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ABSTRACT. Given a fixed Jacobi cusp form, we consider a family of linear maps between
the spaces of Jacobi cusp forms by using the Rankin-Cohen brackets and then we compute
the adjoint maps of these linear maps with respect to the Petersson scalar product. The
Fourier coefficients of the Jacobi cusp forms constructed using this method involve special
values of certain Dirichlet series associated to Jacobi cusp forms. This is a generalization of
the work due to W. Kohnen (Math. Z., 207, 657-660 [1991]) and S. D. Herrero (Ramanujan
J., [2014)) in case of elliptic modular forms to the case of Jacobi cusp forms which is also
considered earlier by H. Sakata (Proc. Japan Acad. Ser. A, Math. Sc. 74 [1998]) for a
special case.

1. INTRODUCTION

Using the existence of adjoint linear maps and properties of Poincare series in [9] W.
Kohnen constructed certain linear maps between spaces of modular forms with the property
that the Fourier coefficients of image of a form involve special values of certain Dirichlet
series attached to these forms. In fact, Kohnen constructed the adjoint map with respect to
the usual Petersson scalar product of the product map by a fixed cusp form. This result has
been generalized by several authors to other automorphic forms (see the list [10, 11, 15]).
In particular, Choie, Kim and Knopp [4] and Sakata [14] have analogous results for Jacobi
forms.

There are many interesting connections between differential operators and modular forms
and many interesting results have been found. In [12, 13], Rankin gave a general description
of the differential operators which send modular forms to modular forms. In [5], H. Cohen
constructed bilinear operators and obtained elliptic modular forms with interesting Fourier
coefficients. In [16, 17], Zagier studied the algebraic properties of these bilinear operators
and called them Rankin—Cohen brackets.

Recently the work of Kohnen in [9] has been generalized by S. D. Herrero in [8], where the
author constructed the adjoint map using the Rankin-Cohen brackets by a fixed cusp form
instead of product map. Rankin—Cohen brackets for Jacobi forms were studied by Choie
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[1, 2] by using the heat operator. We generalize the work of S. D. Herrero to the case of
Jacobi forms. We follow the same exposition as given in [14].

2. PRELIMINARIES ON JACOBI FORMS OVER H x C

Let H and C be the complex upper half-plane and the complex plane, respectively. The
Jacobi group I'Y = SLy(Z) x (Z x Z) acts on H x C in the usual way by

b at +b 2+ AT+ p
((g d)’()\”u)) '(T’Z>:(CT+CZ’ cT+d )

Let k£, m be fixed positive integers. If v = ((g 3), (A, ,u)> € I'’ and ¢ be a complex valued

function on H x C, then define

. (24 Ar41)2
Blimy 1= (o7 + d) F2Tm LTI T (o (7, 2)).

Let Jy,, be the space of Jacobi forms of weight k¥ and index m on T'Y| i.e., the space of
holomorphic functions ¢ : H x C — C satisfying ¢|x .y = ¢, Vv € '/ and having a Fourier
expansion of the form

¢(7_7 Z) _ Z C(TL, r>qn€r (q _ 627ri7"<: _ 627riz)‘
n,rez,
dnm—r2>0

Further, we say ¢ is a cusp form if and only if ¢(n,r) # 0 = n > r?/4m. We denote the

space of all Jacobi cusp forms by J;°P. We define the Petersson scalar product on J.7

747Tmy2

<gb,@/)>:/ o1, 2) (T, 2)v*e v dVy,
I'\HxC

dudvdxd
where 7 = u + v,z = x + iy and dV; = —3y is an invariant measure under the action
v
on I'Y on H x C. The space (J;F,(,)) is a finite dimensional Hilbert space. For more details

on the theory of Jacobi forms, we refer to [6]. The following lemma tells about the growth
of the Fourier coefficients of a Jacobi form.

Lemma 2.1. If ¢ € Ji,,, and k > 3 with Fourier coefficients c(n,r), then
c(n,r) << |r? — 4nm]k*%,

and moreover, if ¢ is a Jacobi cusp form, then

1

c(n,r) << |r? — 4nm|g 2.

For a proof, we refer to [3].
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2.1. Poincare series. We define the Jacobi Poincare series.

Definition 2.2. Let m,n and r be fized integers with r? < 4mn.

