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Abstract. Following Rankin’s method, D. Zagier computed the n-th Rankin-Cohen bracket of

a modular form g of weight k1 with the Eisenstein series of weight k2 and then computed the

inner product of this Rankin-Cohen bracket with a cusp form f of weight k = k1 + k2 + 2n and

showed that this inner product gives, upto a constant, the special value of the Rankin-Selberg

convolution of f and g. This result was generalized to Jacobi forms of degree 1 by Y. Choie and

W. Kohnen. In this paper, we generalize this result to Jacobi forms defined over H× C(g,1).

1. Introduction

There are many interesting connections between differential operators and the theory of modular

forms and many interesting results have been studied. In [10], R. A. Rankin gave a general

description of the differential operators which send modular forms to modular forms. In [6], H.

Cohen constructed bilinear operators and obtained elliptic modular form with interesting Fourier

coefficients. In [12], D. Zagier studied the algebraic properties of these bilinear operators and called

them as Rankin-Cohen brackets. In [13], following Rankin’s method, Zagier computed the n-th

Rankin-Cohen bracket of a modular form g of weight k1 with the Eisenstein series of weight k2

and then computed the inner product of this Rankin-Cohen bracket with a cusp form f of weight

k = k1 + k2 + 2n and showed that this inner product gives, upto a constant, the special value of

the Rankin-Selberg convolution of f and g.

Rankin-Cohen brackets for Jacobi forms were studied by Y. Choie [2, 3] by using the heat

operator. Following the work of Zagier mentioned in the above paragraph, Y. Choie and W.

Kohnen [5] generalized the above result of Zagier to Jacobi forms. They computed the Petersson

scalar product 〈f, [g, Ek2,m2 ]ν〉 of a Jacobi cusp form f of weight k, index m against the Rankin-

Cohen bracket [g, Ek2,m2 ]ν of a Jacobi form g of weight k1, index m1 and the Jacobi Eisenstein

series Ek2,m2 of weight k2, index m2, where k = k1 + k2 + 2ν and m = m1 + m2. Alhough the

concept of Rankin-Selberg convolution has not been done yet in the case of Jacobi forms, the above

mentioned work of Choie and Kohnen gives the inner product considered in terms of the special

value of a kind of Rankin-Selberg type convolution of the Jacobi forms f and g.

2000 Mathematics Subject Classification. 11F60, 11F50.

1



2 B. RAMAKRISHNAN AND BRUNDABAN SAHU

In this paper, we generalize the work of Choie and Kohnen to Jacobi forms defined over H×C(g,1).

Since the method is similar, we shall give only a brief sketch of the proof with the corresponding

steps.

2. Preliminaries on Jacobi forms over H× C(g,1)

Let g ≥ 1 be a fixed positive integer. The Jacobi group ΓJ
1,g = Γ1 ⋉

(

Z
(g,1) × Z

(g,1)
)

acts on

H× C(g,1) in the usual way by









a b

c d



 , (λ, µ)



 ◦ (τ, z) =

(

aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)

,

where Γ1 = SL2(Z) is the full modular group.

Let k ∈ Z and M be a positive definite symmetric half-integral matrix of size g × g. If γ =








a b

c d



 , (λ, µ)



 ∈ ΓJ
1,g and φ is a complex valued function on H× C(g,1), then define

φ|k,M γ := (cτ + d)−ke(−c(cτ + d)−1M [z + λτ + µ] + M [λ]τ + 2λtMz)φ(γ · (τ, z)),

where A[B] = BtAB with A, B matrices of appropriate size.

Let Jk,M be the space of Jacobi forms of weight k and index M on ΓJ
1,g. That is, the space of

holomorphic functions φ : H × C(g,1) → C satisfying φ|k,Mγ = φ, ∀γ ∈ ΓJ
1,g and having a Fourier

expansion of the form

φ(τ, z) =
∑

n∈Z,r∈Zg,4n≥M−1[rt]

c(n, r)e(nτ + rz).

Further, we say that F is a cusp form if and only if c(n, r) 6= 0 implies 4n > M−1[rt]. We denote

the space of all Jacobi cusp forms by Jcusp
k,M .

