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ABSTRACT

We are using the Glauber Model to understand the initial conditions in heavy-ion

collisions and the consequences on the particle production in these collisions. We have

carried out as a part of the Masters thesis, both Optical and Monte Carlo Glauber

model simulations to estimate initial magnetic field and angular momentum in heavy-

ion collisions. In addition we have obtained initial geometrical features of the collisions

as a function of impact parameter such as the number of participating nucleons,

number of binary collisions, and eccentricity. Using the number of participating

nucleons and binary collisions we are able to describe the charged particle multiplicity

distributions in the high–energy heavy–ion collisions. The initial spatial eccentricity

is found to be closely related to the experimentally measured momentum anisotropy.

Finally we make a brief note on the effect of event-by-event fluctuations in the number

of participating nucleons for a given impact parameter of the collision on multiplicity

fluctuations measured in the experiments.
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Chapter 1

Introduction
Developed by Roy Glauber (Nobel Prize in Physics, 2005) to address the problem

of high energy scattering with composite particles, the Glauber model, provides a

quantitative consideration of the geometrical configuration of the nuclei when they

collide. It finds its basis in the concept of mean free path with minimal assumptions

that the baryon – baryon interaction cross–section remains a constant throughout

the passage of baryon of one nucleus into another and that the nuclei move along the

collision direction in a straight line path. It is used to simulate the initial conditions

in the heavy–ion collision and helps determine the number of participating nucleons

in the particle production process and the number of binary collisions among the

nucleons for the two nuclei, obeying a certain nuclear density distribution in a nucleus,

colliding with a fixed energy for a given impact parameter. The Glauber model can

be studied in two variants : the Optical approach and the Monte Carlo approach.

In the optical limit, the overall phase shift of the incoming wave is taken as a

sum over all possible two nucleon phase shifts and the imaginary part of the phase

shifts is related to the nucleon – nucleon scattering cross–section through the optical

theorem1. A couple of assumptions are considered in the optical approximation as :

1. At sufficiently high energies, the nucleons carry sufficient momentum so as to

pass undeflected through each other.

1
The optical theorem is a general law of wave scattering theory, which relates the forward scattering amplitude to the total cross

section of the scatterer. It is usually written in the form

σtot =
4π

k
Im f(0)

where f(0) is the scattering amplitude with an angle of zero, that is, the amplitude of the wave scattered to the center of a distant

screen.
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1 Introduction

2. The nucleons move in the nucleus independently.

3. The size of the nucleus is much larger than the extent of the nucleon – nucleon

force.

These hypotheses of linear independent trajectories of constituent nucleons make

it plausible to develop an analytic relationship between the number of interacting

nucleons and the number of nucleon – nucleon collisions in terms of basic nucleon –

nucleon cross–section and the impact parameter of the nucleus – nucleus collision.

In the Monte Carlo ansatz of the Glauber model, a nucleus – nucleus collision is

considered as a sequence of independent nucleon – nucleon collision processes. The

Monte Carlo approach for determination of geometric quantities in the initial state of

heavy ion collisions such as impact parameter, number of participating nucleons and

number of binary collisions finds utmost utility in the simplicity of its implementation.

This technique offers a closer simulation to the experimental conditions because of

its following virtues :

1. The two colliding nuclei are assembled by positioning the nucleons randomly in

a three–dimensional coordinate system, event–by–event, in accordance to the

given nuclear density distribution.

2. Two nucleons are considered to collide if their distance, d in the plane orthogonal

to the beam direction satisfies

d =

√
σNNinel
π

(1.1)

where σNNinel is the total inelastic nucleon – nucleon cross–section.

3. The number of participating nucleons and the number of binary collisions in a

nuclear collision can be simply counted and averaged over multiple events.

2



1 Introduction

In this report, both the ansatz of the Glauber model is discussed with emphasis

on its development into the purely classical geometric picture used for present data

analysis. In addition, the implications of the Glauber calculations of experimentally

measurable quantities like number of charged particles produced, initial eccentricity,

magnetic field and angular momentum and contribution of event-by-event number of

participating nucleons towards measured multiplicity fluctuations is also discussed.
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Chapter 2

Inputs to Glauber Model Calcula-
tions
In order to be able to compare the geometric results of this semi – classical model

with the real experimental data, few model inputs are needed. The important ones

among them are the nuclear density profile of the colliding nuclei and the energy

dependence of the inelastic nucleon – nucleon cross–section.

2.1 Nuclear charge density

The Glauber model usually assumes the nucleon density inside the nucleus to be of

the Woods – Saxon form

ρ(r) =
ρ0

1 + e(
r−R
a

)
(2.1)

where R corresponds to the nuclear radius and a is a the diffusioness parameter that

measures how quickly the nuclear density falls off at the surface of the nucleus. ρ0 is

fixed by normalization condition. For a spherical nucleus,∫
ρdV =

∫ ∞
0

4π r2ρ(r)dr = A (2.2)

where A is the number of nucleons (mass number) in the nucleus.

As an example, consider the hard sphere configuration.

ρ(r) = ρ0, r < R

= 0, r ≥ R (2.3)

In this case,

ρ0 =
A

4
3
πR3

(2.4)
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2 Inputs to Glauber Model Calculations

which turns out to the order of 0.16 nucleon/fm3 for gold nucleus (A = 197), assuming

R ∼ R0A
1/3 and R0 ∼ 1.12 fm.

The actual value of the nuclear radius, R, can be empirically given in terms of A

by the following empirical relation [5] :

R = 1.12 A1/3 − 0.86

A1/3
(2.5)

Though the functional form of ρ(r) is assumed to be of the Wood Saxon type, other

more realistic forms derived from the electron scattering experiments can be used

for a better insight. In case of some nuclei like Pb, the nucleon distribution has

been obtained by scattering electrons off the nuclei. The density distribution is then

parametrized and has the form [5]

ρ(r) =
c1 + c2r + c3r

2

1 + e(
r−R
a )

(2.6)

with R = 6.413 fm and a = 0.5831 fm and parameters

c1 = 0.0633 c2 = −0.002045 fm−1 c3 = 0.000566 fm−2

.