Py (7,2) = Y 270y (1)
yeLL AT

be the (n,r)-th Poincare series of weight k and index m. Here T7_ := { ((6 D, (0, ,u)) lt,p € Z}
is the stabilizer of ¢"¢" in T, It is well known that Py € Jem for k> 2 (see [T]).
This series has the following property.

Lemma 2.3. Let ¢ € J. P with Fourier expansion

o(r,2) = Y, cnr)g'¢

n,rez,
Anm—r2>0
Then ,
<¢7 Pk,m;(”ﬂ’)> = ak,m(4mn - r2)*k+§c(n, T)v (2)

where

mF2T(k — 3)

ak,m = =3 .
k=3

One can get explicit Fourier expansion of Py ,(nr, for details we refer to [7].

2.2. Rankin-Cohen Brackets for Jacobi forms. For an integer m, we define the heat

operator
1 0 0?
Ly, = —— m—— —= | .
" (2mi)? (87mma7_ (922)

Let k1, ko, m; and mo be positive integers and v > 0 be an integer. Let ¢ and 1 be two
complex valued holomorphic functions on H x C. Define the v-th Rankin-Cohen bracket of

¢ and ¥ by
il _3 _3
octli= S (U (P T e, 0. @

v—1
=0

We note that here 2! = T'(x + 1). Using the action of heat operator (Lemma 3.1 in [1]), one
can easily verify that

[¢|k1,m177¢‘k2,m2’7]v - [gbv 7vZ)]|kl-|—1€2-|—2V7m1—1—771277 vfy € FJ- (4)

Theorem 2.4. [1] Let v > 0 be an integer and ¢ € Jy, my, and O € Jy,m, where ki, ko, my
and mo are positive integers. Then [p, V], € Jpytkot2wmitms- If v > 0, then [p,¢], €

cusp cusp cusp cusp
Ty ikssovimsmg: U @ € Jpomy and ¢ € J 70 o then [, 0], € TV oy mytm, for any v. In
fact, [, 1, is a bilinear map from Ji, my X Jkyms 10 Jiy+kot20my+mo-

For a proof, we refer to [1].

Remark 2.1. We note that the 0-th Rankin-Cohen bracket is the usual product of Jacobi
forms i.e., [¢, ¥]o = ¢



4 ABHASH KUMAR JHA ' AND BRUNDABAN SAHU ' 2

3. STATEMENT OF THE THEOREM

For a fixed ¢ € J,j:izz and an integer v > 0, we define the map

. cusp cusp
Twyl’ . Jk‘l,m1 - Jk1+k:2+21/7m1+m2

defined by Ty, (¢) = [¢, ¢¥],. Ty, is a C-linear map of finite dimensional Hilbert spaces and

- . % . TCusp cusp
therefore has an adjoint map 7, + Ji " o)1 me — Jiym, Such that

<¢7 T¢7V<w)> = <le,l/(¢)7w> \V/Qb S Jlg’luj—l;fg-i-Zu,ml-i-mz and we Jlsilﬁ?j’zl

In the main result we exhibit the Fourier coefficients of Ty ,(¢) for ¢ € J'0 o, 1 s
These involve special values of certain Dirichlet series associated to ¢ and 1. Now we shall

state the main theorem of this paper.

Theorem 3.1. Let ky > 4,ky > 3,m; and my be natural numbers. Let ¢ € J,j;% with
Fourier expansion

P(T,2) = Z a(ng,r1)g™ ™.
n1,m1€Z,
4m2n1—r%>0

Jeusp
k1+ko+2v,m1+ma

oz = 3 blnara)gCn

na,ra€7Z,
4(mi1+ma)ne —'r’% >0

Then the 1mage of any cusp form ¢ € with Fourier expansion

under T} , is given by

T’lZ,V(¢) (7-7 Z) = Z Cl,(n, T)qncr’
n,r€Z,
dmin—r2>0
where i
( ) (4m1n — ?"2)’?175 (ml + m2>k1+k2+2u—2 F(/{}l + k2 + 2 _ %)
cy(n,r) =
rke+2v m’fl_2 F(kl — %>
- 4 - llfl—b
37 Al by )ty 3 U =AYl b4 s r 4 )
1=0 w4 ) (my +mg) — (1 +rp)2)therev=s
4man1—r2>0
4(mi+ma)(n+n1)—(r+r1)?>0
and

ki +v—3\(ka+v—3\ ,_
Al(k17ml7k27m2;y) = (_1>l< ly_l 2)( ? l 2)m1 lle'

