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ABSTRACT. We evaluate the convolution sums Z o3(Dos(m), Z o3(D)os(m),
lL,meN,l+2m=n I,meN,l4+3m=n

Z o3(l)os(m) and Z o3(l)os(m) for all n € N using the theory of modular
l,meN,2l4+3m=n l,meN,l+6m=n
forms and use these convolution sums to determine the number of representations of a
positive integer n by the quadratic forms Qs ® Qs and Qs @ 2@s, where the quadratic form

Qs is given by

2 2 2 2 2 2 2 2
T+ T1x2 + X3 + T3 + T3x4 + T3 + T5 + Tsxe + T + T7 + T7x8 + Xy

1. INTRODUCTION

Let N denote the set of positive integers. For r,n € N, let 0,.(n) = Z d" be the divisor
djn,deN
function. If n is not a positive integ er, set o,.(n) = 0 and we write o(n) for o1(n). For
a,b,r,s,n € N, we define W;i(n) by

Worn) =Y or(l)os(m), (1)

In [18] S. Ramanujan evaluated the convolution sums I/Vlll3 (n) and T/Vlll5 (n) explicitly and in
[14], J. G. Huard et. al evaluated the convolution sums Wf;’(n) and Wzlf(n) In [11], N.
Cheng and K. S. Williams explicitly evaluated the convolution sums Wllé’(n) and W2115 (n).
The convolution sums W1121 (n), W1141(n), Wllz?’(n), Wzlf’(n), 1/1/1151(71)7 W1152(n) and 1/1/1251 (n)
have been computed by E. Royer [19] and the convolution sums Wllg? (n), Wf’ 31 (n) have been
evaluated recently by O.X.M. Yao and E.X.W. Xia [24]. Convolution sums involving the
divisor function o(n) have been extensively evaluated by K. S. Williams and his coauthors
(see for example ([1]-[8], [10], [11], [14], [22], [23]). Ome of the reasons for the explicit
evaluation of these convolution sums is to use them to obtain formulas for the number of
representations of integers by certain types of quadratic forms. Let Q4 denote the following
quadratic form in 4 variables:

Qu: 2% + ywo + 23 + 22+ w31y + 22 (2)
Then the quadratic form (g in 8 variables, given by Qg = Q4 ® @4 is:
Qs = Q1 ® Qq = 27 + 2122 + 23 + 25 + T334 + 75 + T2 + T576 + T + TF + v708 + 5. (3)
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The number of representations of a positive integer n by the quadratic form @4, denoted by
rQ.(n), is given by

rQ.(n) = 120(n) — 360(n/3). (4)

(See [15, 14].) In [17], G. A. Lomadze obtained a formula for rgy(n), the number of repre-
sentations of an integer n by the quadratic form (g, which is given below.

rog(n) = 2403(n) + 21603(n/3). (5)

Using these formulas, Yao and Xia [24] obtained a formula for the number of representations
of n by the quadratic form (in 12 variables) Q4 ® Qs. In order to obtain this formula, they
used the convolution sums Wl1 g’(n) and Wf’ 31(n)

In this paper, we obtain a formula for the number of representations of an integer n by the
quadratic form (in 16 variables) Qg @ Qg by using the convolution sums W;7(n) and W; g’ (n),
which are proved using the theory of modular forms. We also compute the convolution sums
Wf’g’(n), W;’g’(n) and ngg’(n) (using the theory of modular forms) and use them to find
a formula for the number of representations of a positive integer n by the quadratic form

Qs D 2Qs.

2. PRELIMINARIES AND STATEMENT OF THE RESULTS

Let My(T'o(N)) be the space of modular forms of weight k for the congruence subgroup
Io(N) and Sk(T'o(IN)) the subspace of cusp forms of weight k for I'g(N). For k > 4, let Ej,
be the normalized Eisenstein series of weight &k in M}, (I'g(1)), given by

2k
E =1—-— _
k(2) By ;Uk 1(n)q",
where ¢ = ¢*™ 2z € H = {z =z +iy € C| y > 0}, and By is the k-th Bernoulli number
o0
B
defined by S Z — 2™ The first few Eisenstein series are as follows:
et —1 = m)!