For F, G ∈ Jk,M with one of them a Jacobi cusp form, the Petersson inner product is defined as

〈F, G〉 =

∫

ΓJ
1,g\H×C(g,1)

F (τ, z)G(τ, z)vke(−4πM [y] · v−1) dV J
g ,

where τ = u + iv, z = x + iy, and dV J
g = v−g−2dudvdxdy is the invariant measure. The space

(Jcusp
k,M , 〈, 〉) is a finite dimensional Hilbert space. For more details on Jacobi forms on H × C(g,1)

we refer to [1, 14].



RANKIN’S METHOD 3

2.1. Poincaré series. Let n ∈ Z, r ∈ Zg, with 4n > M−1[rt]. For k > g + 2 let Pk,M ;(n,r) be the

(n, r)-th Poincaré series in Jcusp
k,M characterized by

(1) 〈φ, Pk,M ;(n,r)〉 = λk,M,D cφ(n, r) for all φ ∈ Jcusp
k,M ,

where cφ(n, r) denotes the (n, r)-th Fourier coefficient of φ and

λk,M,D := 2(g−1)(k−g/2−1)−gΓ(k − g/2 − 1)π−k+g/2+1(detM)k−(g+3)/2D−k+g/2+1,

D = det(2T ), T =





n r/2

rt/2 M



 .

The Poincaré series Pk,M ;(n,r) has the following Fourier expansion

Pk,M ;(n,r)(τ, z) =
∑

n′∈Z,r′∈Zg,4n′>M−1[r′t]

(gk,M ;(n,r)(n
′, r′) + (−1)kgk,M ;(n,r)(n

′,−r′)) e(n′τ + r′z),

where

gk,M ;(n,r)(n
′, r′) = δM (n, r, n′, r′) + i−kπ21−g/2(detM)−1/2

·(D′/D)k/2−g/4−1/2
∑

c≥1

HM,c(n, r, n′, r′)Jk−g/2−1

(

π
√

D′D

2g−1 det M · c

)

,

where

D := det 2





n′ r′/2

r′t/2 M



 ,

δm(n, r, n′, r′) :=







1 ifD = D′, r′ ≡ r (mod Zg · 2M)

0 otherwise

and

HM,c(n, r, n′, r′) = c−g/2−1
∑

x(mod c),
y(mod c)∗

ec((M [x] + rx + n)y−1 + n′y + r′x)e2c(r
′M−1rt)

[In the above, x (resp. y) runs over a complete set of representatives for Z(g,1)/cZ(g,1) (resp.

(Z/cZ)∗, and y−1 denotes an inverse of y (mod c), ec(a) := e2πia/c, a ∈ Z, and Jk−g/2−1 denotes

the Bessel function of order k − g/2 − 1.] For details we refer to [1, Lemma 1].
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3. Generalized Heat Operator

For a positive definite symmetric half-integral matrix M = (mij) of size g × g, we define the

heat operator by

(2) LM := 8πi|M | ∂

∂τ
−

∑

1≤i,j≤g

Mij
∂

∂zi

∂

∂zj
,

where |M | = detM , Mij is the cofactor of the entry mij , τ ∈ H, zt = (z1, z2, · · · , zg) ∈ Cg. Note

that when g = 1 the above heat operator reduces to the classical heat operator, viz., 8πim ∂
∂τ − ∂2

∂z2 .

Let rt = (r1, r2, · · · , rg). Then using the fact that

∂

∂τ
(e(nτ + rz)) = 2πin e(nτ + rz),

∂

∂zα
(e(nτ + rz)) = 2πi rα e(nτ + rz), 1 ≤ α ≤ g,

∂

∂zα

∂

∂zβ
(e(nτ + rz)) = (2πi)2 rαrβ e(nτ + rz), 1 ≤ α, β ≤ g,

we get

LM (e(nτ + rz) = 8πi|M | · 2πin · e(nτ + rz) −
∑

1≤α,β≤g

Mαβ(2πi)2rαrβ e(nτ + rz)

= (2πi)2(4n|M | − M̃ [rt]) e(nτ + rz),

(3)

where Ã denotes the matrix (Aij) with Aij being the cofactor of the ij-th entry of the symmetric

matrix A.