Remark 3.1. Using the Lemma 2.1 (as given in the remark 3.1 in [14]) one can show that
the inner sum of the series converges for k; > 4 and ky > 3.
Remark 3.2. Fixing ¢ € J,_"" and suppose that J")" is one dimensional space generated by

ka,m2 k1,m

f(7,2), then applying the above theorem we get T7 (#)(7, 2) = ay f (7, 2) for some constant

ay and for all o € J' o . Now equating the (n,r)-th Fourier coefficients both the

sides, we get relation among the special values of Rankin-Selberg type convolution of the
Jacobi forms ¢ and ¢ with the Fourier coefficients of f(7, z).
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For example, taking ¢ = ¢101 = 144(
is one dimensional space generated by ¢19; =

E6E41 - E4E6 1) chgslp and 1{31 = 12,m1 =1 ((]f;slp
—+(E?E,, — FEgEg.1)), we get the following

' 144
relation:
(4ng — b
ZA; (12,1,10,1;v) lz m = )" an,r) (n;? ;’VT_J; ) _ age(n, )
=0 ni, 7’1€Z n+n1) (T +7"1) ) ’

4nq— 7“1 >0
8(n4n1)—(r+r1)2>0

for all n,r € Z such that 4n—r? > 0, where a(p, q), b(p, q) and c(p, q) are the (p, q)-th Fourier
coefficients of @191, ¢ and ¢121 respectively.

Remark 3.3. In particular taking ¥ = 0 in the above example, we get the special value of
Rankin-Selberg type convolution of ¢19; and ¢ in terms of Fourier coefficients of ¢i2,, i.e.,

a(ny,r1)b(n +ny,r+ 1)
3 ) _ el )
ni,r1 €% (8(n+n1) (7’+?"1) )
4n17rf>0

8(n+n1)—(r+r1)2>0
4. PROOF OF THEOREM 3.1
We need the following lemma to proof the main theorem.

Lemma 4.1. Using the same notation in Theorem 3.1, we have

Z / | o(r, Z)[e2m("7'+rz lkysms s ¢] Uk1+k2+2vew v,
rJ

’YEF] \F] \HX(C

CONVETgES.

Proof. Changing the variable (7, 2) to y~".(7, 2) and using (4), the sum equals to
Z / | §(, 2)[e2milnrra) | qp] phrthat2ve —ar(m tmg)y® v,

yel L\ I\ HxC

and using Rankin unfolding argument, the last sum equals to

47r(m1 +mao)y?

/ | ¢(7—7 Z)[627ri(m'+rz)7w] ,Uk’1+k‘2+2u —1 s |dVJ
L \HxC v

Now replacing ¢ and 1 with their Fourier expansions and using the definition of Rankin-
Cohen brackets, the last integral is majorized by

v
E Ay(ky,ma, ko, mo; v)Ti(ky, by, my, ma, vin, ),
1=0

where

:Z'—l(k17 k27 my,mo, VM, T) = / Z Z | (4m1n - Tz)l(4m2n1 - T%ylil
I \HxC

ne,ro€Z, ni,r1€%
4(m1+ma)na—r2>0 dmani—r?>0
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—4n(mq+ma)y?
k1+k2+21/€ - dV

2mi((n+ni+n2)T+(r+ri+r2)z g

x a(ny, r)b(ng, ra)e ) v
Now it suffices to show that the integral Z;(ky, ko, m1, ma,v;n,r) is finite for each I. We
choose a fundamental domain for the action of I'J, on H x C which is given by ([0, 1] x

[0,00]) x ([0,1] x R) and integrating over it, we have

4(m1 + mg)k1+k2+21’*21’(k1 + ]{?2 + 2v — 3/2)
7Tk‘1+k‘2+2u—3/2

Ti(k1, ko, my, mo, vin,r) <

" Z Z (4min — r?) (dmany — r3)Ya(ng, r1)b(ng, )|
(8(ma1 +ma)(n +ny +ng) — (1 + 1y 4 1rg)?)krthet2v=3/2"

n2,r2E€Z, ni,r1€%
4(m1+ma)na —r§>0 4mony —r%>0

Using the growth of Fourier coefficients given in Lemma 2.1, the above series converges
absolutely. O

