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Chapter 1

Elementary particles

The elememtary particles of which the world is made up of can be broadly classified as glu-

ons, leptons and quarks. Leptons are found in the three generations, they are spin 1/2 parti-

cles(fermions). They carry -e charge and each of them has a positive compliment with the same

mass called antileptons. Neutrinoes are chargeless and also have corresponding antiparticles.

*/µνµντ (0.18); eνeντ (0.17);πντ (0.1); ρντ (0.22).

Table 1.1: Leptons

Particle Antiparticle Mass(MeV
c2

) Charge Spin Lifetime(s) Decay modes

e− e+ 0.511 ±1 1
2

Stable

νe ν̄e < 0.46 ∗ 10−6 0 1
2

Stable

µ− µ+ 105.66 ±1 1
2

2.20 ∗ 10−6 eνeνµ

νµ ν̄µ < 0.50 0 1
2

Stable

τ− τ+ 1784 ±1 1
2

3.4 ∗ 10−13 Many Channels*

ντ ν̄τ < 164 0 1
2

Stable
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Table 1.2: Quarks

Name Symbol Mass(in GeV) Isospin Charge(e) Lifetime(s)

Down d 0.3 1
2

−1
3

Stable

Up u 0.3 1
2

2
3

Stable

Strange s 0.5 0 −1
3

10−8 − 10−12

Charm c 1.5 0 2
3

10−12 − 10−13

Bottom b 4.5 0 −1
3

10−12 − 10−13

Top t 171 0 2
3

10−25

1.1 Quarks

Unlike leptons, quarks are never found in their free state. They are found confined in the

hadrons. Hadrons are of two types-baryons and mesons. Baryons are composed of three quarks

wheareas mesons are made up of a quark and an antiquark. There are 6 types of quarks

each having a finite mass and carrying certain charge and are spin half(fermions) particles.

The quarks with their properties like mass, charge, isospin, strangeness, charm, beauty and

lifetimes is tabled below.

1.1.1 Baryon list

Since baryons are composed of three quarks, they can have a spin angular momentum of either
3
2

or 1
2
. A baryon with a higher total angular momentum although having the same quark

composition is considered to be a different particle as it is heavier. The strangeness of an s

quark is -1 and that of its antiquark +1. The strangess of a baryon is calculted by adding the

strangeness number of all its constituents. Isospin tells about the number of particles of its

type with different charge. The degrees of freedom is (2Isospin+ 1)(2Spin+ 1).
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Table 1.3: Baryons

Baryon(Mass in MeV) Spin Strangeness Isospin Degrees of freedom

N(1440) 1
2

0 1
2

4

N(1990) 7
2

0 1
2

16

N(1520) 3
2

0 1
2

8

N(1680) 5
2

0 1
2

4

N(1700) 3
2

0 1
2

8

N(1710) 1
2

0 1
2

4

N(1720) 3
2

0 1
2

8

N(1860) 5
2

0 1
2

12

N(1875) 3
2

0 1
2

8

N(1900) 3
2

0 1
2

8

∆(1232) 3
2

0 3
2

16

∆(1600) 3
2

0 3
2

16

∆(1620) 1
2

0 3
2

8

∆(1700) 1
2

0 3
2

8

∆(1750) 1
2

0 3
2

8

∆(1900) 1
2

0 3
2

8

∆(1905) 5
2

0 3
2

24

∆(1910) 1
2

0 3
2

8

∆(1920) 3
2

0 3
2

16

∆(1930) 5
2

0 3
2

24

∆(1940) 3
2

0 3
2

16

∆(1950) 7
2

0 3
2

32
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Baryon(Mass in MeV) Spin Strangeness Isospin Degrees of freedom

Λ(1405) 1
2

-1 0 2

Λ(1520) 3
2

-1 0 4

Λ(1600) 1
2

-1 0 2

Λ(1670) 1
2

-1 0 2

Λ(1690) 3
2

-1 0 4

Λ(1800) 1
2

-1 0 2

Λ(1810) 1
2

-1 0 2

Λ(1820) 5
2

-1 0 6

Λ(1830) 5
2

-1 0 6

Λ(1890) 3
2

-1 0 4

Σ(1385) 3
2

-1 1 12

Σ(1580) 3
2

-1 1 12

Σ(1620) 1
2

-1 1 6

Σ(1660) 1
2

-1 1 6

Σ(1670) 3
2

-1 1 12

Σ(1750) 1
2

-1 1 6

Σ(1770) 1
2

-1 1 6

Σ(1775) 5
2

-1 1 18

Σ(1840) 3
2

-1 1 12

Σ(1880) 1
2

-1 1 6

Σ(1915) 5
2

-1 1 18

Σ(1940) 3
2

-1 1 12

Ξ(1530) 3
2

-2 1
2

8

Ξ(1820) 3
2

-2 1
2

8

1.1.2 Meson list

The following table shows the eight combinations of mesons(u,d and s) and their properties.

