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Abstract. We associate certain L-functions to a Jacobi form of half-integral weight and
study their analytic properties. We also prove a converse theorem for Jacobi form of half-
integral weight.

1. Introduction

Modular forms are one of the important objects in modern mathematics. They appear in
diverse contexts: Fermat’s last theorem, q-hypergeometric series, partitions, elliptic curves,
and string theory. The theory of modular forms has a wide-ranging impact on modern
mathematics and its applications. Recently, modular forms have proven its significance in
analytic number theory by providing new tools and with numerous connections to arithmetic
geometry, notably through the theory of L-functions. A modular form f of weight k for the
group SL2(Z) is a complex-valued holomorphic function defined on the complex upper-half
plane H satisfying the following transformation property:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), τ ∈ H

for all matrices

(
a b
c d

)
∈ SL2(Z), and holomorphic at the cusp ∞. The above trans-

formation property implies that a modular form admits a Fourier series expansion given
by

f(τ) =
∑
n≥0

af (n)e
2πinτ .

Further, if af (0) = 0, then we call f to be a cusp form. For each n ∈ N, the complex number
af (n) is called the n-th Fourier coefficients of f. A modular form is completely determined
by its Fourier coefficients. The Fourier coefficients of a modular forms satisfies the estimates
af (n) = O(nk+ϵ) for any ϵ > 0. One can associate an L-function to a modular form f of
weight k as follows;

Lf (s) :=
∑
n⩾1

af (n)

ns
, ℜ(s) > k + 1.

The completed L-function Λf (s) = (2π)−sΓ(s)Lf (s) has an analytic continuation to the
whole complex plane with possibly simple poles at 0 and k, and satisfies the functional
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equation

Λf (k − s) = (−1)
k
2Λf (s).

Hecke studied converse of the above fact which is known as Hecke’s converse theorem. More
precisely he proved the following:

Theorem 1.1. [5] Let k ⩾ 2 be a positive integer. Let {a(n)}n⩾1 be a sequence of complex
numbers such that a(n) = O(nσ) for some σ > 0. The function f(τ) =

∑
n⩾1

a(n)e2πinτ defines

a cusp form of weight k for full modular group SL2(Z) if and only if the completed L-

function Λf (s) = (2π)−sΓ(s)
∑
n⩾1

a(n)
ns admits a holomorphic continuation to the whole complex

plane C which is bounded on any vertical strip and satisfies the functional equation Λf (s) =

(−1)
k
2Λf (k − s).

One can ask the similar question for other kinds of automorphic forms as well. This
question attracted several mathematicians in the past where they answered this question in
the case of other kinds of automorphic forms, see [2, 3, 6, 8, 13].

Jacobi forms are natural generalization of modular forms. The theory of Jacobi forms was
first systematically studied by Eichler and Zagier to prove Saito-Kurokawa conjecture [4].
Berndt [1] associated 2m many L-functions Λµ(ϕ, s), 0 ⩽ µ ⩽ 2m − 1 to a Jacobi form ϕ
of weight k and index m using the theta decomposition and studied its analytic properties.
Martin [8] studied the analytic continuation and converse theorem for Jacobi form involving
the L-functions defined by Berndt. We briefly mention the theorem of Martin.

Theorem 1.2. [8] Let k and m be positive integers. Let ϕ(τ, z) =
∑

r2<4nm

cϕ(n, r)e
2πi(nτ+rz) be

holomorphic function satisfying

(i) ϕ(τ, z) converges absolutely and uniformly on compact subsets of H× C,

(ii) there exists ν > 0 such that ϕ(τ, z)e2πipz = O(ℑ(τ)−ν) as ℑ(τ) → 0,

(iii) for each λ we have c(n, r) = c(n+ λr + λ2m, r + 2λm).

Then the following statements are equivalent:

(1) The function ϕ(τ, z) is a Jacobi form of weight k and index m.

(2) Each completed L-function Λµ(ϕ, s), 0 ⩽ µ ⩽ 2m − 1 associated to ϕ(τ, z), can be
analytically continued to a holomorphic function on s-plane. These functions are
bounded on any vertical strip and satisfy the functional equations

(2m)−
1
2

2m−1∑
µ=0

e−
πiaµ
m Λµ(ϕ, s) = ikΛa(ϕ, k −

1

2
− s), 0 ⩽ a ⩽ 2m− 1.

The above result was generalized for Jacobi forms on congruence subgroups by Martin and
Osses [9]. There are two objectives of this paper, first, we associate certain L-functions to
a Jacobi form of half-integral weight and study its analytic properties, and second we prove
a converse theorem for Jacobi forms of half-integral weight. Our approach is similar to the
work of Bruinier [3] related to converse theorem in the case of half-integral weight modular
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forms, however one needs the notion of Fricke type involution operator for Jacobi forms of
half-integral weight.

This paper is organized as follows: In Section 2, we recall the basic definition and some
properties of Jacobi forms of half-integral weight. In Section 3, we associate certain Dirichlet
series to a Jacobi form of half-integral weight. In Section 4, we first define and study the
twist of a Jacobi form of half-integral weight by a Dirichlet character. Next, we define certain
Fricke involution type operator and study its properties. In Section 5, we state the main
results of the paper. Finally, in Section 6, we provide proofs of the results stated in Section
5.

2. Notations and preliminaries

Let C and H denote the complex plane and complex upper half-plane, respectively. For a
complex number z, we denote

√
z = |z|

1
2 e(

i
2)argz with − π < arg z ≤ π,

z
k
2 =

(√
z
)k

for any k ∈ Z.