Now we give a proof of Theorem 3.1. Put

T;, ()2 = Y alnr)g'd.

n,rez,
dmin—r2>0

Now, we consider the (n,r)-th Poincafe series of weight k; and index mq as given in (1).
Then using the Lemma 2.3, we have

)ik

<le,1/¢7 Pk1,m1;("77’)> = Oky,my (4m1n —r? cl,(n, 7"),

where
my* T (ky — 3)
omk1=3
On the other hand, by definition of the adjoint map we have
<T¢*,y¢7 Pkl,m1;(n,7”)> = <¢7 Tw,l/(Pkl,ml;(n,r)» = <¢7 [Pkl,m1;(n,r)a 77Z}]V>

Hence we get

Oymy =

(M3

o 2Vki—
Cy(nv 7”) = (4m1n L ) <¢7 [Pk1,m1;(n,r)’ 1/}]1/> (5)

Cky,my

By definition,

<¢7 [Pkl,m1;(n,7‘)7 ’l/}]l/> = / ¢(7-7 Z) [Pkl,ml;(n,r)7 w} Vvk1+k2+21j€
IJ\HxC

—4m(my +mg)y?
v

dVy

- / o(r, 2)| Z e2mi(nT+rz) P w]yvk1+k2+2y€MdVJ
I'\HxC 1,1

YELLATY

—4m(m +mo)y?
v

= /J\ o(7, 2) Z [e2milnr+r2) |y w]yvk1+k2+2ue dv;
I'\HxC

~eT L\

= / Z o(T, 2)[exmilnT+ra) |y )] vk1+k2+2yeMdVJ.
I7\HxC ’ 1 Vs Y,

~elJ \I'/
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By Lemma 4.1, we can interchange the sum and integration in (¢, [P, m:(nr), ¥]v). Hence
we get,

ke 4k —dm(my +mo)y?
<§Z§ [Pk1,m1, (n,r)> ¢ Z / T z [e2m(m—+rz |k1,m1 Y, ¢]uv 1tka+2v - dv.
rJ

~er A\’ \HxC

Using the change of variable (7, z) to v~ *.(7, z) and using (4), we get

- —4m(mq1+mg) 2
<¢’ [P]ﬂ,ml;(nﬂ”)? w]ll> = g / ¢(7-’ Z)[€27rl(m'+7“z)7 w]uvk1+k2+2ye 4 1v+ 2)y dVJ
v T\ HxC

yETL NI

Now using Rankin unfolding argument, we have

4r(my+mg)y?

<¢, [Pkl,ml;(n,r)7 ¢]y> = / ¢(77 Z)[€27ri(n7'+rz)7 w]yvk1+k2+2y67* - dv;
T \HxC

B v F+v =3\ (kv =3\ .,
R R ey G o

1=0
- —4r(mq+m9) 2
X Linl (e2w2(nT+Tz))L7Vn_2l<¢)Ukl+k2+2ye+2ydvj
14
= Aj(k1,ma, ko, mo; v T, 2)LL (e2mi(nT+rz)) [r—1
mi ma
—4mw(m1+mg) 2
N Av;. (6)
The repeated action of heat operator on L,,, on e>™("+2) gives
Ll (627ri(n7'+7"z)) — (4m1n o ,r,2)l627ri(n’r+rz)
mi ’

and similarly the repeated action of heat operator on L,,, on the Fourier expansion of v
gives

Lo () = Z a(ny, ) (dmgng — r2)rleritmreriz),

ni,r1 €%
4dmonq —7‘% >0

Now replacing ¢ and v by their Fourier series in (6), we have

<¢ [Pk1,m1,n7") ¢ ZAZ k17m17k27m27 )
=0
% / Z b(TLQ, rz)ezﬁi(n27+T22) <4m1n _ r2)le2m'(m'+rz)
I \HxC no,r2E€ZL,

4(m1+m2)n2—r§>0

o - —dr(m1+mg)y>
X E (4magny — r)"a(ng, ry)e2rilmrinz) hitharavy v %

n1,71 €L
4dmonq 77’% >0
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v

= ZAz(kil,ml,kz,mz;V)