The mesons have either spin 0 or spin 1. The mesons having spin 1 are represented by the same

symbol as its spin 0 meson but with an asterix superscript to denote excited state.
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Table 1.4: Mesons
Meson(Mass in MeV) Tot.ang.momentum Strangeness Isospin Degrees of freedom

f0(500) 0 0 0 1

f0(980) 0 0 0 1

f0(1370) 0 0 0 1

f0(1500) 0 0 0 1

f0(1710) 0 0 0 1

f1(1285) 1 0 0 3

f1(1420) 1 0 0 3

f1(1510) 1 0 0 3

f2(1270) 2 0 0 5

f2(1430) 2 0 0 5

f
′
2(1525) 2 0 0 5

f2(1565) 2 0 0 5

f2(1640) 2 0 0 5

f2(1810) 2 0 0 5

f2(1910) 2 0 0 5

f2(1950) 2 0 0 5

b1(1235) 1 0 1 9

a0(980) 0 0 1 3

a0(1450) 0 0 1 3

a1(1260) 1 0 1 9

a1(1640) 1 0 1 9

a2(1320) 2 0 1 15

a2(1700) 2 0 1 15

Π(1300) 0 0 1 3

Π(1800) 0 0 1 3

Π1(1400) 1 0 1 9

Π1(1600) 1 0 1 9
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Meson(mass in MeV) Tot.ang.momentum Strangeness Isospin Degrees of freedom

Π2(1670) 2 0 1 15

Π2(1880) 2 0 1 15

η(1405) 0 0 0 1

η(1295) 0 0 0 1

η(1475) 0 0 0 1

η(1760) 0 0 0 1

η2(1645) 2 0 0 5

η2(1870) 2 0 0 5

ρ(1450) 1 0 1 9

ρ(1570) 1 0 1 9

ρ(1700) 1 0 1 9

ρ(1900) 1 0 1 9

ρ3(1690) 3 0 1 21

ρ3(1990) 3 0 1 21

h1(1595) 1 0 0 3

Ω(1650) 1 0 0 3

Ω3(1670) 3 0 0 7

Φ(1680) 1 0 0 3

Φ3(1850) 3 0 0 7

K0
s 0 ±1 1

2
2

K0
l 0 ±1 1

2
2

K∗0(100) 0 ±1 1
2

2

K∗(892) 1 ±1 1
2

6

K1(1270) 1 ±1 1
2

6

K1(1470) 1 ±1 1
2

6

K∗(1410) 1 ±1 1
2

6

K∗0(1430) 0 ±1 1
2

2

K∗0(1950) 0 ±1 1
2

2

K∗2(1430) 2 ±1 1
2

10

K(1460) 0 ±1 1
2

2

K2(1580) 2 ±1 1
2

10

K2(1770) 2 ±1 1
2

10

K∗3(1430) 3 ±1 1
2

14

K∗(1680) 1 ±1 1
2

6

K∗3(1780) 3 ±1 1
2

14

K2(1820) 2 ±1 1
2

10

K3(1830) 0 ±1 1
2

2
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1.2 Gluons

The last of the elementary particles gluons are of eight types and are massless particles and act

as mediators for the interactions between quarks and leptons. They are spin-1 particles.
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Chapter 2

Viscosity

2.1 An introduction to viscosity

A many body system which shows a collective behaviour of movement or flow is called a fluid.

For such a system, the mean free path of the molecules is negligible when compared to the

system size. Viscosity or the internal resistance is a relevant parameter in the study of fluids.

It can be concieved as the inverse of fluidity.The shear viscosity of a fluid expresses its resistance

to shearing flows, where adjacent layers move over one another with different speeds. Consider

a layer of fluid trapped between to parallel plates. when the top plate is moved, the layer just

below it would move with it. Ideally, if there were no internal friction, the layer just below it

should have moved along with the top layer with the same velocity. But this doesnot occur

in realistic fluids. The drag force due to the layers below lead to a velocity gradient in the

direction perpendicular to applied shearing force. This internal friction is called the viscous

force and viscosity is a measure of this friction in a fluid.
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Figure 2.1: Laminar Shear of fluid between two plates

∂u

∂y
=

∂(∂x
∂t

)

∂y
(2.1)

=
∂(∂x

∂y
)

∂t
(2.2)

(2.3)

Velocity Gradient=Tangential strain rate

In Newtonian fluids, the shear stress is proportional to the strain rate and the coefficient

of proportionality is called viscosity.

