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We propose a model which could explain some of the unusual magnetic properties observed for the one-
dimensional helical spin system Coshfacd2NITPhOMe. One of these properties is that the magnetization shows
some plateaus if a magnetic field is applied along the helical axis. The system consists of cobalt ions(which
have easy axes which are tilted at an angleui with respect to the helical axis) and organic radicals alternating
with each other. We consider a model in which the tilt anglesui are allowed to vary withi with period three.
Using the transfer matrix approach, we show that for certain patterns ofui, the model exhibits the magnetiza-
tion plateaus mentioned above. At the ends of the plateaus, we find that the entropy is finite even at very low
temperatures, while the magnetic susceptibility and specific heat also show some interesting features.
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The last several years have witnessed extensive studies of
one-dimensional systems and molecular clusters with a vari-
ety of interesting magnetic properties, both static and
dynamic.1 Very recently, there have been some experimental
studies of a one-dimensional molecular system
Coshfacd2NITPhOMe (to be called CoPhOMe henceforth)
which shows some unusual behavior in the presence of a
time-dependent magnetic field.2,3 The system has a helical
structure, in which cobalt ions(which are effectively spin-
1/2 due to their strong anisotropy) and organic radicals
(which are spin-1/2 and isotropic) alternate, with a repeat
period of three cobalts for every turn of the helix; this is
shown in Fig. 1. Below a certain temperature, the time scale
associated with the variation of the magnetization is found to
become extremely long(leading to a pronounced hysteresis)
if the magnetic field is applied along the helical axis(called
thec axis), but not if the field is in the plane perpendicular to
that axis (called thea-b plane). It is also found that the
magnetization shows some plateaus(which become more
pronounced at lower temperatures) if the magnetic field
points along thec axis, but not if it is in thea-b plane.

In this work, we will consider the second feature men-
tioned above, namely, the appearance of some plateaus with
nontrivial magnetizations when the magnetic field is applied
along thec axis; these plateaus are known to persist when the
magnetic field is cycled, and hence have a static origin.3

Motivated by the magnetization data, we will present a phe-
nomenological model which can qualitatively explain this
feature. Our model is a variation of the one considered in the
earlier studies of this system;2–4 for reasons explained below,
the model presented in those papers is not able to explain the
magnetization plateaus.

We begin by presenting the model introduced for this sys-
tem in the earlier papers.2–4 The organic radicals carry spin-
1/2. The cobalt ions are effectively spin-1/2 objects due to
their strong anisotropy; they have an easy axisei which is
tilted by an angleui with respect to thec axis. Further, the
angle between the projections ofei+1 andei on thea-b plane
is given by 2p /3. (We assume thatei is a unit vector.) If

we identify thec axis with thez axis, the three components
of ei are given by ssinui cos 2psi −1d /3 ,sinui sin 2psi
−1d /3 ,cosuid. Due to the anisotropy, the cobalt spins can be
described classically using Ising variablessi = ±1. The or-
ganic radicals are completely isotropic, and their spins have
to be treated quantum mechanically. The earlier papers as-
sumed the tilt anglesui to be the same for all the cobalts.
However, we will consider a phenomenological model in
which theui vary with i, but with a period of three keeping
the pitch of the helix the same as in the earlier models. For
temperatures and magnetic fields which are much smaller
than the coupling between nearest-neighbor cobalts and radi-
cals, one can compute the thermodynamic properties of the
system using the transfer matrix approach. We will show that
certain patterns of theui allow us to reproduce the observed
magnetization plateaus.

In the ith cobalt-radical pair, let us denote the component
of the cobalt spin along its easy axis bysi, and the spin
operators of the radical byT i (these are given by half the
Pauli matrices). In the presence of a magnetic fieldB, the
Hamiltonian for this system is given by

HCR= o
i
F J

2
siei · sT i + T i−1d − mBB ·S1

2
gCsiei + gRT iDG ,

s1d

wheregC andgR denote the gyromagnetic ratios of the cobalt
and radical spins, respectively, andmB=e" / s2mcd is the
Bohr magneton.(We note thatmB/kB=0.672 K/Tesla.) Fits
to the magnetization data at different temperatures seem to
lead to somewhat different values of the various parameters.
One set of parameters which has been quoted in some of the
papers is as follows:J/kB,400 K (antiferromagnetic in
sign), gC=9, gR=2, and the tilt angleu is in the vicinity of
the angle u0=cos−1s1/Î3d.54.74°;3,4 this is called the
“magic angle” in the context of dipole-dipole interactions.
(Large values of the effectiveg factor given bygJJ are
known to arise in high spin systems when a strong uniaxial
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anisotropy restricts the accessible spin statesJz to ±J at
low temperatures.5,6)

