National Institute of Science Education and Research

Bhubaneswar

Mid-Semester Examination 2016-17 M101- Mathematics I, Maximum Marks: 30 Date: 22-09-2016, Time: 10.00 -12.00

1. Let M be the set of all months in a year. Let A be the subset of M containing all the months starting with the letter "J". Let B be the subset of M containing all the months ending with the letter "Y". Write the elements of the following sets:

$$A \cup B, A \cap B, A - B. \tag{3}$$

2. Prove the following by the method of induction: For every natural number n, [3]

$$1.2 + 2.3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$$

- 3. Define the relation on the set of natural number \mathbb{N} : $a \sim b$ if a and b have a common factor greater than 1.
 - (a) Find five natural numbers which are related to 2. [2]
 - (b) Check if this relation \sim is reflexive, symmetric and transitive. Justify your answers. [2+2+2]
- 4. Find six rational numbers q such that q > 1.7 and $q^2 < 3$. [3]
- 5. Let $S = \{a_1, a_2, \dots, a_n, a_{n+1}\}$ be a set with n+1 elements and $T = S \{a_{n+1}\}$. Let A be the collection of all subsets of S having a_{n+1} as an element and B be the collection of all subsets of T. Find a bijection (a function which is one-one and onto) between A and B.
- 6. For a set A, let P(A) be the power set of A (i.e., the collection of all subsets of A). Prove by the method of induction that if A has n elements then P(A) has 2^n elements.
- 7. Let $A = \{x \in \mathbb{Q} : x^2 < 2\}$. Show that A has no least upper bound in \mathbb{Q} . [6]
- 8. Recall that a set A is said to be countable if A is a finite set or there is a bijection between \mathbb{N} and A.

Prove that every subset of a countable set is also countable. [6]