We obtain the action of the heat operator on Jacobi forms in the following lemma.

Lemma 3.1. Let F ∈ Jk,M . Then

(4) (LMF )
∣

∣

k+2,M
A = LM (F

∣

∣

k,M
A) + (8πi|M |)

(

k − g

2

)

(

γ

γτ + δ

)

(F
∣

∣

k,M
A),

for all A =





∗ ∗
γ δ



 ∈ Γ1. In general, for any integer ν ≥ 0,

(Lν
MF )|k+2ν,MA

=

ν
∑

l=0

(

ν

l

)

(8πi|M |)ν−l (k − g/2 + ν − 1)!

(k − g/2 + l − 1)!

(

γ

γτ + δ

)ν−l

Ll
M (F |k,MA).

(5)

Moreover, for all λ, λ′ ∈ Zg,

(6) LM (F |M [λ, λ′]) = (LMF )|M [λ, λ′].
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Proof. Though our LM operator differs (slightly) from the operator defined in [4], the proof goes

along the same lines of the proof of Lemma 3.3 of [4]. �

We now define the Rankin-Cohen bracket for Jacobi forms on H× C(g,1).

Definition: Let ν ≥ 0 be an integer and let F ∈ Jk1,M1 , G ∈ Jk2,M2 , where k1, k2 are positive

integers and M1 and M2 are positive-definite, symmetric half-integer matrices of size g× g. Define

the ν-th Rankin-Cohen bracket of F and G by

(7) [F, G]ν =

ν
∑

l=0

(−1)l

(

k1 − g
2 + ν − 1

ν − l

)(

k2 − g
2 + ν − 1

l

)

|M1|ν−l|M2|lLl
M1

(F )Lν−l
M2

(G)

Using Lemma 3.1 we show that the Rankin-Cohen bracket [ , ]ν gives a bilinear map from

Jk1,M1 × Jk2,M2 to Jk1+k2+2ν,M1+M2 (in fact, to Jcusp
k1+k2+2ν,M1+M2

if ν > 0).

Proposition 3.2. Let ν ≥ 0 be an integer and let F ∈ Jk1,M1 , G ∈ Jk2,M2 . Then [F, G]ν ∈
Jk1+k2+2ν,M1+M2 . If ν > 0, then [F, G]ν ∈ Jcusp

k1+k2+2ν,M1+M2
.

Proof. By (6) we see that the action of the heat operator on Jacobi forms is invariant under

the lattice action and so the invariance with respect to the lattice action of the Rankin-Cohen

bracket follows from the definition. It remains to show that the Rankin-Cohen bracket is invariant,

under the stroke operation, with respect to the group action. Making use of (5), we see that for

A =





∗ ∗
c d



 ∈ Γ1

[F, G]ν
∣

∣

k1+k2+2ν,M1+M2
A

=
ν
∑

l=0

(−1)l

(

k′
1 + ν

ν − l

)(

k′
2 + ν

l

)

|M1|ν−l|M2|l Ll
M1

(F )
∣

∣

k1+2l,M1
A Lν−l

M2
(G)
∣

∣

k2+2(ν−l),M2
A

=

ν
∑

l=0

(−1)l

(

k′
1 + ν

ν − l

)(

k′
2 + ν

l

)

(

l
∑

u=0

ν−l
∑

v=0

(

l

u

)(

ν − l

v

)

(8πi)ν−u−v|M1|ν−u|M2|ν−v

× (k′
1 + l)!

(k′
1 + u)!

(k′
2 + ν − l)!

(k′
2 + v)!

(

c

cτ + d

)ν−u−v

Lu
M1

(F ) Lv
M2

(G)

)

,

(8)

where k′
j = kj − g

2 − 1, j = 1, 2. When u + v = ν, the right-hand side becomes [F, G]ν , and so

it remains to show that the terms corresponding to u + v < ν vanish. It is easy to see that the

coefficient corresponding to Lu
M1

(F ) Lv
M2

(G), with u + v ≤ ν − 1, u ≤ v is given by

(

8πic

cτ + d

)ν−u−v

|M1|ν−u|M2|ν−v (k′
1 + ν)!

u!(k′
1 + u)!