The data which indicates magnetization plateaus lies at a
temperature of about 2 K and a magnetic field of up to 3
Tesla. Since these temperatures and magnetic fields are much
smaller than the value ofJ/kB and J/mB, respectively, we
will begin by making the approximation that each radical
spin is aligned in a direction which is entirely dictated by the
directions of its two neighboring cobalt spins. Namely, we
will assume that the expectation value ofT i is given by

kT il = −
1

2

siei + si+1ei+1

Î2 + 2sisi+1ei ·ei+1

. s2d

Upon substituting this in Eq.(1), we obtain an effective
Hamiltonian defined purely in terms of the cobalt Ising vari-
ablessi,

H1C = o
i
F−

J

4
Î2 + 2sisi+1ei ·ei+1

−
mB

2
B ·eisiSgC −

gR

Î2 + 2sisi+1ei ·ei+1

−
gR

Î2 + 2sisi−1ei ·ei−1
DG . s3d

As mentioned above, the experimental data indicates that
the tilt anglesui are close to the angleu0. If all the ui were
exactly equal to u0, the easy axes of neighboring cobalts
would be perpendicular to each other, i.e., we would have
ei ·ei+1=0. Then the Hamiltonian in Eq.(3) would have no
interactions between neighboring cobalts, and the(sub-
tracted) two-spin correlations,kssi −ksildss j −ks jldl, would
be strictly zero fori Þ j at any temperature.[This is called a
disorder point; it corresponds to the smaller eigenvalue of the
transfer matrix(discussed below) being equal to zero.4,7]

Motivated by the ranges of the various experimental pa-
rameters, let us assume thatdui ;ui −u0 are small numbers
(in radians), so that

ei ·ei+1 . −
1
Î2

sdui + dui+1d s4d

is much less than 1 in magnitude. We also assume that
Jsdui +dui+1d is of the same order as(or larger than) than the
magnitude ofmBuBu. Then Eq.(3) can be approximately writ-
ten, up to a constant, as

H2C = o
i
FJi,i+1sisi+1 −

mB

2
geffB ·ei

0siG ,

Ji,i+1 =
J

8
sdui + dui+1d,

geff = gC − Î2gR, s5d

and

e1
0 = sÎ2/3,0,1/Î3d,

e2
0 = s− 1/Î6,1/Î2,1/Î3d,

e3
0 = s− 1/Î6,− 1/Î2,1/Î3d. s6d

The effective nearest neighbor Ising interactionJi,i+1 in Eq.
(5) is ferromagnetic or antiferromagnetic depending on
whetherdui +dui+1 is negative or positive.

In the earlier papers,2–4 ui had been assumed to take the
same valueu for all i. Then the effective Ising interaction is
given by

Ji,i+1 =
J

4
du. s7d

The thermodynamic properties of this model can be calcu-
lated easily using the transfer matrix method. Ifgeff.0, and
the magnetic field is large compared toJdu (but much
smaller thanJ), then Eq.(5) implies that the magnetization
per cobalt-radical pair will take a value given by

FIG. 1. (Color online) The structure of the molecular chain
CoPhOMe. The cobalt spins are anisotropic with a local axis de-
noted byei which is tilted by an angleui with respect to the helical
axis c. The angle between the projections ofei+1 and ei on thea
-b plane is equal to 2p /3. The organic radical spins are isotropic.
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MS=
mB

6
geff o

i=1

3

uB̂ ·ei
0u,

B̂ =
B

uBu
. s8d

We will henceforth refer toMS as the saturation magnetiza-
tion. [We should emphasize here that this only corresponds
to a partial(ferrimagnetic) saturation of the magnetization,
since each radical points in the direction opposite to the sum
of its two neighboring cobalt spins. If the magnetic field
becomes much larger thanJ/mB, i.e., about 600 Tesla,
then the original Hamiltonian in Eq.(1) implies that the mag-
netization will reach the final saturation value of

smB/6dsgCoiuB̂·ei
0u+3gRd where all the radicals also point in

the same direction. But this kind of field strength is not ex-
perimentally accessible at present; we will therefore not be
interested in this fully saturated state.]

