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Understanding the nature of the transition from the delocalized to the many-body localized (MBL)
phase is an important unresolved issue. To probe the nature of the MBL transition, we investi-
gate the universal properties of single-particle excitations produced in highly excited many-body
eigenstates of a disordered interacting quantum many-body system. In a class of one-dimensional
spinless fermionic models, we study the finite size scaling of the ratio of typical to average values of
the single-particle local density of states and the scattering rates across the MBL transition. Our
results indicate that the MBL transition in this class of one-dimensional models of spinless fermions
is continuous in nature. The critical exponent ν with which the correlation length ξ diverges at the
transition point Wc, ξ ∼ |W −Wc|−ν , satisfies the Chayes-Chayes-Fisher-Spencer(CCFS) bound
ν ≥ 2/d where d is the physical dimension of the system. The transition point Wc and the critical
exponent ν do not change significantly with the range of interactions between fermions as long as
the hopping is short range.

The role of disorder in quantum many-body systems
has been a major focus of the condensed matter physics
research for several decades. Anderson localization is
a fascinating example of a disorder-driven phenomenon
in which a non-interacting quantum system can become
diffusion-less in the presence of strong enough disor-
der [1]. Almost two decades ago, Anderson localiza-
tion was generalised for the case of interacting quantum
systems [2] which is known as many-body localization
(MBL) [3]. In the MBL phase, a subsystem of an iso-
lated quantum system does not thermalize with the rest
of the system serving as its bath. This is due to the sys-
tem’s non-ergodicity [3–5] and strong memory of the ini-
tial states [6–18]. In the MBL phase even highly excited
states of an isolated system obey area law of entangle-
ment entropy rather than the volume law [5, 19–24]. This
is also reflected in the slow growth of subsystem entan-
glement for the MBL phase compared to the delocalized
phase [18, 25–27]. Systems in the MBL phase have also
been shown to have local integrals of motion [28–30]. Al-
though the MBL phase has been rigorously proved to ex-
ist in strongly disordered 1-dimensional spin chains with
short range interactions [31], broad agreement about the
nature of the transition from the delocalized phase to the
MBL phase has been elusive. We provide strong evidence
in favor of a continuous transition from the delocalized
phase to the MBL phase in this work.

Real-space renormalization group studies predicted
a critical point at the transition from the delocalized
phase to the MBL phase with the correlation length
ξ having a power-law divergence ξ ∼ |W − Wc|−ν
at the transition point Wc with the critical exponent
ν ∼ 3 [32–36] which satisfies the Chayes-Chayes-Fisher-
Spencer(CCFS) bound ν ≥ 2/d where d is the physical

dimension of the system [37, 38]. It was established by
Harris [39] that if ν ≥ 2/d for a clean system undergo-
ing a continuous transition then disorder is irrelevant in
the renormalisation group sense. A more general argu-
ment by CCFS concludes that ν ≥ 2/d holds true for
all systems with quenched random disorder that undergo
a continuous transition including the localization transi-
tion, irrespective of whether there is an analogous tran-
sition in the clean system [37, 38]. In fact, the finite
size scaling of the Anderson localization transition for
the non-interacting model in higher dimensions (d ≥ 3)
has been shown to satisfy this bound for the critical expo-
nent [40–44]. In the analysis of the MBL transition one is-
sue of concern has been that barring a few exceptions [45],
most of the numerical studies which investigated finite
size scaling of quantities like entanglement entropy and
level spacing ratio found the critical exponent ν ∼ 1 vi-
olating the CCFS bound [5, 20, 46, 47]. The violation
of CCFS bound, as well as the disparity between phe-
nomenology and numerical calculations prompted a mod-
ified renormalization group approach [48–50] that pre-
dicted a Kosterlitz-Thouless (KT) like transition. This
approach, which is based on avalanche mechanism of de-
localization to MBL transition [51, 52], has been explored
in some recent numerical studies [53–55]. In short, there
is no agreement on the nature of the delocalization to
MBL transition, so it is critical to identify appropriate
physical observables that can characterize the MBL tran-
sition.