Most of the time the nuclei collided in experiments are symmetric, however de-

formed nuclei could provide additional physics insights. For example at the Rela-

tivistic Heavy Ion Collider Uranium ions are collided to understand the physics of

Chiral Magnetic Effect (discussed later). For such deformed nuclei (238U) one uses a

deformed Woods-Saxon profile [6]

ρ(r) =
ρ0

1 + e(
r−R′
a

)
(2.7)

where ρ0 is the normal nuclear density and R′ is expressed in terms of spherical

harmonics and set of deformation parameters as

R′ = R
[
1 + β2Y

0
2 (θ) + β4Y

0
4 (θ)

]
(2.8)
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2 Inputs to Glauber Model Calculations

Here R = 6.81 fm is the mean radius of the nucleus and a = 0.55 fm is the diffusioness

parameter. Y m
l (θ) denote the spherical harmonics and θ is the polar angle with respect

to the symmetry axis of the nucleus. The deformation parameters are β2 = 0.28 and

β4 = 0.093 for 238U.

2.2 Inelastic nucleon – nucleon cross–section

The Glauber model assumes that the nucleons collide inelastically and the number of

charged particles produced on each collision to remain the same on an average. As the

energy loss and change in momentum in each collision is small, multiple collisions can

occur with same cross–section. This static cross–section is assumed to be the same

as that for a single proton – proton collision and does not depend on the nuclear

environment. In addition, interchangeability of protons and neutrons is inherent to

the model.

As the cross–section involves processes with low momentum transfer, we cannot

employ perturbative QCD calculations as these are found to be valid for transverse

momentum, pT ≥ 1 GeV/c [7] [8]. Hence, experimentally measured values of inelastic

nucleon – nucleon cross–section (σNNinel ) is used as input. This provides for the only

non–trivial dependence of the Glauber calculation on the beam energy,
√
s.

The values of inelastic nucleon – nucleon cross–section for some characteristic

beam energies are summarized in Table 2.1.

6



2 Inputs to Glauber Model Calculations

Table 2.1: Experimental values for σNNinel for given beam energy

√
s σNNinel σNNinel Reference

(GeV) (mb) (fm2)

7.7 30.8 3.08 [9]
11.5 29.73 2.973 [9]
17.2 29.5 2.95 [9]
19.6 30.08 3.008 [9]
27 31.94 3.194 [9]
39 30.98 3.098 [9]
62.4 31.55 3.155 [9]
200 42 4.2 [10]
2760 64 6.4 [10]
5500 72 7.2 [11]

7



Chapter 3

Optical Glauber Model
In the Optical Glauber model calculations, the nucleus is assumed to comprise of

smooth matter density described by Fermi distribution in radial direction and uniform

over the polar and azimuthal angles.

3.1 Formalism

Impact vector is given by the line joining the centers of the two colliding nuclei in

the plane perpendicular to the beam direction. The length of the impact vector is

called the impact parameter (b). Small impact parameter collisions are called cen-

tral collisions while large impact parameter collisions are called peripheral collisions.

Consider two heavy ions, target (A) and projectile (B) colliding at relativistic speed

with an impact parameter (b) as shown in Fig. 3.1.

Figure 3.1: Schematic representation of Optical Glauber model geometry.

We will concentrate in the region of the two flux tubes which are located at a

displacement s from the center of the target nucleus and s− b from the center of the

8



3 Optical Glauber Model

projectile nucleus. During the collision, these two tubes overlap. The length of the

tube depends upon its distance from the center of the nuclei. The probability per

unit transverse area of a nucleon being located in the flux tube is given by the nuclear

thickness function, defined as,

TA/B(b) =

∫
ρA/B(b, zA/B) dzA/B (3.1)

where ρA/B(b, zA/B) is the probability of finding a nucleon at a point (s, zA/B) per unit

volume in projectile (A) or target (B) nucleus, normalized to unity. This information

is obtained through nuclear density profile of the respective colliding nuclei. Thus,

the joint probability per unit area of finding nucleons in the respective overlapping

region will be given by what is defined as the thickness function.

TAB(b) =

∫
TA(s) TB(s− b) d2s (3.2)

The integral over all impact parameter for TAB is given by∫
TAB(b) db = A ·B (3.3)

Since TAB(b) is purely a geometric factor, it is independent of the collision energy. The

number of inelastic nucleon – nucleon collision as a function of the impact parameter

is given as

Ncoll(b) = σNNinel TAB(b) (3.4)

Ncoll depends on the beam energy through σNNinel .

The probability of n inelastic NN collisions at an impact parameter b is given by

P (n,b) = ABCn

[
σNNinel TAB(b)

AB

]n [
1 − σNNinel TAB(b)

AB

]AB−n
(3.5)

The number of participants in nucleus – nucleus collision can be obtained from a

hadron – nucleon collision. So, setting B = 1, the probability, thus, becomes

P (n,b) = ACn

[
σNNinel TA(b)

A

]n [
1 − σNNinel TA(b)

A

]A−n
(3.6)
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3 Optical Glauber Model

Summing over all probabilities, we obtain,

A∑
n=1

P (n,b) = 1 −
[
1 − σNNinel TA(b)

A

]A
(3.7)

If σNNinel TA(b)/A � 1 then the above sum can be approximated by exponential so

that
A∑
n=1

P (n,b) = 1 − exp
[
−σNNinel TA(b)

]
(3.8)

The number of participants in nucleus A is proportional to the nuclear profile

function at transverse position s, TA(s), weighted by the sum over the probability

for a nucleon-nucleus collision at transverse position (b− s) in nucleus B. Thus at a

given b, the number of participants is given by

Npart(b) =

∫
TA(s)

(
1 − exp

[
−σNNinel TB(b− s)

])
ds (3.9)

+

∫
TB(b− s)

(
1 − exp

[
−σNNinel TA(b)

])
ds

3.2 Coding the model

The following algorithm was employed to get the dependence of the number of partic-

ipating nucleons and the number of binary nucleon – nucleon collision as a function of

impact parameter for a given nuclear density profile and inelastic nucleon – nucleon

cross–section.