Let us now consider the case of very low temperatures
and a magnetic field applied along thec axis; then all the
cobalt spins experience the same magnetic field strength
B ·ei

0= uBu /Î3. The magnetization will show a plateau atM
=0 if the effective interaction in Eq.(7) is positive(antifer-
romagnetic), but not if it is negative(ferromagnetic). For
large fields, the magnetization will saturate atM =MS
=mBgeff / s2Î3d. We thus see that there is no magnetization
plateau at fractional values ofMS (such asMS/3) regardless
of what the sign ofdu in Eq. (7) is; namely, states with
magnetization equal toMS/3 are not the lowest energy states
for any value of the field.

We therefore require a slightly different model in order to
obtain magnetization plateaus at bothM =0 andM =MS/3 as
the experimental data seems to suggest.3 We considered sev-
eral possible variations of the basic model; these included

(i) dipole-dipole interactions, both between two cobalts
and between two radicals(including interactions between
pairs of sites which are third neighbors, and therefore lie one
above the other on two successive turns of the helix; the
dipole-dipole interaction between two third-neighbor cobalts
vanishes because the orientation of their easy axes with re-
spect to thec axis corresponds to the “magic angle”), and

(ii ) transverse couplings between a cobalt and its neigh-
boring radicals, i.e., couplings between the components of a
cobalt spin which are perpendicular to its easy axis and the
corresponding components of its neighboring radicals.

Based on numerical studies(exact diagonalization of
small systems with up to six cobalt and six radical spins), we
concluded that these two variants do not help to explain the
experimentally observed magnetization plateaus. Finally, we
discovered that the following variation works. We assume
that all the cobalt spins in a single molecular chain do not
have the same angle of tilt with respect to thec axis. We
further assume that the anglesui take three different values
u1, u2, and u3 for three successive cobalts, and that they
repeat periodically thereafter.(This assumption is consistent
with the helical structure of the system which repeats after
every three cobalts.) The periodicity of three makes it plau-
sible that there could be a magnetization plateau atMS/3

(corresponding to a state withsi repeating as 1, 1, −1, i.e., a
↑↑↓ spin alignment). However, it turns out thatu1, u2, andu3
need to satisfy some additional conditions as we will now
discuss.

Since theui’s repeat with period three, the thermodynamic
properties of the system can again be found using the transfer
matrix method. If the number of cobalt-radical pairs is de-
noted byN, and we use periodic boundary conditions(taking
N to be a multiple of 3), then the partition function can be
written as

Z = TrsA1A2A3dN/3, s9d

where the matrix elements of the 232 matricesAi are given
by

sAid11 = expF− bJi,i+1 +
bmBgeff

4
B · sei

0 + ei+1
0 dG ,

sAid12 = expFbJi,i+1 +
bmBgeff

4
B · sei

0 − ei+1
0 dG ,

sAid21 = expFbJi,i+1 +
bmBgeff

4
B · s− ei

0 + ei+1
0 dG ,

sAid22 = expF− bJi,i+1 +
bmBgeff

4
B · s− ei

0 − ei+1
0 dG , s10d

with b=1/skBTd. The magnetization per cobalt-radical pair is
then given by the derivative of lnZ with respect touBu,

M = −
kBT

NZ

dZ

duBu
. s11d

(We must eventually take the limitN→`.)
We should note here that when we actually do the transfer

matrix calculations(on which Figs. 2–7 are based), we have
not used the assumption made in Eqs.(3) and (5) that each
radical spin is aligned in a direction which is determined
only by the neighboring cobalt spins. Rather, we solve for
the two eigenvalues of the Hamiltonian of each radical spin
which is interacting both with its neighboring cobalt spins
and with the applied magnetic field. We then take only the
lower eigenvalue into account when we integrate out that
particular radical spin; the justification for this is that the two
eigenvalues are separated by an energy of orderJ, and the
temperatures of interest are much smaller thanJ/kB.