With this motivation, in this work we investigate the
single-particle excitations obtained via infinite tempera-
ture single-particle Green’s function in real space across
the MBL transition. Green’s functions in the Fock space
have been studied in the context of MBL [56–58], how-
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FIG. 1: Panel (a): The ratio of the typical to average local DOS ρtyp(ω = µeff )/ρavg(ω = µeff ) for system sizes

L = 12, 14, 16, 18 plotted as a function of the disorder strength W for α = 1. The ratio is of order one for W �Wc and for

W > Wc, it is vanishingly small. Panel (b): The cost function CX (in Eq. 2) as a function of the critical disorder strength Wc

and the correlation length exponent ν for α = 1. Panel (c): The ratio of the typical to average value of local DOS

ρtyp(ω = µeff )/ρavg(ω = µeff ) plotted as a function of scaled disorder strength (W −Wc)L
1/ν for α = 1. Wc ≈ 7.1, ν ≈ 2.5

correspond to the region of the cost function shown in the middle panel with the minimum value of Cx. The bottom three

panels depict the same quantities for α = 3. The calculations are done in the middle of the energy band for a rescaled energy

bin E ∈ [0.495, 0.505].

ever single-particle Green’s functions in real space have
attracted attention in the analysis of the MBL phase
only recently [59, 60]. We concentrate on the single
particle Green’s functions in real space in this study,
which have been widely utilised to analyse Anderson lo-
calization in non-interacting models [61]. We analyse
the finite size scaling of the corresponding local density
of states (LDOS) and the scattering rates and demon-
strate that the ratio of the typical to average value of
the local density of states as well as the scattering rates
both adhere to the single parameter scaling X[L,W ] ∼
X̄((W −WC)L1/ν) with the critical exponent satisfying
the CCFS inequality for a finite value of Wc. Notably, we
observe a good quality scaling collapse with ν ≥ 2/d for
the ratio of the typical to average value of the LDOS as
well as the scattering rates not only for the system with
nearest neighbour interactions but also for a whole class
of one dimensional models with power-law interactions
of different ranges and nearest neighbour hopping. The

transition occurs nearly at the same value of the critical
disorder Wc for all ranges of interactions studied. Finite
size scaling of eigenlevel spacing ratio, on the other hand,
does not satisfy the CCFS bound of the critical exponent
which is consistent with earlier studies [5, 20, 46, 47].

We study a class of one-dimensional models of spinless
fermions in the presence of random disorder and power-
law interactions. The Hamiltonian of the models studied
is

H = −t
∑

i

[c†i ci+1 + h.c.] +
∑

i

εini +
∑

ij

Vijninj (1)

with periodic boundary conditions. Here, the onsite po-
tential εi ∈ [−W/t,W/t] (uniformly distributed) with W
as the disorder strength. We study power-law interac-
tions with Vij = V

|ri−rj |α , where α fixes the range of in-

teractions. We have considered α = 1, 2 and 3 in this
study. We also consider the limit of the very short range
interactions by studying the case of nearest neighbour
interactions with Vi,i+1 = V and Vij = 0 for |j − i| > 1.



3

−20 −10 0 10

(W − 7.3)L1/2.2

0.0

0.2

0.4

0.6

0.8

ρ
ty
p
/ρ
a
v
g

NN

(a)

L = 12

L = 14

L = 16

L = 18

−20 −10 0 10

(W − 7.3)L1/2.2

0.0

0.2

0.4

0.6

0.8

1.0

Γ
ty
p
/Γ

a
v
g

NN

(b)

L = 12

L = 14

L = 16

L = 18

FIG. 2: Left panel: The ratio of the typical to average local

DOS ρtyp(ω = 0)/ρavg(ω = 0) for different system sizes

plotted as a function of the scaled disorder strength

(W −Wc)L
1/ν . The critical disorder Wc = 7.3t and the

exponent ν = 2.2 are obtained by minimising the cost

function CX (in Eq. 2) details of which are shown in the

SM [74]. A similar trend is seen in the ratio of typical to

average value of the scattering rate Γtyp(ω = 0)/Γavg(ω = 0)

shown in the right panel. All quantities are computed for

system with nearest neighbour interactions and for states in

the middle of the eigenspectrum for a rescaled energy bin

E ∈ [0.495, 0.505]