• The functional form of the density profile, ρ(r) is given as input. The functional

dependence of mean nuclear radius, R on number of nucleons in the nucleus, A

is specified. The value of skin depth, a is put in. These informations are used

to get the normalization, ρ0 using

ρ0 =
A

4πt

10



3 Optical Glauber Model

where t =
∫∞
0

r2ρ(r)dr for a spherical nucleus. The nuclear density function

hence becomes ρ0ρ(r).

• The thickness function is computed using

T (x, y) =

∫
ρ0ρ(x, y, z)dz

where r =
√
x2 + y2 + z2

• Various observables are then computed in terms of the impact parameter, b as

T (b) =

∫
ρ0ρ(x+ b, y, z)dxdydz =

∫
T (x+ b, y)dxdy (3.10)

TAB(b) =

∫
ρ20ρ(x+ b, y, z)ρ(x, y, z)dxdydz (3.11)

=

∫
T (x+ b, y)T (x, y)dxdy

Ncoll(b) = σNNinelTAB(b) (3.12)

Npart(b) =

∫
T (x, y)(1− e−σNNinelT (x+b,y))dxdy (3.13)

+

∫
T (x+ b, y)(1− e−σNNinelT (x,y))dxdy

The details are discussed in the appendix.
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3 Optical Glauber Model

3.3 Results and Discussion

The model is applied to the Lead (208Pb) nuclei (Pb–on–Pb collision) in order to get

the number of participants and number of binary nucleon – nucleon collisions as a

function of impact parameter. Various density profiles, as shown in Fig. 3.2, are used

so as to get a better insight into the model.

Figure 3.2: Various nuclear density profiles used for calculations for Lead (Pb) nuclei.

The nuclear density functions used are given in Table 3.1.

Using the σNNinel = 31.5 mb, which averages the cross–section for inelastic inter-

action within the center of mass energy range of 7 to 60 GeV, further estimates for

dependence of number of participants and number of binary collisions on impact pa-

rameter were made as shown in Fig. 3.3. Smaller impact parameter in a geometrical

picture implies larger overlap, usually termed as central collisions and larger impact

parameter collisions have smaller overlap region and termed as peripheral collisions.

Hence the number of participating nucleons and number of binary collisions decreases

with increase in the impact parameter values.

12



3 Optical Glauber Model

Table 3.1: Nuclear density functions used for calculation for Lead (Pb) nuclei.

Name ρ(r) R a Ref.
(fm−3) (fm) (fm)

Hard sphere ρ(r) = ρ0 if r ≤ R 1.16A1/3 − 0.86A−1/3 0.54
= 0 otherwise

Wood Saxon ρ(r) = 1

1+e(
r−R
a )

1.16A1/3 − 0.86A−1/3 0.54

Modified Wood Saxon ρ(r) = c1+c2r+c3r2

1+e(
r−R
a )

6.413 0.5831 [5]

c1 = 0.0633
c2 = -0.002045 fm−1

c3 = 0.000566 fm−2

FRITIOF Wood Saxon ρ(r) = 1

1+e(
r−R
a )

1.16(A1/3−1.16A−1/3) 0.545 [5]
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3 Optical Glauber Model

Figure 3.3: Nuclear thickness functions, Number of binary collisions and Number
of participating nucleons as a function of impact parameter for Pb-Pb collisions at√
sNN = 11.5 GeV.

The mean radius of a nucleus, R, scale as A1/3, where A is the mass number.

Hence, the geometric hadronic cross–section, σAA, between two similar nuclei will

scale as A2/3. Number of participants, Npart, scales as A. For hard processes that

scale as number of binary collisions, Ncoll, we use the binary scaling hypothesis for

hard processes (details in the next chapter). Let the hard cross–section be dσ and total

cross–section be σ. For two colliding nuclei with mass numbers A and B respectively,

the differential cross–section, dσAB, is given by

dσAB = A ·B · dσNN (3.14)

14



3 Optical Glauber Model

Thus, we have

1 =
dσAB/σAB

(Ncoll/σpp)/dσpp
∼ (A2/A2/3)

Ncoll

(3.15)

This gives that Ncoll scales as A4/3 for similar target and projectile nuclei.

Hence, from geometric considerations it is estimated that

Ncoll ∝ Nx
part

This was tested for the various density profiles used and the value of x was determined

in each case. The plots for Ncoll versus Npart is given in Fig. 3.4.

Figure 3.4: Ncoll versus Npart for various density profiles for Pb-Pb collisions at
√
sNN

= 11.5 GeV.

For the hard sphere form, the value of x was determined to be 1.12753, while

for the Woods – Saxon form, it was 1.31006. For the Modified Wood Saxon form,

the value of x was found to be 1.30992 and 1.29727 for the FRITIOF Wood Saxon

15



3 Optical Glauber Model

form of nuclear density function. This is in accordance with the theoretical value of

x = 4/3.

The scaling of Npart with the number of nucleons in the colliding nuclei starts to

saturate with increase in atomic number (Fig. 3.5).

Figure 3.5: Scaling of Npart with A.

It may be noted that quantities like impact parameter, number of participating

nucleons and number of binary collisions are not all directly measurable in experi-

ments, while they are very important quantities from theoretical perspective. Glauber

model provides a way to make the connection between theoretically calculated quan-

tities and experimentally measured observables. This is discussed later on in the

report.