While considering the magnetization as a function of the
magnetic field, one can think of various possible patterns of
signs and magnitudes of the parametersdu1, du2, and du3.
One pattern which leads to magnetization plateaus at 0 and
MS/3, for a magnetic field applied along thec axis, is given
by the conditions

sid du1 + du2, du1 + du3, du2 + du3 . 0,

sii d du1 ù du2, du3, and 2du1 . du2 + du3. s12d

[Condition (i) in Eqs.(12) corresponds to antiferromagnetic
interactionsJi,i+1 between neighboring cobalt spins.] At zero
temperature, we then find that there is a magnetization pla-
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teau atM =0 if the strength of the field lies in the range
0,B,B1, where

B1 =
Î3

2

du2 + du3

geff

J

mB
, s13d

a plateau atM =MS/3 if the field lies in the range
B1,B,B2, where

B2 =
Î3

4

2du1 + du2 + du3

geff

J

mB
, s14d

and a saturation plateau atM =MS if B.B2. [Note that the
condition 2du1.du2+du3 in Eqs.(12) is needed in order to
have B2.B1; otherwise the intermediate plateau atM
=MS/3 will not exist.] As we raise the temperature, the pla-
teaus will gradually disappear.

In Fig. 2, we show the magnetization as a function of a
magnetic field applied along thec axis, for one particular
choice of the parametersdui which satisfies the conditions in
Eqs.(12), and different temperatures. For the various param-
eters given in the caption of Fig. 2 and using Eqs.(8), (13),
and (14), we find thatB1=1.92 Tesla,B2=4.81 Tesla, and
MS/mB=1.78. The locations of the plateaus in Fig. 2 at the
lowest temperature of 0.5 K are consistent with these num-
bers. We have chosen the parametersdui in such a way that
the locations of the plateaus and their temperature depen-
dences are in rough agreement with the data presented in
Ref. 3; the agreement can be improved by changing the value
of gC, but we will not do that here.

We observe three special points labeled I, II, and III in
Fig. 2 where the curves for different temperatures seem to
cross, particularly at low temperatures. In terms of the mag-

FIG. 2. Magnetization(in units of mB) per
cobalt-radical pair versus the magnetic field(in
Tesla) applied along thec axis, for various tem-
peratures. The crossing points I, II, and III are
discussed in the text.(We have takenJ/kB

=400 K, gC=9, gR=2, du1=du2=2.64°, anddu3

=−1.32°.)

FIG. 3. Magnetic susceptibility(in units of
mB/Tesla) per cobalt-radical pair versus the mag-
netic field(in Tesla) applied along thec axis, for
various temperatures.(J/kB=400 K, gC=9, gR

=2, du1=du2=2.64°, anddu3=−1.32°.)
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netic field (in Tesla) and magnetization(in units of mB), we
find numerically that these crossing points lie at I
=s1.94,0.44d, II= s3.38,0.62d, and III=s5.26,1.00d. We will
now provide an analytical understanding of these points
based on the transfer matrix method in the limit of zero tem-
perature.

In the limit T→0, we find that the matrixA1A2A3 has, up
to some factors which do not affect the entropy, the eigen-
values ±1 for B,B1, 1±Î2 for B=B1, 2 and 0 for
B1,B,B2, 3 and 0 forB=B2, and 1 and 0 forB.B2.
Hence, forB1øBøB2, we find that there is an exponentially
large number of degenerate ground states, giving rise to a
finite entropy per cobalt-radical pair atT=0. In the limit N
→`, the zero temperature entropy(in units ofkB) per cobalt-
radical pair is given by

S

NkB
=

1

3
lnsÎ2 + 1d for B = B1,

=
1

3
ln 2 for B1 , B , B2,

=
1

3
ln 3 for B = B2,

=0 for B , B1 andB . B2. s15d

We should note here that the discussion in the previous
paragraph is valid only for our particular choice of thedui,
with two of them being equalsdu1=du2d and larger than the

FIG. 4. Entropy(in units of kB) per cobalt-
radical pair versus the magnetic field(in Tesla)
applied along thec axis, for various temperatures.
(J/kB=400 K, gC=9, gR=2, du1=du2=2.64°,
anddu3=−1.32°.)