In the entire analysis we fix V = t(= 1) and the system
is half-filled. We study the model using full diagonaliza-
tion, for the several system sizes from L = 12 to L =
18. We evaluate the Green’s function in the nth eigen-
state Gn(i, j, t) = −iΘ(t)〈Ψn|{ci(t), c†j(0)}|Ψn〉, where
i, j are lattice site indices, and the associated self energy
Σn(ω) ≡ G−10 (ω)−G−1n (ω) where G0(ω) is the non-
interacting Green’s function of the disordered system.
The LDOS ρn(i, ω) and scattering rate are obtained from
the imaginary part of the Green’s function and the self
energy respectively as ρn(i, ω) =

(
− 1
π

)
Im [Gn(i, i, ω+))

and Γn(i, ω) = −Im [Σn(i, i, ω)].

The transition from the delocalized to the MBL phase
is seen in the disordered averaged Green’s function cal-
culated for the mid spectrum eigen-states with rescaled
energy En ∼ 0.5. The single-particle excitations are ex-
ponentially unlikely to be excited in the MBL phase at
large scales though the excitations typically propagate up
to large scale in the delocalized phase [59]. We analyse
the ratio of typical to average value of the LDOS and
scattering rates for ω = µeff where µeff is the effective
chemical potential of the system. Here, the typical value
is obtained by calculating the geometric average over the
lattice sites, energy bin and various independent disorder
configurations. The relevant details of our computations
are presented in supplemental materials [74].

Finite-size Scaling Analysis: We assume that the
characteristic length scale diverges with a power law at

the MBL transition point ξ ∼ |W −WC |−ν . As a result
a normalized observable X obeys the scaling X[δ, L] ∼
X̄(δL1/ν) with δ = W − Wc. To have a quantitative
estimate of the scaling collapse, we calculate the cost-
function for the quantity {Xi} [53, 62].

CX =

∑Ntotal−1
j=1 |Xj+1 −Xj |

max{Xj} −min{Xj}
− 1 (2)

Here Ntotal is the total number of values of {Xi} for
various values of disorder W and system sizes L. We
arrange all Ntotal values of {Xi} according to increasing
values of (W −WC)L1/ν . CX should be zero close for a
perfect data collapse but for the finite size data that we
have, we look for a minimum of the cost function with re-
spect to the exponent ν for Wc values which are close to
the intuitive guess of the transition point. We study the
ratios of typical to average LDOS and scattering rates
introduced earlier using a single parameter scaling form
(X[δ, L] ∼ X̄(δL1/ν)), which has also been used to study
scaling properties of other quantities relevant in context
of MBL [5, 20, 46, 47]. As we will show shortly, this scal-
ing ansatz results in very good scaling collapse for these
quantities. Below we first discuss the scaling for the sys-
tem with power-law interactions followed by the results
for the system with nearest neighbour interactions.

Panel (a) of Fig. 1 shows the ratio of the typical to av-
erage value of the LDOS for the system with power-law
interactions and α = 1. For weak disorder, the typical
value of the LDOS is of the order of the average LDOS
while for large values of W in the MBL phase the typi-
cal value of the LDOS becomes vanishingly small though
the corresponding average value is still finite. The ratio
of typical to average value of LDOS increases with the
system size for weak disorder while for very large disor-
der it becomes essentially independent of the chain size.
Interestingly, at the disorder value where the ratio be-
comes independent of the system size, it also becomes
constant with respect to disorder W within numerical
precision and we use this criterion to estimate the tran-
sition point. In order to obtain the best scaling collapse
of the finite size data for the ratio of typical to average
values of the LDOS, we calculated the cost function CX
which is shown in panel (b) of Fig. 1 for α = 1. CX
decreases as the value of the parameter Wc is increased
from 5t, having a broad minima for 7.1t ≤ Wc ≤ 7.9t
and 2.3 ≤ ν ≤ 2.7. With further increase in Wc and
ν, CX shows a slow increase. Using our estimate of the
transition point, explained above, we chose Wc = 7.1t
for which CX has a minimum for ν = 2.5. The finite size
scaling collapse for a fixed value of the critical disorder
and the exponent ν obtained from minimization of the
cost function is shown in panel (c) of Fig. 1. The bottom
panel in Fig. 1 shows similar plots for α = 3. As one
can see that the finite size scaling and the minimization
of the cost function provides a critical point Wc which is
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very close to the one obtained for α = 1 and again the
critical exponent ν ∼ 2.5. In fact, the critical disorder
Wc and the critical exponent ν do not change with the
increase in the range of interaction even for α = 0.5. We
also studied the finite size scaling of the ratio of typical
to average value of scattering rates and obtain almost
the same transition point and critical exponent ν as that
from the LDOS, details of which are provided in the Sup-
plemental Materials(SM) [74].

