value of the scattering rate first vanishes for the eigenstates at the edges of the spectrum and a much
larger disorder strength is required to make it vanishingly small for the states in the middle of the spectrum. A similar picture is depicted in
the left panel which shows the typical LDOS vs E , and both of these are consistent with the disorder-averaged energy-resolved level spacing
ratios shown in the SM. The topmost curves are for W = 2t and lower sets are higher disorder values 5t and 8t , respectively.
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disorder strength increases, first the typical value of the LDOS
and the scattering rate at the edges of the spectrum vanishes
and it requires much stronger disorder strength to make the
quantities at the middle of the spectrum vanishingly small.
For W > Wc, the typical LDOS as well as the scattering rate is
vanishingly small over the entire many-body eigenspectrum.
This is qualitatively consistent with what is observed in the
disorder-averaged energy-resolved level spacing ratios shown
in the SM [51]. A careful look at Fig. 3 shows that for the
localized states the typical value of the scattering rate is less
than the broadening η. In contrast to this, for the delocalized
states in the middle of the spectrum the typical LDOS and
the scattering rate increases with the system size for weak
disorder and 	 	 η. In terms of the ratio of the typical to
average values of the LDOS and the scattering rate, shown
in the SM [51], we see that the ratio is of the order one for
states in the middle of the spectrum and decreases for states
on the edges of the spectrum, giving a picture consistent with
the mobility edges obtained from level spacing ratios. Finally,
we present results obtained by ensemble average over the
entire eigenspectrum, which is equivalent to an exact infinite
temperature calculation. As shown in the SM [51], the behav-
ior of the typical values of the ensemble-averaged LDOS and
the scattering rate is completely analogous to the correspond-
ing midspectrum quantities.

In summary, we studied the single-particle Green’s func-
tion in the infinite temperature limit across the delocalization
to MBL transition in a one-dimensional system of spinless
fermions. We demonstrated that single-particle excitations
carry clear signatures of MBL to delocalization transition. In

the delocalized phase, where the single-particle excitations
can easily propagate over the entire Fock space, the scatter-
ing rate and the LDOS have broad log-normal distributions
with a finite most probable value. In contrast, deep inside the
localized phase, where it is not possible for a single-particle
excitation to propagate over all the many-body eigenstates
within the allowed energy window, both the scattering rate
and the LDOS have delta-function-like distributions peaked
around zero. The MBL transition point obtained from the
analysis of the single-particle Green’s functions and scatter-
ing rate is close to the one obtained from the level spacing
statistics. We further showed how many-body mobility edges
can be identified from energy-resolved typical scattering rates
and LDOS.

Both the quantities studied in this work can be measured
in experiments directly. Given the recent developments in the
field of optical lattices, it has become possible to measure
single-particle spectral functions in ultracold lattices in
disordered potentials [66]. We very much hope that such
experiments can be extended also for the MBL systems
which will shine light on the LDOS obtainable by integrating
spectral functions in momentum space, and the scattering
rates which determine the width of the spectral functions.
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