Fx = ηxzA
dvx
dz

(2.4)

(2.5)

In principle η can be a 3× 3 tensor of rank 2.
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2.2 An analysis of temperature dependence of viscosity

in liquids and gases

2.2.1 Viscosity in liquids

The two broad classification amongst fluids, liquids and gases, show differences in their viscous

behaviour. The underlying reason lies in the difference in the origin of this internal resistance in

both of them. In case of liquids, the molecules are quite closely packed.There exists a frictional

force between the layers of the liquid which oppose any motion of one over the other. Therefore

in order to move the molecules of a layer should have a minimum energy(say EA) to overcome

this frictional force. At any temperature T, the probability that a molecule has energy Ea is

e−
Ea
RT . Hence viscosity should be inversely proportional to this term.

η = Ae
Ea
RT (2.6)

lnη = lnA+
Ea
RT

(2.7)

(2.8)

Therefore, viscosity of a liquid decreases with an increase in temperature.

2.2.2 Viscosity in Gases

In case of gases, the molecules are so separated from each other that its not possible to attribute

the frictional forces to the observed velocity gradient in the system. The only means for a

momentum transfer between two layers of molecules is due to intermolecular collisions. In

the process of a collision the motion of the molecules in one layer can be deflected such that

now they might happen to undergo a collision with some molecule in another layer, thereby

imparting some momentum to it. The layers between which the momentum transfer is discussed

therefore, in this case would be those placed a mean free path apart. Since we expect higher

velocity particles to impart more momentum on collisions, viscosity which is a ratio of stress
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per strain rate should be directly proportional to velocity and mean free path for the reason

explained in the previous statement. It should also be proportional to the number density of

particles.

η =
Fx

Advx
dz

(2.9)

=
d
dt

(mvx)

Advx
dz

(2.10)

=
vx

d
dt

(ρV )

Avx
λ

(2.11)

=
vxρ

dz
dt

vx
λ

(2.12)

= ρvzλ (2.13)

=
1

3
ρvλ (2.14)

=
1

3
n < |p| > λ (2.15)

η ∝ nλ < |p| > (2.16)

(2.17)

Fx is the shear force in the x direction on the molecules,v is the average velocity of the system, m

is the mass of a molecule,ρ is the mass density of the system.n refers to number density,< |p| >
stands for average momentum of gas and λ refers to mean free path of the gas molecule.

The average momentum of a gas in a Maxwell Boltzmanian Ensemble(< |p| >) is
√

8MT
π

.

assuming the gas to have the same velocity in all directions, momentum in x direction is one

third of this value.

The mean free path of an ideal gas can be derived as follows. Let us consider one of the

11



molecules to be of radius r. If it travels a distance vt in time t, assuming the colliding molecules

to be point particles and the number of molecules that our candidate molecule can collide with

is proportional to the volume it has travelled,the mean free path would be given as vt
vtπr2n

where

n is the number of molecules per unit volume. Here we have assumed our candidate molecule

to be a hard rigid sphere whereas the other colliding molecules to be point particles, along

with the assumption that its velocity doesn’t change after each collision which is generally not

true.So the viscosity of a gas doesn’t depend on its number density. Since velocity has a T
1
2

dependence, viscosity of a gas increases with temperature.

In a gas of particles having a radius ’r’, the effective collision area around a molecule is

4πr2. Assuming the target molecules to be point masses, the mean free path can be calculated

as follows.

Distance covered by the molecule in time t=vt

Effective volume swept by the molecule in time t=Velocity of the molecule with respect to

target molecules × t ×4πr2

Since particles move in random directions with nearly identical velocity, relative velocity of the

molecule=
√

2v.

Effective volume swept by the molecule in time t= 4
√

2r2vt

Number of target molecules in this volume= n ∗ 4
√

2r2vt where n stands for number density.

Distance between two consecutive collisions(λ)=vt
4
√

2nr2vt
= 1

4
√

2nr2
.