Further, we analyse the LDOS and scattering rates for
the system with nearest neighbour interactions. Fig. 2
shows the finite size scaling for the ratio of the LDOS and
the scattering rates. Again, we observe a very good data
collapse for Wc = (7.3± 0.3)t and ν = 2.2± 0.2 for both
the quantities. The corresponding cost function plots,
which are very similar to the one shown for the system
with power-law interactions, are shown in the SM [74].
We also analysed the behaviour of the level spacing ratio,
which is frequently used to study the MBL transition,
and found that the finite size scaling of the level spacing
ratio does not satisfy the CCFS bound for the critical
exponent in agreement with many earlier works [5, 20,
46, 47]. The cost function in the Wc−ν plane has a very
different pattern for the level spacing ratio compared to
the LDOS and scattering rates studied above. For the
level spacing ratio, cost function has a minimum at very
small values of Wc ∼ 5.3t and ν = 0.64. With further
increase in Wc and ν the cost function shows a rapid
increase. Details of the cost function and the scaling
collapse for the level spacing ratio have been discussed in
the SM [74].

Conclusions and Discussions: The MBL transition
involves many higher excited states and entails a transi-
tion from the delocalized phase, where eigenstates are
extended and obey volume law of entanglement, to the
localised side, where eigenstates are localised and obey
area law of entanglement. This makes the MBL tran-
sition an atypical transition which does not necessarily
follow the standard paradigm for classifying phase tran-
sitions. Understanding the nature of the MBL transition
is thus central to the problem.

In this work, we present strong evidence in favour of
a continuous delocalization to MBL transition where the
correlation length exponent obeys the CCFS criterion.
This is especially significant in light of recent disagree-
ments and controversies regarding the nature of the MBL
transition and the stability of the MBL phase. We show
how the ratio of typical to average LDOS and scatter-
ing rates can be used to characterise the delocalization
to MBL transition. Our analysis also demonstrates that
the MBL phase exists in a system with uniform long-
range interactions and nearest neighbour hopping, which
is consistent with existing theoretical [63–68] and experi-
mental studies [69–71]. The MBL transition even in sys-
tems with uniform long-range interactions is continuous
in nature.

Although the ratio of typical to average LDOS and
the scattering rate scales with a single parameter such
that the critical exponent ν ≥ 2/d with a finite value of
the transition point, the level spacing ratio scales with
a critical exponent that is much smaller than 2/d and is
intriguingly quite close to the one obtained from scaling
the local self energy in the Fock space [58] as well as to
the correlation length exponent for the Anderson model
on random regular graphs [72, 73]. This is consistent
with the idea that the effective Anderson model for the
MBL system lives in a Fock space that can be compared
to a random regular graph with variable connectivity be-
tween nodes. Certain physical quantities, such as level
spacing ratio and entanglement, appear to follow the crit-
ical exponent of the correlation length in the Fock space,
whereas others, such as single particle LDOS, appear to
adhere to the system’s physical dimension and obey the
standard CCFS bound.