For z ∈ C and integers m and n, we put emn (z) = e2πimz/n. We also write em1 = em(z), e1n =
en(z), and e11 = e(z). For integers m and n,

(
m
n

)
denotes the Jacobi symbol. We now

briefly recall the definition and some properties of Jacobi forms of half-integral weight. For a
positive integer N, we define the following congruence subgroup Γ0(N) of SL2(Z) as follows:

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

For γ = ( a bc d ) ∈ GL+
2 (R), let γ̃ = (γ, ϕ(τ)), where ϕ(τ) is a complex-valued holomorphic

function on H such that ϕ2(τ) = t
cτ + d√
det(γ)

with t ∈ {1,−1}. Then the set

G :=

{
γ̃ = (γ, φ(τ)) : γ =

(
a b
c d

)
∈ GL+

2 (R), φ2(τ) = t
cτ + d√
det(γ)

, t = ±1

}
,

forms a group with the following operation

(γ1, φ1(τ)) · (γ2, φ2(τ)) := (γ1γ2, φ1(γ2τ)φ2(τ)), (γ1, φ1(τ)), (γ2, φ2(τ)).

For γ =

(
a b
c d

)
∈ Γ0(4), put j(γ, τ) =

(
c
d

) (−4
d

)−1/2
(cτ + d)1/2. Then the association

γ 7→ γ̃ = (γ, j(γ, τ)) is an injective map from Γ0(4) into G.
Let

G̃J = {(γ̃, X, s) : γ ∈ SL2(R), X ∈ R2, s ∈ S1}.
Then G̃J is a group, with the group law

(γ̃1, X, s)(γ̃2, Y, s
′) =

(
γ̃1γ̃2, Xγ2 + Y, ss′ · det

(
Xγ2
Y

))
.

The real Jacobi group GJ defined by

GJ := {(γ,X, ζ) :M ∈ SL2(R), X ∈ R2, ζ ∈ S1}
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is a subgroup of the group G̃J , and acts on H× C as follows:

h · (τ, z) :=
(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,

where (τ, z) ∈ H × C, h = (γ,X, ζ) ∈ GJ with γ =

(
a b
c d

)
.

Let k and m be fixed positive integers with k odd. For a function ϕ : H × C −→ C and

h = (γ̃, X, s) ∈ G̃J with X = (λ, µ) ∈ R2, the slash operator | k
2
,m of weight k

2
and index m

is defined by(
ϕ| k

2
,mh
)
(τ, z) := smφ(τ)−kem

(
−c(z+λτ+µ)2

cτ+d
+ 2λ2τ + 2λz + λµ

)
ϕ
(
aτ+b
cτ+d

, z+λτ+µ
cτ+d

)
.

For h = (γ̃, (0, 0), 1) with γ̃ =

((
a b
c d

)
, j(γ, τ)

)
,

(
a b
c d

)
∈ Γ0(N) the above definition

reduces to (
ϕ| k

2
,mh
)
(τ, z) := j(γ, τ)−kem

(
−cz2
cτ+d

)
ϕ
(
aτ+b
cτ+d

, z
cτ+d

)
.

We use the notation ϕ| k
2
,mh = ϕ| k

2
,mγ̃ for h = (γ̃, (0, 0), 1) with γ̃ = (γ, j(γ, τ)) , γ ∈ Γ0(N).

For positive integers α, β and N with 4|N, consider the subgroup ΓJα,β(N) of G̃J defined

by ΓJα,β(N) := Γ̃0(N)⋉ ((αZ× β−1Z)× ⟨ζβ⟩) i.e.,

ΓJα,β(N) = {(γ̃, (λ, µ), s) : γ ∈ Γ0(N), λ ∈ αZ, µ ∈ β−1Z, s ∈ ⟨ζβ⟩},
where ⟨ζβ⟩ is the cyclic group generated by the primitive β-th roots of unity. We use the
notation ΓJ1,1(N) = ΓJ(N). We now define Jacobi forms of half-integral weight for the group

ΓJα,β(N).

Definition 2.1. Let k,N,m, α and β be positive integers such that k is odd and 4|N. Let χ
be a Dirichlet character modulo N. A Jacobi form of weight k

2
and index βm with character χ

for the group ΓJα,β(N) is a complex-valued holomorphic function ϕ defined on H×C satisfying
the following conditions:

(1) ϕ | k
2
,βm h = χ(d)ϕ, for all h = (γ̃, X, s) ∈ ΓJα,β(N) with γ = ( ∗ ∗

c d ) ,

(2) for every σ =
(
a b
c d

)
∈ SL2(Q) there exists an integer dσ such that the function

ϕ | k
2
,βm h, where h = (σ−1, (0, 0, 1)) has a Fourier expansion of the form

ϕ | k
2
,βm h =

∑
n,r∈Z

r2≤4nβmdσ

cϕ,σ(n, r)e

(
n

dσ
τ +

r

dσ
z

)
.

Further, if the Fourier coefficients cϕ,σ(n, r) satisfy cϕ,σ(n, r) = 0 whenever 4βmndσ = r2

for every σ ∈ SL2(Q), then ϕ is called a Jacobi cusp form.
We denote the space of Jacobi forms (respectively, Jacobi cusp forms) of weight k

2
and index

βm with character χ for the group ΓJN by J k
2
,βm(Γ

J
α,β(N), χ) (respectively, J cuspk

2
,βm

(ΓJα,β(N), χ)).

