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Abstract. We prove two congruences for the coefficients of power series expansions in t of
modular forms where t is a modular function. As a result, we settle two recent conjectures
of Chan, Cooper and Sica. Additionally, we provide tables of congruences for numbers which
appear in similar power series expansions and in the study of integral solutions of Apéry-like
differential equations.

1. Introduction

In [7], Chan, Cooper and Sica investigate sequences of integers that satisfy congruence prop-
erties similar to those of the Apéry numbers associated with the irrationality of ζ(3). They also
conjecture seven congruences and supercongruences for coefficients of power series expansions
in t of modular forms where t is a modular function. The term supercongruences appeared in
[3] and was the subject of the Ph.D. thesis of Coster [10]. It originally referred to families of
congruences that are stronger than ones suggested by formal group theory, but now includes
individual congruences (see [1]). Let

f(z) =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+6n2

, t1 = t1(z) =
η(z)η(23z)

f(z)

and

F (z) =
∞∑

m=−∞

∞∑
n=−∞

q2m
2+mn+3n2

, t2 = t2(z) =
η(z)η(23z)
F (z)

where η(z) is the Dedekind eta-function, q := e2πiz and z ∈ H. Write

f = f(z) =
∞∑
n=0

fnt
n
1 and F = F (z) =

∞∑
n=0

Fnt
n
2 .

In [7], Chan, Cooper and Sica make the following

Conjecture 1.1. If p is a prime with
( p

23

)
= 1 and n ≥ 1, then

fnp ≡ fn (mod p)
and

Fnp ≡ Fn (mod p).
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The first few terms in the sequence {fn}n≥0 are
1, 2, 6, 26, 142, 876, 5790, 40020, 285582, . . .

while for {Fn}n≥0, we have
1, 0, 2, 6, 30, 144, 758, 4080, 22702, 128832, . . . .

Closed forms for fn and Fn were not given in [7] and thus a combinatorial approach to Conjecture
1.1 is not yet available. The purpose of this note is to prove this conjecture via modular forms.
We have the following.

Theorem 1.2. If p is a prime with
( p

23

)
= 1 and n, r ≥ 1 are integers, then

(1) fnpr ≡ fnpr−1 (mod pr)

and

(2) Fnpr ≡ Fnpr−1 (mod pr).

In Section 2, we recall some preliminaries on power series expansions and Eisenstein series
with characters and then prove Theorem 1.2. In Section 3, we provide tables of congruences for
numbers appearing in other power series expansions found in [7] and in the study of integral
solutions of Apéry-like differential equations (see [2], [5], [18]) and mention conjectural super-
congruences. Finally, we note that two other conjectural congruences from [7] which involve f2,n

and f3,n (see Section 3) have recently been proven in [8]. The remaining three conjectures in [7]
are still open.

2. Proof of Theorem 1.2

We first recall a recent result of Jarvis and Verrill (see Proposition 4.2 in [12] or Proposition 3
in [4]). This result is quite useful as it allows one to deduce congruence properties of coefficients
in a power series expansion from those of another expansion.

Proposition 2.1. Let t be a power series

t =
1
m

∞∑
n=1

anu
n/v,

convergent in a neighborhood of u = 0, with m, v positive integers, an ∈ Z and a1 = 1. Suppose
that in some neighborhood of u = 0 we have an equality of convergent power series given by

(3)
∞∑
n=1

bnt
n−1 dt =

∞∑
n=1

cnu
n−1 du,

for some integers bn and cn, n ≥ 1. Assume p is a prime not dividing m or v. If

bnpr ≡ bnpr−1 (mod pr),

then
cnpr ≡ cnpr−1 (mod pr).



CONGRUENCES VIA MODULAR FORMS 3

Remark 2.2. J. Stienstra has kindly pointed out that one can use formal group theory (see
the appendix of [16]) to extend Proposition 2.1 to the case where each of the sums in (3) starts
with n = 0. Also, since a1 = 1, the converse of Proposition 2.1 is true.