3.4 Computational methods

In order to carry out the integrations required (Equations 3.10–3.13) in the Opti-

cal Glauber model to estimate the number of nucleons participating in the particle

production process and the number of binary collisions between the nucleons dur-

ing nucleus – nucleus collision, different numerical integration techniques are used,

namely, the trapezoidal integration and the Monte Carlo integration methods. The

16



3 Optical Glauber Model

details of the program is given in the appendix with a very brief description of the

techniques used.

Comparison of results from the two techniques is shown in Fig. 3.6.

Figure 3.6: Comparison of results from different computation techniques

We find excellent agreement between the two techniques used.

Though the optical form of Glauber model gives us reasonable insight into the

role of geometrical considerations and its implications in nucleus – nucleus collision

based experiments, the theory rests on continuous nucleon density distribution. It

fails to locate the nucleons at specific spatial coordinates. In order to account for the

discreteness of the nucleus, Monte Carlo formulation of the Glauber model is used.

17



Chapter 4

Monte Carlo Glauber Model
In the Monte Carlo based Glauber model, the individual nucleons are randomly dis-

tributed event–by–event and collision properties are calculated by averaging over

multiple events where an event refers to collision of two nuclei.

4.1 Coding the model

Given a large number of Monte Carlo events to be simulated in order to get the

relationship between the number of participating nucleons and number of binary

collisions with the impact parameter of the nucleus – nucleus collision, the following

steps are taken.

1. An impact parameter for the collision is selected randomly from the distribution

dN

db
∝ b

where N is the number of events and b is the impact parameter.

2. For each impact parameter, the nucleons in the nucleus are distributed in accor-

dance with the given nuclear density distribution. The radial part of distribution

is r2 ρ(r), where r is the radial distance of the nucleon from the center of the

nucleus. The polar part is weighted by sin(θ), where θ is the polar angle of the

nucleon and belongs to the range (0, π). The azimuthal part is picked from

uniform distribution from (0, 2π). This is done as the elementary volume in

spherical polar coordinate system is given by 4π r2dr sin(θ)dθ dφ.

18



4 Monte Carlo Glauber Model

3. The centers of the two colliding nuclei are shifted to (-b/2, 0, 0) and (b/2, 0, 0)

respectively.

4. Two nucleons from different nuclei are said to collide if the transverse distance

between them, d, satisfies

d ≤
√
σNNinel
π

5. For each event, the total number of binary collisions Ncoll is calculated by the

sum of individual number of collisions and the total number of participating

nucleons, Npart, is the number of nucleons that interact only once.

The details are discussed in the appendix.

4.2 Results and Discussions

A typical Au+Au collision at 200 GeV from the Monte Carlo Glauber model appears

as in Fig. 4.1 where the darker shades represent the participants while the lighter

shades represent the spectators.

Figure 4.1: Typical Monte Carlo Event for Au+Au collisions at impact parameter of
6 fm. The red and blue circles are the participating nucleons, the diffused colored
circles are spectator nucleons before (left) and after (right) collision.

19



4 Monte Carlo Glauber Model

In order to compare the results with its optical counterpart, Monte Carlo simula-

tions are performed for Pb–Pb collision within the center of mass energy range of 7

to 60 GeV and σNNinel = 31.5 mb as in the previous case. The analysis of number of

participants and the number of binary collisions is made for the Woods – Saxon form

of the nuclear density profile as given in Table 3.1.

Comparison of results from the two formalisms is shown in Fig. 4.2.

Figure 4.2: Comparison of results from Monte Carlo and Optical Glauber formalisms.

The optical limit assumes that the scattering amplitudes can be described using

the approximation that the projectile nucleons see the target nucleons as a smooth

density. This leads to slight distortions in the estimation of the number of participants

and the number of binary collisions compared to the Monte Carlo approach. In

addition, the local density fluctuations are considered event–by–event in the latter

approach.
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Chapter 5

Relating Glauber Model to experi-
ments
As a matter of fact, neither number of participants nor the number of binary collisions

can be directly measured in an experiment. Added to that, even the impact parameter

cannot be determined directly. In order to understand the applicability of the Glauber

model to experiments, we employ a mapping to the number of charged particles

produced by defining centrality classes in both measured and calculated distributions.

The basic assumption for defining the centrality classes is that the impact parameter

b is monotonically related to particle multiplicity. For large b (peripheral) events,

charged particle multiplicity is low at mid–rapidity and a large number of spectator

nucleons are present, while for small b (central) events, multiplicity is high and number

of spectators is low.

5.1 Production of charged particles

The charged particle multiplicity in pp collisions per unit rapidity has contributions

due to two components – soft processes and hard processes. Soft processes are those

which lead to production of low energy hadrons like pions in nucleus – nucleus colli-

sion. These cannot be described by perturbative QCD as the strong coupling constant

is large. The appropriate scaling of multiplicity of soft processes is postulated to be

the number of participating nucleons. This is because multiple soft collisions change

only the excited states of the nucleons, which in turn produce particles the moment

they leave the interaction region. The pions with large transverse momenta are pro-
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5 Relating Glauber Model to experiments

duced by hard processes like jets. As the strong coupling constant is small for these

processes, they can be described within the methods of perturbative QCD. For hard

processes, the number of particles produced is assumed to scale with the number of

binary collisions.

Assuming x as the fraction of charged particle multiplicity, npp measured in pp

collisions per unit pseudo–rapidity due to hard processes ans the remaining (1 − x)

due to soft processes [13],

dNch

dη
= npp

[
(1− x)

Npart

2
+ xNcoll

]
(5.1)

The factor 0.5 associated with number of participating nucleons is to consider particle

produced per participating nucleon pair. This compares well with the experimental

data [24] as shown in Fig. 5.1 with the value of x to be 0.11 ± 0.02 for
√
sNN = 200

GeV.

Figure 5.1: The measured pseudorapidity density of charged particles dNch/dη for
|η| ≤ 1 as a function of Npart for Au+Au collisions at

√
sNN = 200 GeV. The solid

line is the two component model (Equation 5.1) fit to the data.