For more details on the theory of Jacobi forms of half-integral weight for the group ΓJ(N),
we refer to [11, 12].
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2.1. Theta decomposition. Let ϕ ∈ J k
2
,βm(Γ

J
α,β(N), χ). Then using the transformation

property of ϕ(τ, z) we have the following Fourier series expansion of ϕ

ϕ(τ, z) =
∑
n,r∈Z

βr2≤4nm

cϕ(n, r)e(nτ + rβz). (1)

For D ≥ 0, r (mod 2mα), we define a sequence {cµ(D)} of complex numbers as follows:

cµ(D) :=

{
cϕ

(
D+βr2

4m
, r
)
, if D ≡ −βr2 (mod 4m), r ≡ µ (mod 2mα),

0, otherwise.
(2)

Set

hµ(τ) :=
∞∑
D=0

cµ(D)e4m(Dτ), (3)

and for a natural number l, consider the Jacobi theta function defined by

θl,µ(τ, z) :=
∑
r∈Z

r≡µ(mod 2l)

e

(
r2

4l
τ + rz

)
. (4)

The equations (1), (3) and (4) implies the following decomposition of the Jacobi form ϕ(τ, z) :

ϕ(τ, z) =
2mα∑
µ=1

hµ(τ)θmα,µ(αβτ, βz). (5)

The above equation is called the theta decomposition of the Jacobi form ϕ and the functions
hµ are called the theta components of the Jacobi form ϕ. The transformation property of
the Jacobi form ϕ inherits certain transformation properties to hµ. For more details on the
transformation properties satisfied by the function hµ, we refer to [10].

The Fourier coefficients of a Jacobi cusp form satisfies the following bound.

Lemma 2.2. Let ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) be a Jacobi form with the Fourier series expansion as

given in (1). Then there exists a positive real number C0 such that |cϕ(n, r)| ≤ C0D
k
4 , where

D = 4mn− r2.

The above estimate for the Fourier coefficients has nice analytic consequences given in the
following lemma:

Lemma 2.3. Let m be a positive integer and {cµ(D)}, µ = 1, · · · , 2m,D > 0 be a sequence
as defined in (2). Let hµ(τ), θm,µ(τ, z) and ϕ(τ, z) be the power series given by (3), (4)
and (5), respectively. If cµ(D) = O(Dδ) for some δ > 0, then each of the series hµ(τ)
(respectively, hµ(τ)θm,µ(τ, z)) converges absolutely and uniformly on any compact subset of
H (respectively, H×C). In particular they define holomorphic functions on H (respectively,
H× C). Moreover

hµ(τ)θm,µ(τ, z)e
m(pz) = O(y−δ−

3
2 ) as y → 0,

hµ(τ)θm,µ(τ, z)e
m(pz) = O

(
e

(
iy

4m

))
as y → ∞
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hold uniformly with respect to x where τ = x+ iy and z = pτ + q.

Proof. Proof of the above lemma follows in a similar way to lemma 3 [8] □

Lemma 2.4. Let ϕ : H × C → C be a holomorphic function satisfying part (i) of the
definition 2.1. Assume that the estimates em(pz)ϕ(τ, z) = O(v−δ) as y → 0 holds uniformly
with respect to ℜ(τ) for some positive real number δ. Then ϕ ∈ J k

2
,m(Γ

J(N), χ). Moreover,

if δ < k−1
2

then ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ).

Proof. The proof is similar to the proof of Lemma 3 [9]. □

3. Dirichlet Series associated to Jacobi forms of half-integral weight

In this Section, we associate certain Dirichlet series to a Jacobi form of half-integral weight.

Definition 3.1. For a fixed positive integer m, we call ϕ(τ, z) =
∑
n,r∈Z
r2<4nm

cϕ(n, r)e(nτ + rz) to

be a series of type J, if the following properties hold:

(1) The series ϕ(τ, z) converges absolutely and uniformly on every compact subset of
H× C.

(2) There exist positive real numbers C and δ such that |cϕ(n, r)| < C(4mn− r2)δ for all
n, r such that r2 < 4nm.

(3) The Fourier coefficients of cϕ(n, r) satisfy cϕ(n, r) = cϕ(n + λr + λ2m, r + 2mλ) for
every λ ∈ Z.

The condition (1) implies that ϕ : H×C −→ C is a holomorphic function. The condition
(1) and (3) together imply that ϕ has a theta decomposition as given in (5). It is easy to
observe that the Fourier series expansion of a Jacobi cusp form ϕ(τ, z) ∈ J cuspk

2
,m
(ΓJ(N), χ) is

a series of type J with δ = k
4
.

Definition 3.2. Let N and M be positive integers with 4|N and (N,M) = 1. Let ϕ(τ, z)
be a series of type J and χ1 be a primitive Dirichlet character modulo M. Then for each
µ ∈ {0, 1, 2, · · · , 2mM − 1}, we define a Dirichlet series using theta decomposition of ϕ as
follows:

Lµ(ϕχ1 ; s) =
∞∑
D=1

χ1

(
D + µ2

4m

)
cµ(D)

(
D

4m

)−s

. (6)

The completed Dirichlet series is defined by

Λµ(ϕχ1 ; s) =

(
2π

M
√
N

)−s

Γ(s)Lµ(ϕχ1 ; s). (7)

Note here that condition (2) of the definition 3.1 implies the series (6) is uniformly con-
vergent on the complex half plane ℜ(s) > 1 + δ for every µ ∈ {0, 1, 2, · · · , 2mM − 1}.

Definition 3.3. Let m and N be fixed positive integers with 4|N. We call a series ϕ(τ, z) =∑
n,r∈Z

4mn>Nr2

cϕ(n, r)e(nτ + rNz) to be a series of type JN , if the following properties hold:
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(1) The series ϕ(τ, z) converges absolutely and uniformly on every compact subset of
H× C.

(2) There exist positive real numbers C and δ such that |cϕ(n, r)| < C(4mn−Nr2)δ for
all n, r such that Nr2 < 4nm.

(3) The Fourier coefficients of cϕ(n, r) satisfy cϕ(n, r) = cϕ(n+ λrN + λ2mN, r + 2mλ)
for every λ ∈ Z.