We now discuss the notion of Eisenstein series with characters. For further details, see Chapter
5 of [15]. Let Mk(Γ0(N), ε) be the space of modular forms of weight k on Γ0(N) with character
ε. Suppose χ and ψ are primitive Dirichlet characters with conductors L and R, respectively.
Let

(4) Ek,χ,ψ(q) := c0 +
∞∑
n=1

(∑
d|n

ψ(d)χ(n/d)dk−1
)
qn

where

c0 =

 −
Bk,ψ
2k

if L = 1,

0 if L > 1

and Bk,ψ is the generalized Bernoulli number associated to ψ. If t is a positive integer and k ≥ 3
is an integer such that χ(−1)ψ(−1) = (−1)k, then Ek,χ,ψ(qt) is in Mk(Γ0(RLt), χψ). Moreover,
given N and ε, the series Ek,χ,ψ(qt) such that RLt | N and χψ = ε form a basis for the Eisenstein
subspace Ek(Γ0(N), ε) of Mk(Γ0(N), ε).

Proof of Theorem 1.2. Let χ be the character
( ·

23

)
and ψ be the trivial character 1. We first

note that

E3,1,χ(q) =:
∞∑
n=0

enq
n

and

E3,χ,1(q) =:
∞∑
n=0

anq
n

form a basis for the space E3

(
Γ0(23),

( ·
23

))
. By Lemma 0.3 in [17] and a finite computation,

we have

f
q dt1dq
t1

= F
q dt2dq
t2

= − 1
24
E3,1,χ(q)− 23

24
E3,χ,1(q)

and so

(5) f
dt1
t1

= F
dt2
t2

=

[
− 1

24
E3,1,χ(q)− 23

24
E3,χ,1(q)

]
dq

q
.

By (4), we have
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(6) anpr −
( p

23

)
anpr−1 =

∑
d′|n

(
n/d′

23

)
(d′pr)2

and

(7) enpr − enpr−1 =
∑
d′|n

(
d′pr

23

)
(d′pr)2.

Letting u = q in (5) implies that

(8)
∞∑
n=0

fnt
n−1
1 dt1 =

∞∑
n=0

Fnt
n−1
2 dt2 =

[
− 1

24
E3,1,χ(u)− 23

24
E3,χ,1(u)

]
du

u
.

If we take v = 1, m = 1, bn = fn, Fn, respectively, and cn = − 1
24
en −

23
24
an, then by (6) and

(7), we have

(9) cnpr ≡ cnpr−1 (mod pr)

for primes p ≥ 3 such that
( p

23

)
= 1 and r ≥ 1 and for p = 2 and r ≥ 3. An application of

Remark 2.2 then implies (1) and (2). To verify (9) for p = 2 and r = 1 or 2, we first note that
(4) implies en = an if

(
n
23

)
= 1 and en = −an if

(
n
23

)
= −1. The case where

(
n
23

)
= 0 can be

reduced to one of previous two cases since a23n = 232an and e23n = en for all n. The result then
follows upon a routine check that (9) holds in all of these cases.

�

3. Tables

Using the methods in Section 2, we have proven congruences of the form

(10) A(npr) ≡ A(npr−1) (mod pr)

for all of the numbers A(n) which appear in Tables 1, 2 and 3. For brevity, we only give the

relevant modular function t and modular forms f(t) and M := f(t)
q dtdq
t

. The coefficients of M

in Tables 1, 2 and 3 can be computed using (4), Chapter 4, Section 32 in [11] (for example,
see page 85, equation (32.71) for (vi)), [13] or [15]. Given positive integers s1, s2, . . . , sk and
integers r1, r2, . . . , rk, we write

sr11 s
r2
2 . . . srkk

for the eta-quotient

η(s1z)r1η(s2z)r2 · · · η(skz)rk .
Table 1 consists of numbers fi,n, i = 2, 3, 5, 7 and 11 which are coefficients in the power series

expansion in t of the modular forms (see [7])
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f2 =
∞∑

m=−∞

∞∑
n=−∞

qm
2+n2

, f3 =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+n2

, f5 =
15

51
,

f7 =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+2n2

and f11 =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+3n2

.