FIG. 5. Specific heat(in units of kB) per
cobalt-radical pair versus the magnetic field(in
Tesla) applied along thec axis, for various tem-
peratures.(J/kB=400 K, gC=9, gR=2, du1=du2

=2.64°, anddu3=−1.32°.)
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third sdu3d. If we had made a more general choice with
du1.du2.du3 [along with condition(i) in Eqs. (12)], the
entropy at zero temperature would be finite only forB=B1
andB=B2; we would then get

S

NkB
=

1

3
lnSÎ5 + 1

2
D for B = B1,

=
1

3
ln 2 for B = B2,

=0 otherwise. s16d

Let us now return to our model withdu1=du2.du3. For
B1øBøB2, the magnetization atT=0 can be obtained by
averaging over all the degenerate ground states. The calcula-
tion is hardest forB=B1; we then find, up to some unimpor-
tant factors, that

A1A2A3 = S1 1

2 1
D , s17d

whose eigenvalues are given by 1±Î2 as mentioned above.
In the thermodynamic limit, we find that the magnetization is
given by

FIG. 6. Magnetization(in units
of mB) per cobalt-radical pair ver-
sus the magnetic field(in Tesla)
applied along six different direc-
tions in thea-b plane, for a tem-
perature of 1 K. (J/kB=400 K,
gC=9, gR=2, du1=du2=2.64°,
anddu3=−1.32°).

FIG. 7. Magnetization(in units of mB) per
cobalt-radical pair versus the magnetic field(in
Tesla) averaged over the six different directions
shown in Fig. 2, for various temperatures.(J/kB

=400 K, gC=9, gR=2, du1=du2=2.64°, anddu3

=−1.32°.)
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M =
MS

3
lim
N→`

1

sÎ2 + 1dN/3
TrS1 1

2 1
DN/3−1S1 0

2 1
D =

MS

3Î2
.

s18d

We thus see that forB=B1=1.92 Tesla,M .0.42(in units of
mB). These analytical values agree well with the numerical
values of the location of the crossing point I mentioned
above.(For B=B1 andB2, we note that the excited states are
separated from the ground states by finite gaps; hence they
do not affect the locations of the crossing points I and III at
very low temperatures.)

For B=B2=4.81 Tesla, the degeneracy of 3N/3 arises be-
cause the Ising spins in each group of three successive co-
balts can independently take the orientations↑↓↑, ↓↑↑ or
↑↑↑; the average magnetization is therefore given by
5MS/9=0.99 which agrees well with the location of the
crossing point III. However, the numerically obtained value
of the magnetic field at this point does not agree so well with
the analytically obtained value.

For B1,B,B2, we can see why there is a degeneracy of
2N/3. In each group of three successive cobalts, the Ising
spinsss1,s2,s3d can take the orientations↑↓↑ or ↓↑↑; dif-
ferent groups of three cobalts can take either of these two
orientations independently of each other. The magnetization
of all these states is given byMS/3=0.59; this roughly
agrees with the location of the crossing point II in Fig. 2. We
will now see why this crossing point occurs at a magnetic
field value of 3.36 Tesla.8 Let us consider the lowest excita-
tions lying above the two degenerate configurations men-
tioned above. There are two kinds of excitations:(i) a cobalt
spin can flip from down to up, i.e., a group of three cobalts
can become↑↑↑, and (ii ) a cobalt spin labeleds3 whose
neighbors are pointing up can flip from up to down, i.e., a
group of six cobalts can change from↓↑↑↑↓↑ to ↓↑↓↑↓↑. The
first kind of excitation costs an energy

E+ =
J

4
sdu1 + 2du2 + du3d − mBgeff

B
Î3

, s19d

and increases the total magnetization bymBgeff /Î3. The sec-
ond kind of excitation costs an energy

E− = −
J

4
sdu1 + du2 + 2du3d + mBgeff

B
Î3

, s20d

and decreases the total magnetization bymBgeff /Î3. The en-
ergy costs of the two excitations are equal at a magnetic field
given by B0=sB1+B2d /2=3.36 Tesla, where we have used
Eqs.(13) and(14). At this value of the magnetic field, and at
very low temperatures, the concentrations of the two kinds of
excitations will be small and equal; hence the magnetization
will lie at its plateau value ofMS/3. This explains why the
different plots in Fig. 2 cross at this value of the magnetic
field and magnetization.

In Fig. 3, we present the magnetic susceptibilityx
=s]M /]BdT as a function of the magnetic field for different
temperatures; these plots are just given by the derivatives of
the plots in Fig. 2. At the lowest temperature of 0.5 K, we

see peaks at the ends of the magnetization plateaus, i.e., at
B=B1 andB=B2. The peaks get washed out with increasing
temperature.