A series of type JN has a theta decomposition given by

ϕ(τ, z) =
2m∑
µ=1

gµ(τ)θm,µ(Nτ,Nz) (8)

where gµ(τ) =
∞∑
D=1

dµ(D)e
(
D
4m
τ
)
and dµ(D) = cψ(n, r) with D = 4nm−Nr2. For details we

refer to [[9], p. 170].
If ϕ(τ, z) ∈ J cuspk

2
,m
(ΓJ(N), χ), then ψ(τ, z) = ϕ| k

2
,mWN(τ, z) ∈ J k

2
,mN(Γ

J
1,N(N), χ) and hence

ψ(τ, z) can be represented by a series of type JN .
As in Definition 3.2, for each µ ∈ {0, 1, 2, · · · , 2mM − 1}, we define the Dirichlet series

Lµ(ψ, χ1, s) and the corresponding completed Dirichlet series Λµ(ψ, χ1, s) associated to ψ as
follows:

Lµ(ψχ1 ; s) =
∞∑
D=1

χ1

(
D +Nµ2

4m

)
dµ(D)

(
D

4m

)−s

, (9)

Λµ(ψχ1 ; s) =

(
2π

M
√
N

)−s

Γ(s)Lµ(ψχ1 ; s). (10)

4. Twist and Fricke involution for half-integral weight Jacobi forms

Let k, m,M and N be positive integers such that 4 | N, and χ be a Dirichlet character

modulo N. For a real number λ, let Tλ =

(
1 λ
0 1

)
and Id denote the identity matrix of order

2. Define ϵM by

ϵM =

{
1, M ≡ 1 (mod 4)

i, M ≡ 3 (mod 4).

Definition 4.1. Let ϕ be a series of type J or JN . Let χ1 be a primitive Dirichlet character
modulo M, where (N,M) = 1. The twist of ϕ(τ, z) by χ1 is defined by

ϕχ1(τ, z) =
∑
n,r∈Z
r2≤4nm

χ1(n)cϕ(n, r)e(nτ + rz). (11)

Lemma 4.2. Let ϕ ∈ J k
2
,m(Γ

J(N), χ) be a Jacobi form with the Fourier series expansion as

given in (1). Let χ1 be a primitive Dirichlet character modulo M, where (N,M) = 1. Then

ϕχ1(τ, z) ∈ J k
2
,m(Γ

J
M,1(NM

2), χχ2
1).

Further, if ϕ is a Jacobi cusp form, then ϕχ1 is also a Jacobi cusp form.
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Proof. For any u ∈ Z, consider the matrix Tu =

(
1 u
0 1

)
∈ SL2(R). Then T̃u =

((
1 u
0 1

)
, 1

)
∈

G, where 1 is the constant function 1. Now

ϕ| k
2
,m(T̃ u

M
, (0, 0), 1)(τ, z) = ϕ

(
τ +

u

M
, z
)
=

∑
n,r∈Z
r2≤4nm

e
(un
M

)
cϕ(n, r)e(nτ + rz).

Multiplying by χ1(u) and summing over all u (mod M), we obtain

M−1∑
u=0

χ1(u)ϕ| k
2
,m(T̃ u

M
, (0, 0), 1)(τ, z) =

∑
n,r∈Z
r2≤4nm

(
M−1∑
u=0

χ1(u)e
(un
M

))
cϕ(n, r)e(nτ + rz),

=
∑
n,r∈Z
r2≤4nm

Gn,χ1
cϕ(n, r)e(nτ + rz),

where Gn,χ1
is the Gauss sum associated with the primitive Dirichlet character χ1 defined by

Gn,χ1
=

M−1∑
u=0

χ1(u)e(
un
M
). Note that Gn,χ1

= 0 if (n,M) > 1. Therefore

M−1∑
u=0

χ1(u)ϕ| k
2
,m(T̃ u

M
, (0, 0), 1)(τ, z) = Gχ1

ϕχ1(τ, z), (12)

where G1,χ1
= Gχ1

.

Let L = NM2 and γ̃ = (γ, j(γ, τ)), where γ =

(
a b
cL d

)
∈ Γ0(L). Now

γ′ := T u
M
γT−1

d2u
M

∈ Γ0(L) ⊂ Γ0(N), χ(γ) = χ(γ′), γ̃′ = (γ′, j(γ′, τ)) ∈ Γ̃0(L) ⊂ Γ̃0(N)

and γ̃′ = (T̃ u
M
, (0, 0), 1)γ̃(T̃−1

ud2

M

, (0, 0), 1). Thus for any [γ̃, (λ, ν), 1] ∈ ΓJM,1(L), we have

(ϕ| k
2
,m(T̃ u

M
, (0, 0), 1))| k

2
,m(γ̃, (λ, ν), 1)(τ, z) = ϕ| k

2
,m

(
γ̃′,

(
λ, ν − λd2u

M

)
, 1

) ∣∣
k
2
,m
(T̃ud2

M

, (0, 0), 1)(τ, z)

= χ(γ)ϕ| k
2
,m(T̃ud2

M

, (0, 0), 1)(τ, z).

From (12) and the above equation, we obtain

Gχ1ϕχ1| k
2
,m(γ̃, (λ, ν), 1)(τ, z) = χ(γ)

M−1∑
u=0

χ1(u)ϕ| k
2
,m(T̃ud2

M

, (0, 0), 1)(τ, z). (13)

As (d,M) = 1 replacing d2u by u in (13), we obtain

Gχ1ϕχ1| k
2
,m(γ̃, (λ, ν), 1)(τ, z) = χ(γ)

M−1∑
u=0

χ1(ud
−2)ϕ| k

2
,m(T̃ u

M
, (0, 0), 1)(τ, z)

= χ(γ)χ1(d
2)

M−1∑
u=0

χ1(u))ϕ| k
2
,m(T̃ u

M
, (0, 0), 1)(τ, z).
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Now as χ1(d) = χ1(γ), from (12) we get

ϕχ1| k
2
,m(γ̃, (λ, ν), 1)(τ, z) = χχ2

1(γ)ϕχ1(τ, z).