Ei(z) = 14240 o3(n)q"; Ee(z) = 1-504) o5(n)q"; Es(z) = 14480 Y  o7(n)q".
n=1 n=1
(6)

n=1
Since the space Mg(I'p(1)) is one-dimensional, we have the well-known identity
By(2) = E2(2). (7)
By comparing the n-th Fourier coefficients on both sides of (7), we have the identity

Wi n) = Spsor(n) — 1y 08(n). )

Let n(z) be the Dedekind eta function defined by

(o.)
nz) =g/ [[0-q"), ="z € H.
n=1
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Define the functions Ag ;(2), j = 2,3,6 as follows:

Ago(z) = n°(2)n*(22) = D ma(n)d", (9)
n=1
Ass(2) = n2(2)n*(32) +810°(2)n* (32)n°(92) + 18n° (2)n* (32)1°(92)
= Y maln)g", (10)
n=1
Ass(z) = 210 (Ea(2)Ea(62) — Ba(22)Ea(32)) Zm . (11)

In [12], [13], conditions are given in order to determine the modularlty of an eta-quotient
(with weight, level, character). Using these conditions we see that Ago(z) and Ag3(z) are
cusp forms of weight 8 on I'g(2) and I'g(3) respectively. We show that these cusp forms are
new forms in the respective spaces of cusp forms. A theorem of Sturm [21] states that the
Fourier coefficients upto % x iy determines a modular form of weight k on I'o(N), where iy
is the index of the subgroup I'g(N) in SLy(Z). The first few Fourier coefficients of newforms
of given weight and level are obtained using the database of L—functions, modular forms,
and related objects (see [16]). Comparing the Fourier coefficients obtained from the database
with the Fourier coeflicients of the cusp forms defined in terms of eta-quotients, we conclude
that Ago(z) and Ag3(z) are newforms. By definition, the form Agg(z) is a cusp form in
Ss(Ip(6)). By using the Sturm bound and using the first few coefficients of a newform of
weight 8 on I'g(6) from the database [16], we see that the form Agg is a newform. For basic
details on modular forms and newforms, we refer to [20, 9.

Theorem 2.1. Let n € N, and let 13 j(n), j = 2,3,6 be the n-th Fourier coefficients of the
newforms Ag j(z) defined in (9), ( 0) and (11) respectively Then

1 2 n 1
Vi) = gt () + g+ o () 2
12 () 54073 — 240 2040 + 95507 (5) T grpms2(n):
o = g s () g+ o () 2
Wiz(n) = =508 - 240 * 9840 + 081077 (3) + 247830
) = 500 (3) - 350 (5) (5)
Wos(n) = =555 240 3 +167280 (") + 1045577 (3
27 n n 189 n
*55760° 7( >+348507 (6) 8160 82(n) + 5o 7.2 (5)
_|_L ()4_7 <n>_7
520737 + 05783 (5) ~ g™
B = 5 057 (5) + 1a7 57 (5)
Wign) = =55573 (™ = 55573 (5 +167280 ()+1045507 2

+786

+552776007(n> 348507<%> 8160 ()+%r&2(g)
> 480

820 &3\ 20583 2

Let Np(n) be the number of representations of the positive integer n by the quadratic form
Q16 = Qs ® Qs, where Qg is defined by (3). Note that Q6 is the quadratic form
x%—kxlxg+x%+x§+x3x4+xi+x§+x5x6+x%+x$+x7x8+x§+x§+x9x10+x%0+x%l+
T11%12 + 96%2 + ﬁg + 13714 + 96%4 + $%5 + Z15T16 + 96%6-
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Theorem 2.2. Let n € N. Then,
240 19440 n 1728
1n) = Zror(n) + —g—o7 Al

where Tg 3(n) is given by (10).

3 Ts,3 (1), (12)

In [17, Formula (VII), p.12], Lomadze proved the following formula for Nj(n):
For n € N,

240 16
Ni(n) = S (07(n) + 8loz(n/3) + 7 > (4521 — 30na? +2n?). (13)
(€IS xS)EZS
z%+zl12+z%+4..+z$+z7z8+z§:n
Comparing the above two expressions for Ni(n) (equations (12) and (13)), we obtain the
following theorem.

Theorem 2.3. Forn € N, we have
1
m83(n) = 102 > (4527 — 30na? + 2n?). (14)
(z1,...,x8) €L

z%#—zlz2+z%+...+z$+z7zg+z§:n

Let Na(n) be the number of representations of n by the quadratic form Q)4 = Qs ® 2Qs
defined by:

Q61 ..., 16) = 23 + 2129 + T3+ 23 + T334 + 27 + 22 + 2576 + 2% + 22 + 27208 + 2F 4+ 2(2F +
2 2 2 2 2 2 2

Theorem 2.4. Let n € N. Then,

240 3840 smy 19440  /my 311040  /m
Na(n) = Gazor(n) + o707 (5) 697 7 (§> 697 7(8)
936 () + 75816 (n) 92592 ) 41472 (n) (15)
—1789(N Ty — 18.3(MN T —
g5 2 85 o2 \3 205 &3 205 o3 \2)’

where T3 2(n) and 13 3(n) are given by (9) and (10) respectively.