(k′
2 + ν)!

v!(k′
2 + v)!

ν−v
∑

l=u

(−1)l

(l − u)!(ν − v − l)!

and the sum in the last expression is equal to zero. This completes the proof. �

We shall now state the main theorem of this paper.
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Theorem 3.3. Let F ∈ Jcusp
k,M with Fourier coefficients a(n, r) and G ∈ Jk1,M1 with Fourier

coefficients b(n, r). Let Ek2,M2 be the Jacobi Eisenstein series in Jk2,M2 such that k = k1 + k2 +2ν

with ν ≥ 0, M = M1 + M2 and k1 > g + 2, k2 > k1 + g + 2. Then

(9) 〈F, [G, Ek2,M2 ]ν〉 = ck,k2,M,M2,g;ν

∑

n∈Z,r∈Zg,

4n≥M
−1
1 [rt]

(4n|M1| − M̃1[r
t])ν a(n, r)b(n, r)

(4n|M | − M̃ [rt])k−g/2−1
,

where

(10) ck,k2,M,M2,g;ν = 2k′(g−1)−g−2νπ−k′−2ν |M |k′−1/2|M2|−νΓ(k′)
ν! k′

2!

(k′
2 + ν)!

,

with k′ = k − g/2 − 1, k′
2 = k2 − g/2 − 1.

The rest of this section is devoted to a proof of Theorem 3.3.

3.1. Action of heat operator on Eisenstein series. Let M be as before and let Ek,M be the

Jacobi Eisenstein series of weight k and index M defined by

(11) Ek,M =
∑

γ∈ΓJ
1,g,∞\ΓJ

1,g

1
∣

∣

k,M
γ,

where ΓJ
1,g,∞ =















1 a

0 1



 , (0, µ)





∣

∣a ∈ Z, µ ∈ Z
g







.

Lemma 3.4. For a positive integer ν, we have

(Lν
MEk,M )(τ, z) = (−4)ν Γ(k − g/2 + ν)

Γ(k − g/2)
|M |ν

∑

0

B

B

@

a b

c d

1

C

C

A

∈ΓJ
1,g,∞/ΓJ

1,gλ∈Z

(2πic)ν(cτ + d)−k−νe

(

M [λ]
aτ + b

cτ + d
+

2λtMz

cτ + d
− cM [z]

cτ + d

)

(12)

Proof. Using the definition of the Eisenstein series, we have

Lν
MEk,M =

∑

γ∈ΓJ
1,g,∞/ΓJ

1,g

Lν
M

(

1
∣

∣

k,M
γ
)

.
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By taking









a b

c d



 , (aλ, bλ)



 as a set of coset representatives in the above sum, where





a b

c d



 ∈ Γ1, λ ∈ Zg, we have

Lν
MEk,M =

∑

0

B

B

@

a b

c d

1

C

C

A

∈SL2(Z),λ∈Zg.

Lν
M



1
∣

∣

k,M





a b

c d









∣

∣

M
(aλ, bλ).

It is easy to see that

LM



1
∣

∣

k,M





a b

c d







 = LM

(

(cτ + d)−ke

(−c M [z]

cτ + d

))

= −8πic|M |(k − g/2)(cτ + d)−k−1e

(−c M [z]

cτ + d

)

,

where we have used the fact that

∑

1≤α,β≤g

Mαβ





∑

1≤i≤g

miβzi









∑

1≤i≤g

miαzi



 = |M |
∑

1≤α,β≤g

mαβzαzβ,

∑

1≤α,β≤g

Mαβmαβ = g|M |

Therefore,

Lν
M

(

(cτ + d)−ke

(−c M [z]

cτ + d

))

= (−4)ν Γ(k − g/2 + ν)

Γ(k − g/2)
|M |ν(2πic)ν(cτ + d)−k−νe

(−c M [z]

cτ + d

)

.