Thus we see that ϕχ1 satisfies the transformation properties of Jacobi forms. From the
Fourier expansion of ϕ is easy to check that ϕχ1 has the required Fourier expansion. □

Definition 4.3. Let k and m be positive integers and ϕ be a complex-valued holomorphic
function defined on H×C. For a positive integer L, we define the following Fricke involution
type operator by

W k,m
L (ϕ) := (U√

Lϕ)| k
2
,mLh, (14)

where h = (γ̃, (0, 0), 1) ∈ G̃J , γ̃ =

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ) 1

2

)
∈ G, and the operator UL is

defined as

ULϕ(τ, Z) := ϕ(τ, Lz).

We have the following form of (14)

W k,m
L (ϕ)(τ, z) = i

k
2L− k

4 τ−
k
2 emL

(
−z

2

τ

)
ϕ

(
− 1

Lτ
,
z

τ

)
. (15)

We write WL instead of W k,m
L when k and m are clear from the context.

Lemma 4.4. Let L be a positive integer with 4|L and χ a Dirichlet character modulo L. If
ϕ ∈ J k

2
,m(Γ

J(L), χ), then

WL(ϕ) ∈ J k
2
,mL(Γ

J
1,L(L), χ

∗),

where χ∗(d) = χ(d)
(
N
d

)
. Further, if ϕ is a Jacobi cusp form, then WL(ϕ) is also a Jacobi

cusp form.

Proof. Holomorphicity of the functionWL(ϕ) is obvious from the equation (15). For matrices

γ =

(
a b
cL d

)
, γ′ =

(
d −c

−bL a

)
∈ Γ0(L), we have

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
γ̃

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)−1

=

(
γ′,

(
N

d

)
j(γ′, τ)

)
.

Thus by the definition of WL and above identity, we have

WL(ϕ)| k
2
,mL(γ, j(γ, τ))(τ, z) = (U√

Lϕ)| k
2
,mL

(
γ′,

(
N

d

)
j(γ′, τ)

)((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
=

(
N

d

)
U√

L(ϕ| k
2
,mγ̃

′)| k
2
,mL

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
=

(
N

d

)
χ(d)(U√

Lϕ)| k
2
,mL

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
=

(
N

d

)
χ(d)WLϕ.
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Now we consider (Id, (λ, ν), ζ
j
L) ∈ ΓJ1,L(L). We have

WL(ϕ)| k
2
,mL(Id, (λ, ν), ζ

j
L)(τ, z)

= (U√
Lϕ)| k

2
,mL

(
Id,

(
−
√
Lν,

λ√
L

)
, ζjL

)((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
.

We have

(U√
Lϕ)| k

2
,mL

(
Id,

(
−
√
Lν,

λ√
L

)
, ζjL

)
= U√

L(ϕ| k
2
,m(Id, (−Lν, λ), 1)).

As ϕ ∈ J k
2
,m(Γ

J(L), χ), we obtain

(U√
Lϕ)| k

2
,mL

(
Id,

(
−
√
Lν,

λ√
L

)
, ζjL

)
= U√

L(ϕ).

Hence we have WL(ϕ)| k
2
,mL(Id, (λ, ν), ζ

j
L) = WL(ϕ). It easy to check that WL(ϕ) has required

Fourier expansion and proof is similar to that of Lemma 5, p. 166, [9]. □

Lemma 4.5. Let ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) be a Jacobi cusp form. Let χ1 be a primitive Dirichlet

character modulo M, where (N,M) = 1. Denote ψ = WN(ϕ). Then

(WNM2(ϕχ1))(τ, z) = Cχ1ψ
∗(τ,Mz),

where

Cχ1 =

(
−1

M

) k−1
2

χ(M)

(
N

M

)
χ1(−N)ϵ−1

M G−1
χ1

and

ψ∗(τ, z) =
M−1∑
u=0

χ1(u)
( u
M

)
ψ| k

2
,m(T̃ u

M
, (0, 0), 1).

Proof. Let u be an integer such that (u,M) = 1. Then there exist integers x, y such that

xM − yuN = 1. Then γ =

(
M −y

−uN x

)
∈ Γ0(N). Observe that

(T̃ u
M
, (0, 0), 1))

((
0 − 1√

NM2√
NM2 0

)
, (NM2)

1
4 (−iτ)

1
2 , (0, 0), 1

)
=

((
0 − 1√

N√
N 0

)
, N

1
4 (−iτ)

1
2 , (0, 0), 1

)
γ̃(T̃ y

M
, (0, 0), 1))(Id,

( y
M

)
ϵM , (0, 0), 1).
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Also, note that UM
√
N(ϕ| k

2
,m(T̃ u

M
, (0, 0), 1))(τ, z) = (UM

√
Nϕ)| k

2
,mNM2(T̃ u

M
, (0, 0), 1)(τ, z). There-

fore

(WNM2(ϕ| k
2
,m(T̃ u

M
, (0, 0), 1))(τ, z)

= UM
√
N(ϕ| k

2
,m(T̃ u

M
, (0, 0), 1))| k

2
,mNM2

((
0 − 1√

NM2√
NM2 0

)
, (NM2)

1
4 (−iτ)

1
2 , (0, 0), 1

)
(τ, z)