In Fig. 4, we show the entropy versus the magnetic field
for the same values of parameters and same temperatures as
in Fig. 2. We see that at the lowest temperature of 0.5 K, the
entropy has a substantial value in the rangeB1,B,B2, has
peaks atB1 andB2, and is quite small forB,B1 andB.B2;
the values of the entropy atB1 andB2 and on the plateau in
between are in agreement with Eq.(15). As the temperature
is raised, the entropy increases in such a way as to wash out
these features; this is consistent with the disappearance of the
magnetization plateaus in Fig. 2.

Figure 5 shows the specific heatCV=Ts]S/]TdB as a func-
tion of magnetic field at different temperatures. An interest-
ing feature to note is that at the lowest temperature of 0.5 K,
the specific heat vanishes with a parabolic shape at the ends
of magnetization plateaus shown in Fig. 2, i.e., atB=B1 and
B2. This can be understood as follows. IfDE denotes the
energy of a state with respect to the ground state, the contri-
bution of that state to the specific heat is proportional to

CV

kB
, S DE

kBT
D2

e−DE/kBT. s21d

At the lowest temperature and atB=B1 andB2, it turns out
that all the states either haveDE@kBT (hence their contri-
butions to the specific heat are exponentially small and can
be ignored), or DE!kBT. For the latter states, one can show
that DE vanishes nearB=B1 and B2 as smBgeff /Î3duB−B1u
and smBgeff /Î3duB−B2u, respectively. From Eq.(21), we see
that the contributions of these states to the specific heat go as
sB−B1d2/T2 andsB−B2d2/T2, respectively. This explains the
behavior of the specific heat in Fig. 5 nearB=B1 andB2.

In Fig. 6, we show the magnetization versus the magnetic
field applied in thea-b plane for six possible directions(pa-
rameterized by the anglef with respect to the projection of
e1 on that plane), for the same values of parameters used in
Fig. 2, and a temperature of 1 K. The six directions were
chosen with equiangular spacing to cover the full range of
possible directions from 0° to 180°; we recall that the behav-
ior of an Ising model does not change if the sign of the
magnetic field is reversed, i.e., iff→f+180°. (The projec-
tions of the easy axes of the three cobalts on thea-b plane
are given by 0°, 120°, and 240°. Since we have chosendu1
=du2, we also have a symmetry underf→120°−f. This
explains why the plots forf=30° and 90° are identical, as
are the plots forf=0° and 120°.) We see in Fig. 6 that there
is a plateau at intermediate values of the magnetization only
for a magnetic field direction given by 60°; even that plateau
is much weaker than the plateau seen in Fig. 2 at the same
temperature.

Figure 7 shows the magnetization versus the magnetic
field applied in thea-b plane, averaged over the six direc-
tions indicated in Fig. 6, for various temperatures. We see
that there is no discernible plateau at intermediate magneti-
zation even at the lowest temperature of 0.5 K. This may
explain why no plateau is observed experimentally when a
magnetic field is applied in thea-b plane. Since the system

MAGNETIC PROPERTIES OF A HELICAL SPIN CHAIN… PHYSICAL REVIEW B 70, 144404(2004)

144404-7



consists of several molecular chains, and these may happen
to be rotated with respect to each other by various amounts
in the a-b plane, it is possible that the behavior observed
experimentally is an average of the different directions of the
magnetic field in that plane.

Another pattern of signs and magnitudes of the param-
etersdu1, du2, anddu3 which leads to magnetization plateaus
at 0 andMS/3, for a magnetic field applied along thec axis,
is given by the conditions

sid du1 + du2 . 0, du1 + du3 , 0, du2 + du3 , 0,

sii d du2 ù du1, anddu1 + 4du2 + 3du3 . 0. s22d

We will not discuss the details of this case since the analysis
and magnetization plots obtained are similar to the case of
Eqs.(12) considered above.

To summarize, we have presented a model for CoPhOMe
in which the tilt angles of the easy axes of the cobalt spins

with respect to thec axis vary with period three. We have
shown that for certain patterns of these tilt angles, the mag-
netization at low temperatures exhibits plateaus at nontrivial
values if a magnetic field is applied along thec axis, but not
if it is applied in thea-b plane. It would be interesting to
study dynamical effects(arising from the time-dependence
of the magnetic field) for the magnetization; such effects
have been discussed earlier for the model in which all the
anglesui are equal and a magnetic field is applied along the
c axis.3,4
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