We write χs :=
( ·
s

)
for s = 3, 5, 7, 11 and χ−4 :=

(−4
·
)
. The analogue of Theorem 1.2 is true

for primes p satisfying χ−4(p) = 1 in (i), χ3(p) = 1 in (ii), χ7(p) = 1 in (iv), χ11(p) = 1 in (v).
It is true for all primes in (iii). The only known closed forms are

f2,n =

(
8n
(

1
4

)
n

n!

)2

and

f3,n =
108n

(
1
6

)
n

(
1
3

)
n

(n!)2
.

Table 2 lists numbers which arise in Beukers’ [5] and Zagier’s [18] study of integral solutions
of second order Apéry-like differential equations. The choices of t and the parameterizations of
f can be found in [17] and [18]. In case (ix), congruence (10) with A(n) replaced by 2nA(n) has
been proven in [12].

Table 3 contains numbers listed in [2] as part of a discussion on third order Apéry-like differ-
ential equations. Here

L1(z) := − 7
240

E4(z) +
1
60
E4(2z)− 3

80
E4(3z) +

21
20
E4(6z),

L2(z) :=
1

120
E4(z)− 2

15
E4(2z)− 3

40
E4(3z) +

6
5
E4(6z),

and

L3(z) :=
1

240
E4(z)− 1

60
E4(2z)− 27

80
E4(3z) +

27
20
E4(6z)

where E4(z) is the usual weight 4 Eisenstein series on SL2(Z). The choices of t and the param-
eterizations of f can be found in [6], [9] and [14].

Finally, we have numerically observed extensions of (10) modulo p2r (subject to the above
conditions for p odd) in (i), (ii), (iv), (v), (vii), (viii), (ix) and (x) and modulo p3r for (iii), (xii)
and (xiii). Here p ≥ 5 for (xii). Coster [10] has proven an extension of (10) modulo p3r for (vi)
and (xi). It might of interest to see if combinatorial techniques can be applied to some of these
conjectural extensions.
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Table 1

A(n) t M

(i) f2,n
212

f6
2

−4E3,1,χ−4(q)− 16E3,χ−4,1(q)

(ii) f3,n
1636

f6
3

−9E3,1,χ3(q)− 27E3,χ3,1(q)

(iii) f5,n
56

16
E4,1,χ5(q)

(iv) f7,n
1373

f3
7

−7
8E3,1,χ7(q)− 49

8 E3,χ7,1(q)

(v) f11,n
12112

f2
11

−1
3E3,1,χ11(q)− 11

3 E3,χ11,1(q)

Table 2

A(n) t f(t) M

(vi)
n∑
k=0

(
n

k

)3 1369

2339

2136

1263

112435

64

(vii)
bn

3
c∑

k=0

(−1)k3n−3k

(
n

3k

)(
3k
k

)(
2k
k

)
−93

13

13

31

39

93

(viii)
n∑
k=0

(
n

k

)2(2k
k

)
1468

2834

2631

1362

112435

64

(ix)
bn

2
c∑

k=0

4n−2k

(
n

2k

)(
2k
k

)2 144284

210

210

1444

2446

84

(x)
n∑
k=0

k∑
l=0

(−1)k8n−k
(
n

k

)(
k

l

)3 15314562121

214

21532122

164665

27611

113541125
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Table 3

A(n) t f M

(xi)
n∑
k=0

(
n+ k

k

)2(n
k

)2 112612

212312

2737

1565
L1(z)

(xii) (−1)n
n∑
k=0

(
n

k

)2(2k
k

)(
2(n− k)
n− k

)
2666

1636

1434

2262
L2(z)

(xiii) (−1)n
[n/3]∑
k=0

(−1)k
3n−3k(3k)!

(k!)3

(
n

3k

)(
n+ k

k

)
3464

1424

1323

3161
L3(z)
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[4] F. Beukers, Another congruence for the Apéry numbers, J. Number Th. 25 (1987), no. 2, 201–210.
[5] F. Beukers, On B. Dwork’s accessory parameter problem, Math. Z. 241 (2002), no. 2, 425–444.
[6] H. Chan, S. Chan and Z. Liu, Domb’s numbers and Ramanujan-Sato type series for 1/π, Adv. Math. 186

(2004), 396–410.
[7] H. Chan, S. Cooper and F. Sica, Congruences satisfied by Apéry-like numbers, Int. J. Number Theory 6
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