(13)

Since,

(cτ + d)−k−νe

(−c M [z]

cτ + d

)

∣

∣

k,M
[aλ, bλ]

= (cτ + d)−k−ν e

(

M [λ]
aτ + b

cτ + d
+

2λtMz

cτ + d
− cM [z]

cτ + d

)

,

(14)

the required result follows. �

3.2. Representation of [G, E]ν in terms of the Poincaré series. We first obtain a growth

estimate for the Fourier coefficients of a Jacobi form.

Lemma 3.5. Let k > g+2 and F ∈ Jk,M with Fourier coefficients c(n, r). Put D1 =
∑

i,j Mijrirj−
4n|M |. Then

(15) c(n, r) ≪ |D1|k−g/2−1, if D1 < 0.
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Moreover, if F is a cusp form, then

(16) c(n, r) ≪ |D1|k/2−g/2.

In the above the ≪ constants depend only on k, g and |M |.

Proof. If F is a cusp form, then the required estimate was proved by Böcherer and Kohnen [1]. If

F is not a cusp form, then it can be written as a linear combination of the Eisenstein series Ek,M

and a cusp form. We now show that ek,M (n, r), the (n, r)-th Fourier coefficient of Ek,M , satisfies

the estimate (15), from which the lemma follows.

Taking the same set of coset representatives as in the proof of the above lemma, we get

Ek,M =
1

2

∑

c,d∈Z,(c,d)=1

∑

λ∈Zg

1|k,M









a b

c d



 , (aλ, bλ)





=
1

2

∑

c,d∈Z,(c,d)=1

∑

λ∈Zg

(cτ + d)−ke

( −c

cτ + d
M [z + aλτ + bλ] + M [aλ]τ + 2aλtMz

)

=
1

2

∑

c,d∈Z,(c,d)=1

∑

λ∈Zg

(cτ + d)−ke

(

M [λ]
aτ + b

cτ + d
+

2λtMz

cτ + d
− c

M [z]

cτ + d

)

Proceeding in the usual way by splitting the sum into two parts as c = 0 and c 6= 0, we see that

Ek,M (τ, z) =
∑

λ∈Zg

e(M [λ]τ + 2λtMz) +

∞
∑

c=1

c−k
∑

d(c),(d,c)=1

∑

λ(c)

e(
a

c
M [λ])Fk,M (τ + d/c, z − λ/c),

where Fk,M (τ, z) =
∑

p∈Z,q∈Zg (τ + p)−ke
(

−M [z+q]
τ+p

)

. Using the Poisson summation formula the

(n, r)-th Fourier coefficient of Fk,M (τ, z) is given by

γ(n, r) =







0 if M̃ [rt] ≥ 4n|M |,

αk,g|M |−1/2
(

2πi
4|M| (4n|M | − M̃ [rt]

)k−g/2−1

if M̃ [rt] < 4n|M |.

where αk,g =

(

1

2i

)g/2
π csc(π(k − g/2))

Γ(k − g/2)
. Plugging in this Fourier coefficient and estimating the

Gauss sum we get

ek,M (n, r) ≪ D
k−g/2−1
1 ,

where the ≪ constant depends only on k, g and |M |. �

We need the following lemma which gives the absolute convergence of a series which is required

to get an expression of the Rankin-Cohen bracket of F with the Eisenstein series in terms of the

Poincaré series.
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Lemma 3.6. The series

vke−2πM [y]/v
∑

n∈Z,r∈Zg,4n≥M
−1
1

[rt],

γ∈ΓJ
1,∞/ΓJ

1

(4n|M1| − M̃1[r
t])e(nτ + rz)|k,Mγ

(τ = u + iv, zj = xj + iyj , y = (y1, y2, · · · , yg)
t) is absolutely uniformly convergent on the subsets

Vǫ,C = {(τ, z) ∈ H × Cg|v ≥ ǫ, |yjv
−1| ≤ C, |xj | ≤ 1/ǫ, u ≤ 1/ǫ, ∀j = 1, 2, · · · , g} for given

ǫ > 0, C > 0

Proof. Using Lemma 3.5, it is sufficient to prove the uniform convergence of the series

vke−2πM [y]/v
∑

n∈Z,r∈Zg,4n≥M−1
1 [rt],γ∈ΓJ

1,∞/ΓJ
1

(4n|M1| − M̃1[r
t])ν+k2−g/2−1|e(nτ + rz)|k,Mγ(τ, z)|

in the given ranges.