Event – by – event multiplicity fluctuations can be taken into account by convo-
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5 Relating Glauber Model to experiments

luting Negative Binomial Distribution (NBD) for a given Npart and Ncoll

P (µ, k;n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)

(µ
k

)n (
1 +

µ

k

)−(n+k)
(5.2)

where µ is the mean of the distribution and k is a second parameter affecting the

width of the distribution. µ and k are related to Npart and Ncoll as :

µ = α

[
(1− x)

Npart

2
+ xNcoll

]
k = β

[
(1− x)

Npart

2
+ xNcoll

]
(5.3)

The parameter α, β and x are obtained by fitting the experimental data and using

χ2 – optimization.

The NBD has two parameters, µ and k. The parameter k is an interesting quantity,

1/k −→ 0 would correspond to Poisson distribution (independent particle production)

and k = 1 would correspond to geometric distribution. Under the limit of large

multiplicity (n −→large), the NBD distribution goes over to a gamma distribution.

Some of the measured multiplicity distributions at midrapidity (|η| ≤ 0.5) are fitted

to NBD distribution [15] as shown in Fig. 5.2.

Figure 5.2: Multiplicity distribution for charged particles in p + p̄ collisions at var-
ious center of mass energies at midrapidity. The solid lines are Negative Binomial
Distribution fit to the data.
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5 Relating Glauber Model to experiments

Figure 5.3: Charged particle multiplicity distribution for Au + Au collision at various
energies.

The experimental data for charged particle multiplicity for energy ranging from

7.7 GeV to 200 GeV for Au + Au collision at RHIC is fitted to the model (Fig. 5.3)

by optimizing the values of x, α and β. The values are tabulated in Table 5.1.
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5 Relating Glauber Model to experiments

Table 5.1: Values of charged particle multiplicity parameters fit to data

√
s x α β

(GeV)

7.7 0.12 0.89 2
11.5 0.12 1.07 2
19.6 0.12 1.27 1.8
27 0.12 1.385 1.65
39 0.12 1.49 2
200 0.13 2.38 1.95

We find that using the three parameter two–component model, we are able to

explain the charged particle multiplicity as seen in experiments to a large extent.

5.2 Eccentricity

The system of heavy ion collision is surrounded by vacuum. This gives rise to a

pressure gradient from the dense center to the boundary of the system. This pressure

gradient is radially symmetric for central heavy ion collisions and gives a radially

outward boost to all particles that are formed in the system. This influences the

transverse momentum spectra of heavy particles. For non – central collisions, the

shape of the interaction region depends strongly on the impact parameter of the col-

lision. Just after the collision, as shown in Fig. 5.4, the reaction volume is elliptically

shaped. This spatial anisotropy with respect to the x − z plane translates into the

momentum anisotropy of the produced particles.
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5 Relating Glauber Model to experiments

Figure 5.4: Non–central nucleus – nucleus collision.

The initial space anisotropy, characterized by the eccentricity [16], is defined as

εRP =
σ2
y − σ2

x

σ2
y + σ2

x

(5.4)

εPP =

√
(σ2

y − σ2
x)

2 + 4σ2
xy

σ2
y + σ2

x

(5.5)

where σ2
x = 〈x2〉 − 〈x〉2, σ2

y = 〈y2〉 − 〈y〉2 and σ2
xy = 〈xy〉 − 〈x〉〈y〉. RP stands for

reaction plane and PP for the participant plane. For participant plane calculations,

the coordinated axes are aligned in the direction of the major and minor axes of the

ellipse formed in the collision region as shown in Fig. 5.5.

Figure 5.5: Reaction plane and participant plane.
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The variation of eccentricity with impact parameter is shown in Fig. 5.6. One

notices that the standard eccentricity goes to zero for collisions with zero impact pa-

rameter, as one would expect for two spherical shaped objects. But for participant

eccentricity one finds it still has some non-zero value for zero impact parameter col-

lisions. This is because it is calculated considering the distribution of nucleons inside

the nuclei.

Figure 5.6: Variation of eccentricity with impact parameter.

With increase in the collision energy, eccentricity decreases (Fig. 5.7). If the

eccentricity is participant eccentricity, it would depend on the number of participating

nucleons and hence their positions. This number changes with energy, so one may

expect participant eccentricity also to change.
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5 Relating Glauber Model to experiments

Figure 5.7: Variation of eccentricity for different energies with impact parameter(left)
and Npart (right) for Au + Au collision.

As already discussed, the initial spatial anisotropy results in anisotropy in the

momentum of the produced particles. A measure of this momentum anisotropy is v2

given by

v2 = 〈
p2x − p2y
p2x + p2y

〉 (5.6)

According to ideal hydrodynamics [17], elliptic flow (v2) is proportional to initial

spatial eccentricity.

Figure 5.8: Relation between elliptic flow and initial spatial eccentricity for Cu + Cu
(left) and Au + Au (right) at 200 GeV.

In Fig. 5.8, we have plotted the v2 (momentum space anisotropy measured in
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5 Relating Glauber Model to experiments

experiments) versus the spatial anisotropy obtained for the same centrality as the

experimental data using Glauber model. The figure clearly depicts this transforma-

tion from spatial anisotropy to momentum anisotropy for the system formed in the

heavy–ion collisions. The slope of the curve decides how efficient is this transforma-

tion. There could be several physical effects which can dampen this transformation,

one such effect is viscosity.