=
( y
M

)
ϵ−kM (UM

√
Nϕ)| k

2
,mNM2

((
0 − 1√

N√
N 0

)
, N

1
4 (−iτ)

1
2 , (0, 0), 1

)
γ̃(T̃ y

M
, (0, 0), 1))(τ, z)

=
( y
M

)
ϵ−kM UM

(
U√

Nϕ| k
2
,mN

((
0 − 1√

N√
N 0

)
, N

1
4 (−iτ)

1
2 , (0, 0), 1

)
γ̃(T̃ y

M
, (0, 0), 1)

)
(τ, z)

=
( y
M

)
ϵ−kM UM

(
WN(ϕ)| k

2
,mN γ̃| k

2
,mN(T̃ y

M
, (0, 0), 1)

)
(τ, z)

=
( y
M

)
ϵ−kM UM

(
ψ| k

2
,mN γ̃| k

2
,mN(T̃ y

M
, (0, 0), 1)

)
(τ, z).

Using Lemma 4.4, we obtain

WNM2(ϕ| k
2
,mT̃ u

M
, (0, 0), 1))(τ, z) =

( y
M

)
ϵ−kM χ(M)

(
N

x

)
ψ| k

2
,mN(T̃ y

M
, (0, 0), 1)(τ,Mz).

Now multiplying above equation by χ1(u) and summing over all u (mod M) as in (12), we
obtain

(WNM2(Gχ1
ϕχ1))(τ, z) = ϵ−kM χ(M)

(
N

M

)M−1∑
u=0

χ1(u)
( y
M

)
ψ| k

2
,mN(T̃ y

M
, (0, 0), 1)(τ,Mz)

= ϵ−kM χ(M)

(
N

M

)
χ1(−N)

M−1∑
u=0

χ1(y)
( y
M

)
ψ| k

2
,mN(T̃ y

M
, (0, 0), 1)(τ,Mz)

= ϵ−kM χ(M)

(
N

M

)
χ1(−N)ψ∗(τ,Mz).

Hence the result follows. □

Lemma 4.6. Let ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) be a Jacobi cusp form, where χ is a Dirichlet character

modulo N. Let M be a prime with (N,M) = 1. Then

BM(ϕ) ∈ J cuspk
2
,m
(ΓJM,1(NM

2), χ),

where BM(ϕ) is defined by

BM(ϕ) :=
1

M

∑
u (mod M)

ϕ| k
2
,m(T̃ u

M
, (0, 0), 1).

Proof. Let M ′ = NM2. Consider the matrix γ =

(
a b
cM ′ d

)
∈ Γ0(M

′). Then we have

(T̃ u
M
, (0, 0), 1)

((
a b
cM ′ d

)
, (0, 0), 1

)
= γ̃′(T̃ud2

M

, (0, 0), 1),
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where γ′ =

(
a′ b′

cM ′ d′

)
∈ Γ0(M

′) with d′ = d− cd2 uM
′

M
. We have

BM(ϕ)| k
2
,mγ̃ =

1

M

∑
u (mod M)

(ϕ| k
2
,m(T̃ u

M
, (0, 0), 1))| k

2
,mγ̃

=
1

M

∑
u (mod M)

(ϕ| k
2
,mγ̃

′)| k
2
,m(T̃ud2

M

, (0, 0), 1)

= χ(d′)
1

M

∑
u (mod M)

ϕ| k
2
,m(T̃ud2

M

, (0, 0), 1)

= χ(d′)
1

M

∑
u (mod M)

ϕ| k
2
,m(T̃ u

M
, (0, 0), 1)

= χ(d)BM(ϕ).

In the above calculation we have used that (d,M) = 1 and d′ ≡ d (mod N) to obtain χ(d) =
χ(d′). Other transformation properties and required Fourier expansion follows similarly as
in the proof of Lemma 4.2.

□

Lemma 4.7. Let M be an odd prime, and χ1 be a primitive Dirichlet character modulo M.
For a complex-valued holomorphic function ψ defined on H×C, consider the function ψ∗ as
defined in Lemma 4.5. Then

(i) If χ1 ̸= χ2 then Cχ1ψ
∗ = (−1

M
)
k−1
2 χ(M)(N

M
)χ1(−N)ϵ−1

M Gχ1χ2G−1
χ1
ψχ1χ2 .

(ii) If χ1 = χ2, then Cχ1ψ
∗ = (−1

M
)
k−1
2 χ1(M)(M

1
2BM(ψ)−M− 1

2ψ).

Here Cχ1 is as in Lemma 4.5 and χ2(u) =
(
u
M

)
.

Proof. If χ1 ̸= χ2, then χ1χ2 is primitive character modulo M, and the proof follows from
Lemma 4.2.

If χ1 = χ2, then

ψ∗ =
M∑
u=1

ψ| k
2
,m(T̃ u

M
, (0, 0), 1)− ψ =MBM(ψ)− ψ

and Cχ1 = (−1
M
)
k−1
2 χ(M)ϵ−1

M

(
N
M

) (−N
M

)
= (−1

M
)
k−1
2 χ(M). □

5. Main result

In this Section, We state the main results of this paper.

Theorem 5.1. Let m,N and M be positive integers such that 4|N and (N,M) = 1. Let χ be
a Dirichlet character modulo N , χ1 be a primitive Dirichlet character modulo M, and χ2 be
a Dirichlet character defined by χ2(·) =

( ·
M

)
, where

( ·
M

)
denotes the Jacobi symbol. If ϕ ∈

J cuspk
2
,m
(ΓJ(N), χ) is a Jacobi cusp form with WN(ϕ) = ψ, then for each µ = 0, 1, · · · , 2mM−1,

the completed Dirichlet series Λµ(ϕ, χ1, s) associated to ϕ admits a holomorphic continuation
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to the whole complex plane. Moreover, they are bounded in any vertical strip and satisfy the
functional equation:

• For χ1 ̸= χ2(
2mM√
N

)− 1
2
2mM−1∑
µ=0

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(1)

χ1
Λa(ψχ1χ2 ;

k

2
− s− 1

2
),

where C
(1)
χ1 = (−1

M
)
k−1
2 χ(M)(N

M
)χ1(−N)Gχ1χ2G−1

χ1
.