Our scaling analysis of single particle LDOS and scat-
tering rates is consistent with the renormalization group
calculations, which predicted a continuous MBL transi-
tion with the critical exponent ν ≥ 2/d [32–36]. The
search for additional physical quantities that can shed
more light on the nature of the MBL transition is un-
questionably critical.
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[16] P. Pöpperl, E. V.H. Diggen, J. F. Karcher, A. D. Mirlin,

K. S. Tikhonov, Annals of Phys. 435, 168486 (2021).
[17] S. Nandy, F. Evers, and S. Bera, Phys. Rev. B 103,

085105 (2021).
[18] Y. Prasad and A. Garg, Phys. Rev. B 105, 214202 (2022).
[19] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys.

Rev. B 87, 134202 (2013).
[20] J. A. Kjall, H. H. Bardarson, and F. Pollmann, Phys.

Rev. Lett. 113, 107204 (2014).
[21] S. Bera, H. Schomerus, F. H-Meisner, and J. H. Bardar-

son, Phys. Rev. Lett. 115, 046603 (2015).
[22] P. Naldesi, E. Ercolessi, and T. Roscilde, SciPost Phys.

1, 010 (2016).
[23] X. Li, S. Ganeshan, J. H. Pixley, and S. D. Sarma, Phys.

Rev. Lett. 115, 186601 (2015).
[24] S. Nag and A. Garg, Phys. Rev. B 96, 060203(R) (2017).
[25] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys.

Rev. Lett. 109, 017202 (2012).
[26] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett.

110, 260601 (2013).
[27] R. Modak and S. Mukerjee, Phys. Rev. Lett. 115, 230401

(2015).
[28] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett.

111, 127201 (2013).
[29] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett.

111, 127201 (2013).
[30] V. Ros, M. Muller, and A. Scardicchio, Nuc. Phys. B

891, 420 (2015).
[31] J. Z. Imbrie, Phys. Rev. Lett. 117, 027201 (2016); J. Z.

Imbrie, Journal of Statistical Physics 163, 998 (2016).
[32] R. Vosk, D. A. Huse, and E. Altman, Phys. Rev. X 5,

031032 (2015).
[33] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys.

Rev. X 5, 031033 (2015).
[34] L. Zhang, B. Zhao, T. Devakul, and D. A. Huse, Phys.

Rev. B 93, 224201 (2016).
[35] P. T. Dumitrescu, R. Vasseur, and A. C. Potter, Phys.

Rev. Lett. 119, 110604 (2017).
[36] Shi-Xin Zhang and H. Yao, Phys. Rev. Lett. 121, 206601

(2018).
[37] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,

Phys. Rev. Lett. 57, 2999 (1986); J. T. Chayes, L.
Chayes, D. S. Fisher, and T. Spencer, Commun. Math.
Phys. 120, 501-523 (1989).

[38] A. Chandran, C. R. Laumann, and V. Oganesyan,
arXiv:1509.04285.

[39] A. B. Harris, J. Phys. C 7, 1671 (1974).
[40] B.I. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides,

and H. B. Shore, Phys. Rev. B 47, 11487 (1993).
[41] I. Kh. Zharekeshev and Bernhard Kramer, Phys. Rev.

Lett. 79, 717 (1997).
[42] K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382

(1999).
[43] E. Tarquini, G. Biroli, and M. Tarzia, Phys. Rev. B 95,

094204 (2017).
[44] T. Devakul and D. A. Huse, Phys. Rev. B 96, 214201

(2017).
[45] P. Sierant, M. Lewenstein, A. Scardicchio, and J. Za-

krzewski, arXiv:2203.15697.
[46] V. Khemani, D. N. Sheng, and D. A. Huse, Phys. Rev.

Lett. 119, 075702 (2017).
[47] P. Sierant and J. Zakrzewski, Phys. Rev. B 99, 104205

(2019).
[48] A. Goremykina, R. Vasseur, and M. Serbyn, Phys. Rev.

Lett. 122, 040601 (2019).
[49] P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran,

M. Serbyn, and R. Vasseur, Phys. Rev. B 99, 094205
(2019).

[50] A. Morningstar and D. A. Huse, Phys. Rev. B 99, 224205
(2019).