3. PROOFsS

3.1. Proof of Theorem 2.1. The vector space Mg(I'g(2)) has dimension 3 with a basis
{Es(z), Eg(22), Ag2(z)}, where Aga(z) is the unique normalized newform of weight 8 and
level 2. Now E4(z)E4(2z) € Mg(I'0(2)) and writing it as a linear combination of the above
basis, we get

1 16 360
E4(Z)E4(22’) = T?Eg(z) + T?EB(QZ) + ?A&g(z).

The dimension of the space Mg(I'o(3)) is 3 with basis { Eg(2), E5(32), Ag3(2)}, where Ag 3(z)
is the unique normalized newform of weight 8 and level 3. Now Ey(z)E4(32) € Ms(I'0(3)).
Writing it as a linear combination of the above basis, we obtain

1 81 9600
E4(Z)E4(3Z) = 872E8(Z) + 83E8(3Z) + TA&g(z).

The space Mg(I'g(6)) is 9 dimensional with basis
{Eg(z), Eg(zz), Eg(BZ), E8(62), A&Q(Z), A&Q(&Z), A&g(z), A8’3(22), A&G(z)},
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where Agg(z) is the unique normalized newform of weight 8 and level 6. Now the functions
E4(22)E4(3z) and Ey(z)E4(62) are modular forms in Mg(I'g(6)). Writing each of them in
terms of the above basis, we have the modular identities

1 8 81 648 840
E4(22)E4(32) = mEg(Z) + @Eg(Q ) + @Eg(?)z) + @ES(GZ) 17 A&Q(Z’)
68040 2880 46080
+TA8 2(32) 7A8 3( ) 7A8 3(22’) - 120A8 6( )
and
1 8 81 648 840
E E = —Fj3g —Fg(2 —F —F —A
1(2)Ea(62) 1391 28(%) + Gop Bs(22) + 335, Bs(32) + Gon Bs(62) + T Asa()
68040 2880 46080
‘|‘7A8 2( ) Ag 3( ) 7A83(2Z) +120A86( )

By comparing the n-th Fourier coefficients, we obtain the required convolution sums.

3.2. Proof of Theorem 2.2. For n € N, let 7g4(n) be given by (5) and we let rg,(0) = 1.
Then Njp(n) is given by

Nn) = Y, o1 x oo

a,beNU{0} (z1,...,28)€Z8 (z9,...,x16) €L
a+b=n Qg(x1,.- zg)=a Qg(zg,..., z16)=b
= 2rgy(n)roy(0) + Z rQs (a)rQs (D)
a,beN
a+b=n
— 4803 (n) + 43203 (9) + 3 (2403(@)—1—21603 (9)) 2U0s(b) + 216075
3 a,beN 3 3
a-{’—b:n
b
= 4803 (n) + 43203 (g) + 576 Z o3(a)os(b) + 5184 Z os(a)os <3)
a,beN a,beN
a+b=n a+b=n
a b
5184 bz o3 (g) 03(b) + 46656 Y o3 (3) o3 (3)
a,beN a,beN
a+b=n a+b=n

— 4804 (n) + 4320 ( ) + 576 Wi (n) + 10368 W5 (n) + 46656 Wi+ (g) .

n
3

Substituting the formulas for the convolution sum W7y 3 from (8) and the convolution sum

Wi g’ (n) from Theorem 2.1, we get the required formula for Ni(n).
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3.3. Proof of Theorem 2.4. As before, set 7g,(0) = 1. Then using (5), we see that Na(n)
(n € N) is given by

Na(n) = Z Z 1] x Z 1

a,beNU{0} 2 T 8 XTQy..ny x 8
af%U:" Q(8(1$1»~-~,8028€)Z=a és?xgw}gig)ib
= 10: (5) 7as(0) + o (Mrau(O) + Y rau@)ra(®)
R,

= 2403 (5 ) + 21603 (5 ) + 2403 (n) + 21603 (5 )

+ 3 (2403 +21603(3>) <2403(b)—|—21603 (g))

a,beN
a+2b=n
:24()21()24 21 () )
o3 (5 )+ 603 6t o3 (n) + 21603 3 + 576 2 os(a)os(b)
a+’2b:n
+5184 > o3(a)oy <b> +5184 Y oy (9) o3(b) + 46656 Y o3 (9) 3 <b>
3 3 3 3
a,beN a,beN a,beN
a+2b=n a+2b=n a+2b=n

= 2403 ( ) + 21603 <6) + 240’3( )—|- 21603 (g)
576 WPS(n) + 5184 Wi (n) + 5184 W33 (n) + 46656 W3 (1)

Substituting the formulas for the convolution sums W13 23(71), W23 ;’(n) and Wf’ g(n) given in
Theorem 2.1, we get the required formula for No(n).
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