• For χ1 = χ2(
2mM√
N

)− 1
2
2mM∑
µ=1

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(2)

χ1
Λa(M

1
2BM(ψ)−M− 1

2ψ;
k

2
− s− 1

2
),

where C
(2)
χ1 = (−1

M
)
k−1
2 χ(M) and the operator BM is defined in Lemma 4.6.

We now state the converse of the above theorem. For this, we need the following notation.
For a positive integer N, let MN be the set of all prime numbers p such that (p,N) = 1 and
the set MN ∩ {aL+ b|L ∈ Z} is non-empty for all a, b ∈ Z \ {0} with (a, b) = 1.

Theorem 5.2. Let m,N be positive integers such that 4|N, and χ be a Dirichlet character
modulo N. Let {cϕ(n, r)} and {cψ(n, r)} be sequences of complex numbers such that the series

ϕ(τ, z) =
∑
n,r∈Z

4mn>r2

cϕ(n, r)e(nτ + rz)

and

ψ(τ, z) =
∑
n,r∈Z

4mn>Nr2

cψ(n, r)e(nτ + rNz)

are of type J and JN , respectively, and ψ(τ, z) = (−1)
k
2χ(−1)ψ(τ,−z). Assume that for

every primitive Dirichlet character χ1 of conductor M ∈ M∪{1}, Λµ(ϕ, χ1, s) is entire and
bounded in every vertical strip and satisfies the following conditions:

(i) if χ1 ̸= χ2(= ( ·
M
)), then(

2mM√
N

)− 1
2
2mM−1∑
µ=0

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(1)

χ1
Λa(ψ, χ1χ2;

k

2
− s− 1

2
)

where C
(1)
χ1 = (−1

M
)
k−1
2 χ(M)(N

M
)χ1(−N)Gχ1χ2G−1

χ1
.

(ii) if χ1 = χ2 = ( ·
M
), then(

2mM√
N

)− 1
2
2mM−1∑
µ=0

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(2)

χ1
Λa(M

1
2BM(ψ)−M− 1

2ψ;
k

2
− s− 1

2
)

where C
(2)
χ1 = (−1

M
)
k−1
2 χ(M).
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If for every µ ∈ {0, 1, 2, · · · , 2mM − 1} the Dirichlet series Lµ(ϕ; s) converges absolutely for
k
2
− 1− ϵ for any ϵ > 0, then

ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) and ψ = WN(ϕ).

6. Proofs

In this Section we present the proofs of Theorem 5.1 and Theorem 5.2.

6.1. Proof of Theorem 5.1. We need the following half-integral weight version of Propo-
sition 1 in [9] to prove Theorem 5.1.

Lemma 6.1. Let k,m and N be positive integers with k odd and 4|N. Let χ1 be a char-
acter mod M with (M,N) = 1. If ϕ(τ, z) and ψ(τ, z) are Fourier series of type J and JN ,
respectively. Then the following statements are equivalent:

a) There exists a constant C such that

(WNM2(ϕχ1))(τ, z) = Cψ∗(τ,Mz).

b) The functions Λµ(ϕχ1,s) and Λµ(ψ
∗, s) (1 ⩽ µ ⩽ 2mM) have a holomorphic contin-

uation to the whole complex plane. Moreover they are bounded in any vertical strip
and satisfy the functional equations(

2mM√
N

)− 1
2

2mM∑
µ=1

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = CΛa

(
ψ∗;

k

2
− s− 1

2

)
, where 1 ⩽ a ⩽ 2mM.

Proof. Since the definitions of Fricke involution in the case of integral weight ([9], p.) and
half integral weight ((14)) vary just by a constant, the lemma follows just by replacing k
with k

2
in the proof of the Proposition 1 in [9]. □

We now give a proof of the Theorem 5.1. Since ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) is a Jacobi cusp form

with WN(ϕ) = ψ, from Lemma 4.5 it is easy to see that ϕ and ψ as series of type J and
type JN satisfying condition (a) of Lemma 6.1. Hence from Lemma 6.1, we deduce that
for every µ = 0, 1, · · · , 2mM − 1 the completed Dirichlet series Λµ(ϕχ1 ; s) have holomorphic
continuation to whole complex plane, are bounded on every vertical strip and satisfy the
function equation(
2mM√
N

)− 1
2

2mM∑
µ=1

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = CΛa

(
ψ∗;

k

2
− s− 1

2

)
, where 1 ⩽ a ⩽ 2mM.

Now the result follows from Lemma 4.7.

6.2. Proof of Theorem 5.2. We first state two lemmas which will be used to prove The-
orem 5.2. To state these lemma, we need the following notation. For a complex-valued
holomorphic function ψ on H× C, we define Ωψ = {σ ∈ C[G] : ψ| k

2
,mσ = 0}, where C[G] is

the group ring. Then Ωψ is a right ideal in C[G].
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Lemma 6.2. Let m,N be positive integers and M be prime such that 4|N and (N,M) = 1.
Let χ be a Dirichlet character modulo N , χ1 be a primitive Dirichlet character modulo M.
Let ϕ(τ, z) and ψ(τ, z) be series of type J and type JN , respectively. Assume that ϕ and ψ
satisfy the following:

WN(ϕ) = Cχ1ψ
∗ with Cχ1 =

(
−1

M

) k−1
2

χ(M)

(
N

M

)
χ1(−N)ϵ−1

M G−1
χ1

and

ψ∗(τ, z) =
M−1∑
u=0

χ1(u)
( u
M

)
ψ| k

2
,mT u

M
.