5.3 Angular momentum

Nuclei colliding at ultra–relativistic energies, in principle, should carry large initial

angular momentum if the impact parameter is non–zero because of the homogeneity of

the colliding nuclei in the transverse plane. From angular momentum conservation in

peripheral ultra–relativistic heavy ion collision, this large initial angular momentum

must be transferred to the initial angular momentum of the quark – gluon plasma,

leading to enhanced azimuthal anisotropy of particle spectra. In hydrodynamical

terms, the initial angular momentum has a non–trivial dependence on the initial

longitudinal flow velocity on the transverse co–ordinates, thereby giving rise to non–

vanishing vorticity in the equations of motion [18]. This enhances the expansion

rate of the supposedly created fluid and also compensates for the possible effect of

viscosity. The most distinctive signature of the vorticity in the plasma would be the

average polarization of the emitted hadrons. Here we provide an estimate of the initial

angular momentum generated by the system of colliding ions at relativistic energies

The angular momentum ~L is given by

~L = ~r × ~p (5.7)

In the case of ultra–relativistic collisions, we can take r2 = x2 + y2 where we

consider the beam to be moving in z–direction. The linear momentum is along the
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5 Relating Glauber Model to experiments

beam direction and hence ~p = pz ẑ for the projectile nucleus and ~p = − pz ẑ for the

target nucleus. From this we get that

~L = rpz ŷ (5.8)

Angular momentum of participating nucleons from nucleus moving in +z direction

is taken to be negative while those from that moving in -z direction is taken to

be positive. The outline of the program used to compute the variation of angular

momentum with impact parameter is given in the appendix.

Figure 5.9: Variation of angular momentum with impact parameter for Au + Au
collision at

√
sNN = 200 GeV.

As compared to the angular momentum of the electron in hydrogen atom, this is

more than two million times larger. For two colliding gold nuclei, the value of the

initial angular momentum of the interaction region was found to be very large and

also to have a strong dependence on the impact parameter (Fig. 5.9).

5.4 Electromagnetic field

Nucleus – nucleus collisions address the possibility for nuclear matter to undergo

phase transitions into a new state of matter. As the motion of two fast moving nuclei

in off–central heavy ion collision is oppositely directed, strong transient electromag-
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5 Relating Glauber Model to experiments

netic fields can be created. The order of magnitude can be as high as 1015 Tesla for

magnetic field in the direction of the angular momentum. Such high magnetic fields

can convert topological charge fluctuation in QCD vacuum into global electric charge

separation with respect to the reaction plane as preferential emission of charged par-

ticles occurs along the direction of angular momentum due to presence of non–zero

chirality. This is the chiral magnetic effect [19]. Besides this, other effects like catal-

ysis of chiral symmetry breaking, the possibility of chiral and deconfinement phase

transitions, the spontaneous electromagnetic superconductivity of QCD vacuum, the

possible enhancement of elliptic flow of charged particles etc. are also caused by

strong magnetic fields.

Using the Liènard – Weichert potentials to calculate the electric and magnetic

fields at position r and time t [20],

e ~E(t, ~x) = αEM

Npart∑
n=1

1 − v2n

R3
n

(
1 −

[
~Rn × ~vn

]2
/ ~Rn

2
)3/2

~Rn |tr (5.9)

e ~B(t, ~x) = αEM

Npart∑
n=1

1 − v2n

R3
n

(
1 −

[
~Rn × ~vn

]2
/ ~Rn

2
)3/2

~vn × ~Rn |tr (5.10)

where αEM is the fine structure constant and ~Rn = ~x − ~xn(t) where ~xn is the

position of proton moving with velocity ~vn and tr is the retarded time. If ~vn = vẑ,

then
[
~Rn × ~vn

]2
= R2

n,⊥v
2
n where Rn,⊥ is time – independent.

At t = 0, the proton positions are distributed in accordance with the Woods –

Saxon distribution. We assume that all the target nucleons move with ~vn
targ =

(0, 0, v) and the projectile nucleons with ~vn
proj = (0, 0, −v). If the collision

energy is
√
s and mass of proton is mp then

v2 = 1 −
(

2mp√
s

)2

(5.11)
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A cut off of rcut = 0.3 fm as an effective distance between two nucleons is

implemented to take care of the singularity at Rn −→ 0. A very weak dependence of

the electric and magnetic fields were observed on rcut in the range of 0.3 fm to 0.6 fm.

Figure 5.10: Event – by – event variation of electric field (left) and magnetic field
(right) with impact parameter for Au + Au collision at

√
sNN = 200 GeV.

The Fig. 5.10 shows the variation of electric and magnetic field for different impact

parameters. Due to the symmetry of the system about the y–axis, 〈Ex〉 = 〈Ey〉 =

〈Bx〉 = 0. These are non–zero on an event–by–event basis. With increase in collision

energy, the magnitude of magnetic field increases drastically, as shown in Fig. 5.11.
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Figure 5.11: Event – by – event variation of magnetic field with impact parameter
for different values of beam energies for Au + Au collision.
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We find that huge transient magnetic field of the order of 1018 G is produced as

compared to typical values of 0.5 G for earth’s magnetic field, 107 G for the strongest

man-made magnetic field and 1016 G on the surface of magnetostars. These are

transient fields which act on time–scales of the order of a few fm/c (Fig. 5.12). But

this is enough for its effect to be encoded as the lifetime of the Quark – Gluon Plasma

is predicted to be around 6 – 10 fm/c.

Figure 5.12: Time evolution of magnetic field
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Chapter 6

Multiplicity fluctuations from Glauber
Model
At present, a lot of theoretical and experimental investigations of multiplicity and

transverse momentum fluctuations of charged particles in high energy heavy ion col-

lisions is carried out. This is because we expect an increase in fluctuations in the case

of freeze–out close to the critical endpoint of QCD and at the hadronic matter phase

boundary separating the QGP [23]. But there may be other factors which lead to

an increase in fluctuations and need to be eliminated. Fluctuations in the number of

participants and binary collision lead to fluctuations in the number of particle sources

which directly lead to fluctuations in multiplicity and transverse momentum of the

produced charged particles. Other sources of fluctuations can be listed as follows :

1. finite charged particle multiplicity

2. effect of limited acceptance of the detector

3. impact parameter fluctuations

4. effect of rescattering due to secondary collisions

In this report, we will be discussing the effect of fluctuations in number of partic-

ipants on fluctuations in the number of charged particles produced as derived from

Monte Carlo Glauber model.