[51] D. J. Luitz, F. m. c. Huveneers, and W. De Roeck, Phys.
Rev. Lett. 119, 150602 (2017).

[52] A. Morningstar, D. A. Huse, and J. Z. Imbrie, Phys. Rev.
B 102, 125134 (2020).

[53] J. S̃untajs, J. Bonca, T. Prosen, and L. Vidmar, Phys.
Rev. B 102, 064207 (2020).

[54] N. Laflorencie, G. Lemarié, and N. Macé, Phys. Rev.
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DETAILS OF CALCULATIONS AND DISORDER AVERAGING

We compute the disorder averaged LDOS and scattering rates for α = 1, 2, 3 and the nearest neighbour cases
of the Hamiltonian in Eq.(1) of the main text. The LDOS and scattering rates are extracted from the Lehmann
representation of the Green’s function Gn(i, j, ω) whose diagonal element is given by:

Gn(i, i, ω+) =
∑

m

|〈Ψm|c†i |Ψn〉|2
ω + iη − Em + En

+
|〈Ψm|ci|Ψn〉|2

ω + iη + Em − En
(1)

We calculate the LDOS and the scattering rates for the many-body eigenstates in the middle of the spectrum, that is
with a rescaled energy bin E ∈ [0.495, 0.505] for a large number of independent disorder realisations. For each value of
α we use 15000, 1000, 500 and 50 realisations of disorder for L = 12, 14, 16, 18 respectively to calculate the averages of

the LDOS and scattering rates. The value of ω for each α is chosen to be ω = µeff =
∑L/2
|j−i|=1

1
|j−i|α (for V = 1) which

is the effective chemical potential of the system under the assumption that the disorder averaged system will respect
particle hole symmetry. The infinitesimal η is chosen to be 10−2. For the system with nearest neighbour interactions
we have shown results for ω = 0. The LDOS ρtyp(ω) and the scattering rate Γtyp(ω) are very flat around ω = 0 over
a width of around 2W and µeff for nearest neighbour interaction is V/2. Thus, effectively the behaviour of LDOS
and scattering rate at ω = µeff and ω = 0 is the same for the system with nearest neighbour interactions. For the
system with nearest neighbour interactions, we use 15000, 10000, 3000, 200 realization of disorder for L = 12, 14, 16, 18
respectively to calculate the averages of level spacing ratio. For the disorder averaging of the LDOS and scattering
rates, we used 15000, 1000, 500 configurations of disorder for L = 12, 14, 16 and 50− 100 configurations for L = 18.

FINITE-SIZE SCALING OF SINGLE PARTICLE SCATTERING RATES

In the main text in Fig. 1 we analyzed the finite-size scaling of single particle LDOS for the system with power-law
interactions. We now present details of the finite size scaling for the scattering rates. In Fig. 1, in the top row we
present the data for the system with α = 1. In the top left panel we show the ratio of typical to average value of the
scattering rate Γtyp(ω)/Γavg(ω) obtained from the middle of the many-body eigenspectrum and ω = µeff . In sharp
similarity to the LDOS, the ratio of typical to average value of the scattering rate is of order one for weak disorder and
becomes vanishingly small and size independent for very large values of disorder. In order to determine the nature of
the transition, we did the finite size scaling. As mentioned in the main paper, we calculated the cost function CX to
quantify the finite size scaling collapse. In the top middle panel we show the color plot of the cost function in Wc− ν
plane. CX is very large for small values of Wc for any value of ν considered. For slightly larger values of Wc, CX
has a non-monotonic dependence on ν such that CX first decrease as ν increases, attains a minima and then starts
increasing again. The best minima obtained in the range of parameters considered, occurs for 7.1 ≤ Wc ≤ 7.9. We
opt the minimum value of Wc = 7.1t for which CX shows a minimum for 2.3 ≤ ν ≤ 2.7. The rightmost panel in the
top row shows the scaling collapse as a function of the scaled disorder (W −Wc)L

1/ν with Wc = 7.1t and ν = 2.5.
We would like to emphasize that the ratio of typical to average scattering rate obeys the single parameter scaling and
show a good quality data collapse for the value of the exponent ν ≥ 2 which satisfies the CCFS inequality. In the
lower row of Fig. 1 we have shown similar plots for α = 3 which correspond to a shorter range of interactions. As
shown here the critical point WC and the critical exponent ν are almost independent of the range of interactions.