Then, for u, v ∈ Z with (u,M) = (v,M) = 1, we have( v
M

)(
γ̃(M, v)− χ(M)

(
N

M

))
T v

M
≡
( u
M

)(
γ̃(M,u)− χ(M)

(
N

M

))
T u

M
(mod Ωψ).

Proof. The proof uses the similar method as given in Lemma 2.17 (p. 30, [3]). □

Lemma 6.3. Let N be a positive integer, and M1,M2 are prime numbers with (M1, N) =
1 = (M2, N). Let χ1 be a primitive Dirichlet character with conductor M1 or M2. Let ϕ(τ, z)
and ψ(τ, z) be series of type J and type JN , respectively. Suppose that ϕ and ψ satisfy the
assumptions given in Lemma 6.2. Then

ψ| k
2
,mNγ = χ(M1)

(
N

M1

)
ψ for all γ =

(
M1 −v
−uN M2

)
∈ Γ0(N).

Proof. The proof is a straight forward adaptation of the Lemma 2.18 (p. 32, [3]). □

We now give a proof of Theorem 5.2.
It is easy to observe that ϕ(τ, z) and ψ(τ, z) are holomorphic function on H × C. From

the functional equation for M = 1 in Lemma 6.1 (χ1 will be the trivial character), it follows
that ψ = WN(ϕ). Now, let M be a prime number and χ1 be a primitive Dirichlet character
modulo M. Then from the conditions (i), (ii) and Theorem 6.1, it follows that

(WN(ϕχ1))(τ, z) = Cχ1ψ
∗(τ,Mz).

Next, we prove that

ψ| k
2
,mN γ̃ = χ(M2)

(
N

M2

)
ψ for all γ =

(
M1 −v
−uN M2

)
∈ Γ0(N).

If c = 0, then γ =

(
±1 v
0 ±1

)
and the required transformation property for ψ is easy to

check. Now, assume that c ̸= 0 and γ =

(
a −b
cN d

)
. Since (a, cN) = 1 = (d, cN) there exist

integers s, t such that a+ tcN, d+ scN ∈ M. Put a′ = a+ tcN, d′ = d+ scN, c′ = −c and
b′ = −(b+ as+ stcN + dt). Then we have(

a b
cN d

)
=

(
1 −t
0 1

)(
a′ −b′

−c′N d,

)(
1 −s
0 1

)
.
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From the above computation, we obtain

ψ| k
2
,mN γ̃ = ψ| k

2
,mN

(
1 −t
0 1

)∼(
a′ −b′

−c′N d′

)∼(
1 −s
0 1

)∼

= ψ| k
2
,mN

(
a′ −b′

−c′N d′

)∼(
1 −s
0 1

)∼

.

Using Lemma 6.3, we obtain

ψ| k
2
,mN γ̃(τ, z) = χ(a′)

(
N

a′

)
ψ(τ, z).

Since a′d′ ≡ 1 and 4 | N, we have

ψ| k
2
,mN γ̃(τ, z) = χ(d′)

(
N

d′

)
ψ(τ, z).

Also d′ = d+ scN. Thus, we have

ψ| k
2
,mN γ̃(τ, z) = χ(d)

(
N

d

)
ψ(τ, z). (16)

The invariance of ψ(τ, z) under the group (Z × N−1Z)⟨ζN⟩ follows from the theta decom-
position of ψ(τ, z). Hence

ψ| k
2
,mNh(τ, z) = χ(d)

(
N

d

)
ψ(τ, z) for every h ∈ ΓJ1,N(N).

For matrices γ =

(
d −c

−bL a

)
, γ′ =

(
a b
cL d

)
∈ Γ0(L), we have

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
γ̃

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)−1

=

(
γ′,

(
N

d

)
j(γ′, τ)

)
.

Thus by definition of WL and above identity, we have

WL(ϕ)| k
2
,mL(γ, j(γ, τ))(τ, z)= (U√

Lϕ)| k
2
,mL

(
γ′,

(
N

a

)
j(γ′, τ)

)((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
=

(
N

a

)
U√

L(ϕ| k
2
,mγ̃

′)| k
2
,mL

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
(17)

From (16) and (17), we obtain(
N

a

)
U√

L(ϕ| k
2
,mγ̃

′ − χ(a)ϕ)| k
2
,mL

((
0 − 1√

L√
L 0

)
, L

1
4 (−iτ)

1
2

)
= 0,

for every (τ, z) ∈ H×C. Hence we have that ϕ| k
2
,mγ̃

′ = χ(a)ϕ = χ(d)ϕ, for every γ̃′ ∈ Γ̃0(N).
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To check the cuspidality, we need to estimate em(pz)hµ(τ)θm,µ(τ, z). For this, consider

dµ(n) defined by dµ(n) :=
n∑

N=1

|cµ(N)|. Then, we have

dµ(n) ≤ n
k
2
−1−ϵ(

∞∑
N=1

|cµ(N)N− k
2
+1+ϵ|).

Thus, we obtain dµ(n) = O(n
k
2
−1−ϵ) and

∞∑
n=0

dµ(n)e
−2πy = O(y−

k
2
+ϵ). A straight forward cal-

culation shows that em(z)ϕµ(τ)θm,µ(τ, z) = O(y−
k
2
+ 1

2
+ϵ) and hence em(z)ϕ(τ, z) = O(y−

k
2
+ 1

2
+ϵ).

Finally, Lemma 2.4 together with the above observation implies that ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ).
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