The relative fluctuation of a parameter X is given by

ωX =
σ2
X

〈X〉
(6.1)
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6 Multiplicity fluctuations from Glauber Model

where σ2
X = 〈X2〉 − 〈X〉2.

From a simple participant model, the charged particle multiplicity is expressed as

N =

Npart∑
i=1

ni (6.2)

where Npart is the number of participants and ni is the number of particles produced

in the detector acceptance by the ith participant. On an average, the mean value of ni

is the ratio of the average multiplicity in the detector coverage to the average number

of participants, hence

〈n〉 = 〈N〉/〈Npart〉 (6.3)

Thus, the fluctuations inN will have contributions due to fluctuations inNpart (ωNpart)

and also due to the fluctuations in the number particles produced per participant

(ωn). In the absence of correlations between the ni, the multiplicity fluctuations ωN

is expressed as

ωN = ωn + 〈n〉 ωNpart (6.4)

The participant model is expected to hold reasonably well for peripheral collisions

where there are only few nucleon – nucleon collisions, while for central collisions

the particle production gets affected by nucleon – nucleon scattering, rescatterings

between produced particles, energy degradation, and other effects.

The effect of fluctuation in impact parameter can be captured in the fluctuation in

number of participants which is be obtained from Monte Carlo Glauber calculations.

The quantity 〈n〉 is equal to the ratio of the mean charged particle multiplicity for a

given acceptance to the mean number of participants for the same centrality bin. The

mean charged particle multiplicity is obtained by using the two–component charged

particle multiplicity relation as given in Eq. 5.1. 〈m〉 is the total number of particles

produced per participant and from literature [24]

〈m〉 = 〈Nch〉NN = −4.7 + 5.2s0.145 (6.5)

36



6 Multiplicity fluctuations from Glauber Model

for
√
s between 2 to 500 GeV. This is used to calculate ωm which is given by

ωm = 0.33
(〈Nch〉 − 1)2

〈Nch〉
(6.6)

Fluctuation in n will then be given according to

ωn = 1 − 〈n〉
〈m〉

+
〈n〉
〈m〉

ωm (6.7)

Hence we can compute the fluctuations in number of participants and charged particle

multiplicity.

Figure 6.1: Variation of fluctuations with impact parameter

From Fig. 6.1, we conclude that a large contribution to charged particle multi-

plicity comes from the fluctuation in the number of participants and this needs to be

taken into account and eliminated carefully when studying fluctuations due to critical

behavior in the evolution of system.
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Summary and Conclusions
The Glauber model provides a quantitative consideration of the geometrical config-

uration of the nuclei when they collide. It treats the nucleus-nucleus collision as a

series of nucleon-nucleon collision process. In order to compare the geometric results

of this model with real experimental data the nuclear density profile and the inelastic

nucleon-nucleon cross-section is given as model inputs. The static cross-section is

assumed to be the same as that for proton proton collision and does not depend on

the nuclear environment. This is the only non-trivial dependence of the model on the

beam energy.

The Glauber model provides us with the number of participating nucleons and

the number of binary collisions for a given impact parameter at a given center of

mass energy. The model comes in two variants namely the Optical Glauber model

and the Monte Carlo Glauber model. While in Optical Glauber model the nucleus is

considered as a smooth matter density, in the Monte Carlo variant, the nucleons in the

nucleus are populated stochastically according to the given nuclear density profile.

For the Optical Glauber model, the number of binary collisions and participating

nucleons are derived analytically; in the Monte Carlo version, it is counted.

In order to understand the applicability of the Glauber model, we map it to the

number of charged particles produced by defining centrality classes. We can see that a

simple geometrical model explains the charged particle multiplicity data obtained for

energies ranging from 7 GeV to 200 GeV gold on gold collision at RHIC for |η| ≤ 0.5.

Just after collision, for a non-central collision, the reaction volume is elliptically
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shaped. The pressure gradient is more towards the center and lesser towards the

ends. This initial spatial anisotropy is characterized by eccentricity and translates

to momentum anisotropy of produced particles. From experiments, we find that

this momentum anisotropy given by v2 is proportional to eccentricity. From this

simple geometric model, we can calculate eccentricity and establish the anisotropy in

momentum space as a consequence of anisotropy of collision geometry.

Due to inhomogeneity in the colliding nuclei in the transverse plane, from Glauber

model calculations we find that these systems carry very large angular momentum.

From conservation of angular momentum, this must be transferred to the initial angu-

lar momentum of the quark gluon plasma. This uncompensated angular momentum

may affect the initial longitudinal flow velocity. We still need a sound theoretical

calculation which includes the effect of large initial angular momentum.

Heavy nuclei are huge bunches of charges moving at relativistic speeds. We find

that huge transient magnetic field of the order of 1018 G is produced. Such high

magnetic fields lead to novel effects like chiral magnetic effect signatures of which are

observed in RHIC. These transient fields act on time scales of few fm/c. But this is

enough for its effects to be encoded as the lifetime of quark gluon plasma is predicted

to be around 5 fm/c. Thus we see how simple geometrical considerations can lead to

explanation of results in high energy heavy ion collision.

Fluctuations have gained importance with the increasing search for the critical

point at RHIC. But fluctuations in the number of participants, binary collision and

number of charged particles produced should be taken into account and eliminated

accordingly when looking for the critical point. From this very simplistic geometrical

model, we can provide a baseline over which effects of fluctuations start gaining

importance.