COST FUNCTIONS FOR THE SYSTEM WITH NEAREST NEIGHBOUR INTERACTIONS

In the main text in Fig. 2 we have shown the scaling collapse for the LDOS and scattering rate for the system with
nearest neighbour interactions. Here, we provide the supporting calculation of the cost function which was minimised
to obtain the critical point and the critical exponent used in the scaling collapse plot. It is interesting to notice that
not only the qualitative features of the cost function but also the region of minima in Wc−ν plane is almost the same
for all the range of interaction considered.
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FIG. 1: Panel(a) shows the ratio of the typical to average values of scattering rate Γtyp(ω)/Γavg(ω) at ω = µeff , as a

function of disorder W for various system sizes and α = 1. Panel(b) shows the cost function CX calculated for

X = Γtyp(ω = µeff )/Γavg(ω = µeff ) in Wc − ν plane. The cost function has a broad minimum for 7.1 ≤Wc ≤ 7.9. Wc = 7.1

corresponds to the minimum of the cost function for 2.3 ≤ ν ≤ 2.7. Panel (c) shows the scaling collapse for

Γtyp(ω = µeff )/Γavg(ω = µeff ) as a function of the scaled disorder (W −Wc)L
1/ν for Wc = 7.1t and ν = 2.5. Similar trend of

the scattering rates, the corrsponding cost fucntion and the scaling collapse is seen for α = 3 in the bottom row panels.

Scattering rate Γ(ω) has been computed for states in the middle of the eigenspectrum for a rescaled energy bin

E ∈ [0.495, 0.505].
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FIG. 2: The left panel shows the cost function CX in the Wc − ν plane for X = ρtyp(ω = 0)/ρavg(ω = 0) and the right panel

shows CX for X = Γtyp(ω = 0)/Γavg(ω = 0). In the right panel, the cost function has minimum around Wc = 7.3 for

2.0 ≤ ν ≤ 2.4. In the left panel, a broad minimum of CX exists for 7.1 ≤Wc ≤ 7.9 and ν = 2.4± 0.3.

FINITE SIZE SCALING FOR LEVEL SPACING RATIO

In this section we compare the behaviour of a commonly used diagnostic of the transition, namely the level spacing
ratio with the disorder averaged local density of states and the scattering rates obtained from the Green’s functions.

The level spacing ratios rn are defined in the usual way rn = min(δn,δn+1)
max(δn,δn+1)

, where, δn = En+1 −En. Fig. 3 shows the

plot of disorder averaged rn vs disorder W for various system sizes for the system with nearest neighbour interactions.
Level spacing ratio obeys Wigner-Dyson statistics for weak disorder and in the very strong disorder limit it obeys
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the Poissonian statistics. To determine the nature of transition in the level spacing ratio as the disorder strength is
increased, we did the finite size scaling assuming the single parameter ansatz mentioned in the main text. The cost
function CX for the level spacing ratio is shown in the middle panel of Fig. 3 which has a very different trend in
Wc − ν plane as compared to the cost function for the LDOS and scattering rates. Cx for the level spacing ratio has
a minima for ν = 0.64 and it increases as ν increases beyond 0.64.
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FIG. 3: Panel(a) shows the level spacing ratio as a function of disorder W for various system sizes for the system with

nearest neighbour interactions. Here rn has been calculated for middle of the many-body eigenspectrum for a rescaled energy

bin E ∈ [0.495, 0.505] . The cost function CX for the level spacing ratio has been shown in panel (b). The cost function has a

minimum for Wc ∼ 5.3± 0.1 and ν = 0.6± 0.1. In panel (c) we have shown the scalng collapse using Wc = 5.3t and ν = 0.64.