Let τ ′ ∈ Hg such that Z :=





τ z

z τ ′



 ∈ Hg+1. Also let T =





n rt/2

r/2 M



. Note that

by the assumption that 4n ≥ M−1
1 [rt], we see that T is positive semi-definite. Now we embed

ΓJ
1,g = SL2(Z) ⋉ (Zg ×Zg) into Γg+1 (denoted by γ 7→ γ∗) defined by combining the following two

embeddings:









a b

c d



 , (λ, µ)



 7→

































a 0 b 0

0 Ig−1 0 0g−1

c 0 d 0

0 0g−1 0 Ig−1

















, (λ, µ)

















and









A B

C D



 , (λ, µ),



 7→

















A 0 B µ′

λ 1 µ 0

C 0 D −λ′

0 0 0 1

















where (λ′t, µ′t) = (λ, µ)





A B

C D





−1

. We have

(en,r|k,Mγ)(τ, z) = e−2πimτ ′

(eT |kγ∗)(Z)

where eT (Z) := e2πitr(TZ) and |k on functions F : Hg+1 7→ C

We can view the sum of absolute terms of the (n, r)-th Poincaré series as a sub-series of the sum

of absolute terms of the T -th Poincaré series on Γg+1

Let (τ, z) ∈ Vǫ,C for some ǫ > 0 and C > 0. Then by taking τ ′ = i min1≤j≤g{(y2
j

v + δ)} with

δ > 0, we see that Z =





τ z

z τ ′



 ∈ Hg+1 with Y = Im Z > ǫ′/2 for some ǫ′ depending

on ǫ, C and δ. Since the sum of the absolute terms of the T -th Poincaré series on the subsets
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Y ≥ ǫ′Ig, tr(X
′X) ≤ 1

ǫ′ (up to some constants) is majorized by that sum evaluated at an arbitrary

single point Z0, say Z0 = iIg, (cf. [9]) so it is sufficient to prove the convergence of above series at

(τ, z) = (i, 0, · · · , 0) i.e the convergence of the series (using the the coset representation)

∑

n∈Z,r∈Zg,4n>M
−1
1 [rt],

(c,d)=1,λ∈Zg

(4n|M1| − M̃1[r
t])ν+k2−g/2−1|(ci + d)−k|

|e2πi( −c
ci+d M [aλi+bλ]+M [aλ])||e2πi(n ai+b

ci+d +r. aλi+bλ
ci+d )|

Now proceeding as in [5] we get the required convergence with the assumption that k2 > k1 + g +

2. �

Proposition 3.7. Let k, k1, k2, M, M1, M2 be as in Theorem 3.3. Let G ∈ Jk1,M1 with Fourier

expansion

G(τ, z) =
∑

n∈Z,r∈Zg,

4n≥M
−1
1

[rt]

b(n, r)e(nτ + rz).

Then

(17) [G, Ek2,M2 ]ν = ck1,k2,M1,M2,g;ν

∑

n∈Z,r∈Zg,4n≥M−1
1 [rt]

(4n|M1| − M̃1[r
t])ν b(n, r) Pk,M ;(n,r),

where ck1,k2,M1,M2,g;ν = (2π)−2ν |M2|−ν v!(k2 − g/2 − 1)!

(k2 − g/2 + ν − 1)!

Proof. Using the definition of the Poincaré series, the action of the heat operator on Fourier

coefficients, and by the absolute convergence (obtained in Lemma 3.6) we see that the series on

the right-hand side of (17) can be written as

∑

γ∈ΓJ
1,g,∞\ΓJ

1,g

(

1
∣

∣

k,M
γ
)

(τ, z)
∑

n∈Z,r∈Zg,

4n≥M
−1
1

[rt]

(4n|M1| − M̃1[r
t])ν b(n, r) en,r(γ ◦ (τ, z))

=
∑

γ∈ΓJ
1,g,∞\ΓJ

1,g

(

1
∣

∣

k,M
γ
)