To conclude, the Glauber model, though very simplistic, is able to explain diverse
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effects as seen in high energy heavy ion collisions only based on geometric considera-

tions.
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Appendix A

Numerical integration techniques
7.1 Trapezoidal integration

The trapezoidal rule is a technique of numerical integration which works by approx-

imating the region under the graph of a function f(x) as series of trapezoids and

calculating its area. ∫ b

a

f(x) dx ≈ (b− a)
f(a) + f(b)

2
. (7.1)

In order to carry out trapezoidal integration, we divide the region of integration into

n bins, each of whose width is given by

h =
b− a
n

Hence we have, ∫ b

a

f(x) dx = h×

[
f(a) + f(b)

2
+

n−1∑
i=1

f(a+ ih)

]
(7.2)

For two dimensional integration, we define

h =
b− a
m

k =
d− c
n

and

xi = a + ih i = 0, 1, · · ·m

yi = c + ik i = 0, 1, · · ·n
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Hence we get,∫ d

c

∫ b

a

f(x, y) dx dy =
hk

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)] (7.3)

+ 2
m−1∑
i=1

f(xi, c) + 2
m−1∑
i=1

f(xi, d)

+ 2
n−1∑
i=1

f(a, yi) + 2
n−1∑
i=1

f(b, yi)

+
m−1∑
i=1

n−1∑
y=1

f(xi, yj)

7.2 Monte Carlo integration

Monte Carlo integration is an integration technique which is based on a sequence of

random numbers. If we are interested in computing an integral
∫ b
a
dxf(x). We do a

linear transformation on so that we get a sequence of random numbers xi which are

uniformly distributed between [a, b]. The transformation is

x(y) = (b− a)y + a

where y ∈ U [0, 1] If the sequence of random numbers consists of N values of xi, an

estimate of the integral is ∫ b

a

dxf(x) =
b− a
N

N∑
i=1

f(xi) (7.4)

The estimate on the right is the Monte Carlo estimate and the estimates improves as

one chooses larger value of N .

When the region of multi–dimensional integration is regular, the generalization of

Monte Carlo method is trivial. A two dimensional integral reduces to∫ b

a

dx

∫ d

c

dyf(x, y) =
N∑
i=1

(d− c)(b− a)

N
f(xi, yi) (7.5)
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where the region of integration is a rectangle. For faster estimates, we can employ

the techniques of importance sampling in order to choose our random points for

integration.
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Appendix B

Computing angular momentum
The main part of the C++ code used to compute the angular momentum is as

follows :

1. The collision parameters like the mass number, atomic number and nuclear

density profile function of the colliding nucleons, energy of collision, and inelastic

nucleon – nucleon cross–section is obtained from the user.

2. According to the given nuclear density profile function, the positions of the nu-

cleons are assigned taking into consideration the impact parameter for collision.

3. The participant positions are determined using Monte Carlo Glauber model

approach.

4. In order to get the angular momentum, L, the transverse distance r =
√
x2 + y2

is calculated for the participating nucleon and is multiplied with the longitudinal

momentum.

5. For nucleons of nucleus A whose center is shifted to (b/2), L is replaced by −L if

the x–coordinate is negative. This was done to ensure that nucleons of nucleus

A have positive angular momentum. Similar steps are used to make sure that

nucleons of nucleus B have negative angular momentum as both are moving in

opposite direction.

6. The net angular momentum is obtained by summing over angular momentum

of all the participating nucleons.
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Appendix C

Computing magnetic field
The main part of the C++ code used to compute the magnetic field is as follows :

1. The collision parameters like the mass number, atomic number and nuclear

density profile function of the colliding nucleons, energy of collision, and inelastic

nucleon – nucleon cross–section is obtained from the user.

2. According to the given nuclear density profile function, the positions of the nu-

cleons are assigned taking into consideration the impact parameter for collision.

The first A nucleons are labeled as protons for both the nuclei separately.

3. The spectator positions are determined using Monte Carlo Glauber model ap-

proach.

4. In order to get the magnetic field, the Liènard – Weichert potentials are used.

e ~B(t, ~x) = αEM
∑
n

1 − v2n

R3
n

(
1 −

[
~Rn × ~vn

]2
/ ~Rn

2
)3/2

~vn × ~Rn |tr (7.1)

where αEM is the fine structure constant and ~Rn = ~x − ~xn(t) where ~xn is

the position of proton moving with velocity ~vn and tr is the retarded time. If

~vn = vẑ, then
[
~Rn × ~vn

]2
= R2

n,⊥v
2
n where Rn,⊥ is time – independent. The

retarded time is incorporated by employing Lorentz contraction in z–direction.

5. At t = 0, the proton positions are distributed in accordance with the Woods –

Saxon distribution. We assume that all the target move with ~vn
targ = (0, 0, v)

and ~vn
proj = (0, 0, −v).
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6. The net magnetic is obtained by summing over magnetic field produced by all

the spectator nucleons.
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Appendix D

Terminologies
• Event : It refers to the collision of two nuclei.

• Multiplicity : It is the total number of particles measured in the detectors

after a heavy-ion collision.

• Centrality : Theoretically, centrality is characterized by the impact parameter

which is the distance between the centers of two colliding heavy ions in a plane

transverse to the beam direction. Small impact parameter collisions are cen-

tral collisions while large impact parameter collisions are peripheral collisions.

Experimentally, the collision centrality is inferred from the measured particle

multiplicities if it is assumed that this multiplicity is a monotonic function of

impact parameter. When the total integral of the multiplicity distribution is

known, centrality classes are defined by binning the distribution based upon the

fraction of the total integral.

• Rapidity : It is a dimensionless quantity defines in terms of the energy –

momentum components of the particle and is related to the ratio of forward –

to – backward light cone momentum. It is given by

y =
1

2
ln

(
E + pz
E − pz

)
• Pseudo–rapidity : It is a measure of the spatial coordinate describing the

angle of a particle relative to the beam axis and is defined as

η = − ln

[
tan

(
θ

2

)]
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where θ is the angle between particle momentum and beam axis.

• Chirality : For massless particles, chirality is the handedness of the particle.

The chirality of a particle is right-handed if the direction of its spin is the same

as the direction of its motion. It is left-handed if the directions of spin and

motion are opposite. For massive particles, chirality is determined by whether

the particle transforms in a right or left-handed representation of the Poincaré

group.
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