1=0
4 2\1 4 2\v—l
X (dmyn — r°) (dmony — 1) "a(ny, m1)
T2 \HxC n2,r2€Z, n1,m€L
4(m1+m2)n2—r§>0 4m2n1—rf>0
27 - - k k 2 747T(m1+m2)y2
X b(ng, ry)edmi 2T Hr22) g2milnirriz) g2mi(nr-rz) gkithe e =TT gy,
v
= E Ai(kr,ma, k2, ma; v)
1=0
2\l 2\l T
X E g (Admin — r°) (dmaony — 1r7)""'a(ny, r1)b(ng, ra)

no,ro€Z, n1,r1 €L
4(m1 +m2)n2 *7‘% >04many 77‘% >0

—4m(mq+mg)y?
v

X/ 627ri(n27+7"22)627ri(n1’r+7’1z)627r7j(n7'+7’z) Uk1+k2+21/6 dVJ
' \HxC

Putting 7 = u + v, 2 = & + iy, (@, [Pr,my;(n,r)> ¥]v) equals

Z Ai(ky,mq, ko, mo;v) Z Z (4min — 3 (dmyny — r3)"a(ng, r1)b(ng, 7o)

=0 n2,r2€Z, n1,r1€ZL
4(m1+m2)n2—r§>04m2n1—7"%>0
- - i(ro—1— (1o —n— —4m(my +ma)y®
X/ e 27rv(n2+n+n1)e 27Ty(r2+r+r1)62m(r2 r rl)xe27rz(n2 n nl)uvk1+k2+2ue = va (7)
T

J\HxC

A fundamental domain for the action of '/, on H x C is given by ([0, 1] x [0, 00]) x ([0, 1] X R).
Integrating on this region, (@, [Pr, m:(nr), ¥]y) equals

Z Ai(ky,my, koyma; v) Z Z (4m1n—r2)l(4m2n1—r%)”_la(n1, r1)b(ng, r2)

=0 n2,r2€Z, n1,r1€%L
4(mi1+ma)na —r% >0 4mony —r% >0

1 poo pl oo 2
- - (g —1r— i (g —n— _g ZAm(mytmo)y”
X// //6 27rv(n2+n+n1)e 27ry(r2+r+r1)e27rz(r2 r rl)x627rz(n2 n nl)uvk1+k2+2u 36 - d’U/d’dedy
040 J0J —c0

Integrating on = and w first, (@, [Pk, my;(n,r), ¥]y) equals

Z Ay(ky,my, ko, ma; v) Z (4min — ) (dmany — r2)"a(ny, r)b(n + ny,r + 1)

=0 ni,r1€%
4dmany —rf >0
4(m14+m2)(ntni)—(r4+r1)2>0

o[> —dm(m] +mo)y?
< / / 6—47rv(n+n1)e—4wy(r+r1)vk1+k2+2u—3€% dydU (8)
0 —00
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Integrating over y, we have

(r+ry )211

e} —ax( (r r (mq+m )92 7rm m
/ () | oe (9)
e 2y/my + mgo

Substituting the value on (9) and integrating over v, we have

(r1+m)2v

/OO 6—47rv(n+n1) k1+ko+2v— 3\/_6 mitme
0 2y/my + m2
. 1 (m1 + mg)]““”“” 2F<k1 + k’g + 2v — %)
= 27rk1+k2+2,/_% (4(n + n1)(m1 + mz) _ (T + rl)z)k1+k2+gy_%-
Putting the value of integral (10) for (@, [P, m,;(n,r), ¥],) in (8) we have
(m1 + mg)li’k?*?”_QF(kl + ]fz +2v — %)
27Tk1+k2+21/—%

(10)

<¢7 [Pkl,mu(”ﬂ“)? w]l/) =

v 4 _ 2\ 4 .2 l/—l—b
XZAl(k1,m1,k2,m2;V) Z (Amin — r*) (dmany — 1r7)""a(ny, r1)b(n + ny,r +

(11)

1)

=0 n1,m€EZ (4(71 + nl)(ml + m2) - (T + T1)2)k1+k2+21/_%
4mani—r>0

4(my+ma)(ntn1)—(r+r1)2>0

Now substituting (¢, [P, m:nr), ¥]y) from (11) in (5), we get the required expression for
¢y(n,r) given in Theorem 3.1.
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