(τ, z) · (2πi)−2ν(Lν
M1

G)(γ ◦ (τ, z))

= (2πi)−2ν
∑

γ∈ΓJ
1,g,∞\ΓJ

1,g

(

1
∣

∣

k2,M2
γ
)

(τ, z)(Lν
M1

G)
∣

∣

k1+2ν,M1
γ(τ, z).
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We taking the same set of representatives as in the proof of Lemma 3.4 for the sum over γ and

using the fact that G ∈ Jk,M1 , we get

(2πi)−2ν
∑

γ∈ΓJ
1,g,∞\ΓJ

1,g

(

1
∣

∣

k2,M2
γ
)

(τ, z)(Lν
M1

G)
∣

∣

k1+2ν,M1
γ(τ, z)

= (2πi)−2ν
ν
∑

l=0

4ν−l (k1 − g/2 + ν − 1)!

(k1 − g/2 + l − 1)!

(

ν

l

)

|M1|ν−lLl
M1

(G)(τ, z)

×
∑

0

B

B

@

a b

c d

1

C

C

A

,λ∈Zg

(

πic

cτ + d

)ν−l

(cτ + d)−k2e

(−c M2[z + aλτ + bλ]

cτ + d
+ M2[aλ] + 2(aλ)tM2z

)

Using Lemma 3.4, the inner sum in the above expression is equal to

(−4)−(ν−l) (k2 − g/2 − 1)!

(k2 − g/2 + ν − l − 1)!
|M2|lLν−l

M2
Ek2,M2(τ, z),

therefore, we finally find that the sum on the right-hand side of (17) equals

(2π)−2ν |M2|−ν
ν
∑

l=0

(−1)l (k1 − g/2 + ν − 1)!(k2 − g/2 − 1)!

(k1 − g/2 + l − 1)!(k2 − g/2 + ν − l − 1)!

(

ν

l

)

|M1|ν−l|M2|l

× Ll
M1

(G)(τ, z)Lν−l
M2

Ek2,M2(τ, z).

The proof is now complete. �

3.3. Proof of Theorem 3.3. We first observe that by Lemma 3.5 the series on the right hand

side of (9) is absolutely convergent and hence is majorized by

∑

n≥1,r∈Zg

4n≥M
−1
1 [rt]

(

4n|M1| − M̃1[r
t]
)k1−g/2−1+ν

(

4n|M | − M̃ [rt]
)k/2−1

≪
∑

n≥1

ng/2.nk1−g/2−1+ν

nk/2−1
=
∑

n≥1

1

n
k2−k1

2

< ∞

after putting k = k1 + k2 + 2ν and by our assumption that k2 > k1 + g + 2.

The standard fundamental domain for the action of ΓJ
1,g on H × C(g,1) is contained in one of

the sets Vǫ,C occurring in the statement of Lemma 3.6, for appropriate ǫ and C. Therefore, using

Lemma 3.6 we deduce from Lemma 3.7 that

〈F, [G, Ek2,M2 ]ν〉 = ck1,k2,M1,M2,g;ν

∑

n∈Z,r∈Zg,4n≥M−1
1 [rt]

(4n|M1| − M̃1[r
t])νb(n, r)〈F, Pk,M ;(n,r)〉.

where ck1,k2,M1,M2,g;ν is defined as in (17).

Note that 4n > M−1
1 [rt] implies 4n > M−1[rt] and hence the Poincaré series Pk,M ;(n,r) are all

cusp forms. On the other hand, if 4n = M−1
1 [rt], 4n ≥ M−1[rt] implies r = 0 and n = 0, in which

case one has the Eisenstein series Ek,M . Since F is cusp form, 〈F, Ek,M 〉 is zero. From (1), we

obtain
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〈F, [G, Ek2,M2 ]ν〉 = ck,k2,M,M2,g;ν

∑

n∈Z,r∈Zg,

4n≥M
−1
1 [rt]

(4n|M1| − M̃1[r
t])ν a(n, r)b(n, r)

(4n|M | − M̃ [rt])k−g/2−1
,

where ck,k2,M,M2,g;ν is defined as in (10). �
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