η =
1

6r2

√
MT

π

12



Table 2.1: Viscosity of common fluids

Substance Viscosity (Pa s)

Air (at 18 oC) 1.9× 10−5

Water (at 20 oC) 1× 10−3

Canola Oil at room temp. 0.1

Motor Oil at room temp. 1

Corn syrup at room temp. 8

Pahoehoe lava 100 to 1,000

A’a lava 1000 to 10,000

Andesite lava 106to107

Rhyolite lava 1011to1012

13



Chapter 3

High energy heavy ion collisions

In high energy heavy ion collisions, nuclei with large atomic number are stripped off their

electrons and are made to collide at high energies. Following the laws of conservation of

energy and momentum, a large number of different hadrons are produced as an outcome.

Hadrons are composed of quarks,antiquarks and gluons which are confined within them. At

low temperatures, the a hadron gas behaves as an ideal gas, when T increases to nearly 100

MeV pion creation sets in and with furthere temperature rise, the ratio of other hadrons in the

system also starts increasing. At temperatures, close to 170 Mev the hadrons come together

to form a strongly interacting state of matter called quark-gluon plasma. This exotic phase

transition has been observed through the following signatures. The energy density of the system

is found to saturate at this stage.

Experimentally, the ratio of viscosity to entropy density (η
s
) is found to have a minimum

at this temperature.

My regime of study would be confined to the hadron phase where the particles would be

treated as hard rigid spheres which interact among themselves only through elastic collisions.

A statistical model of the system would be studied.

14



Figure 3.1: Energy density as a function of temperature

Figure 3.2: Statistical Model applicability
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3.1 Motivation to study about viscosity of hadron gas

Heavy ions are particles with large surface area. When the impact factor(b) is more than

zero, the centrality of the collision is given by πb2

2πR2
A

with RA being the nuclear radius. The

non-centrality of the collision makes the initial geometry of the participating nucleons in the

transverse plane to be elliptical. Assuming complete participation in the overlap region, the

initial geometry of the particles produced would also be elliptical in this plane. If the particles

were non-interacting, this ellipse would have retained its form over time. On the other hand,

if they were interacting the pressure gradient along the minor axis of the ellipse would be

more(assuming particle production was uniform throughout the ellipse). Therefore, as Euler

equation suggests, the particles would be accelerated more towards this direction(anisotropy

in momentum space). This should eventually lead to a circular distribution of the particles at

equilibrium. This gradual deformation is governed by the strength of the interaction forces and

hence will be quicker for a strongly interacting system. This is known as elliptic flow.

Therefore a measure of the eccentricity of the geometry at a certain stage of the process

would tell us about the viscosity of the medium produced. The lesser the eccentricity, more is

the viscosity. Theoretically, the minor axis of the initial geometry is assigned as the x axis and

v2 =< cos(2φ) >, where φ is the angle made by the postion vector of a particle with the x axis

is recorded. This value is then averaged over all particles and all events. A zero value would

mean infinite viscosity and any non-zero value would mean a finite viscosity. Experiments have

shown a non-zero value implying finite viscosity and therefore a fluid(liquid) like behaviour.

For a much more organised way of researching, the physicists have coined two terms to

classify different stages of the process. After the collision, at a certain stage it is found that the

number of particles produced no more changes and the inelastic processes begin to cease. This

stage is called ’chemical freeze-out’(chemical composition is frozen). A latter stage is the ’ther-

mal freeze-out’ when the interactions between the particles terminate and the elastic processes

also come to a halt(momentum distribution of the system is frozen). The primary objective

of my work would be to find the viscosity of a system lying in the regime between chemical

freeze out and the thermal freeze out where I would be treating them as ideal hadron gases

interacting only through elastic collisions. The dependence of viscosity on temperature,baryon

16



Figure 3.3: v2 as a function of pt for different η
s

chemical potential and centre of mass energies would be studied. Furthermore, the relevance

of a more significant quantity, namely the ratio between the viscosity and the entropy density

would also be studied.

The model considered demands the particle ratios at different temperature and chemical

potential as inputs which is obtained by fitting the observed particle ratios at the given centre

of mass energy in the thermal model.Since the baryonic chemical potential is very large when

compared to strangeness chemical potential and charge chemical potential, the latter two are

neglected. The following is a plot of baryonic potential as function of temperature.
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Figure 3.4: Chemical potenial as a function of temperature
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Chapter 4

Statitsical Analysis of ideal relativistic

hadron gases

4.1 An Overview

A statistical description of an ideal relativistic gas would give us an estimate of the expectation

values of the physical quantities like number density, energy density, pressure and entropy den-

sity of a system in equillibrium with a large reservoir. A microcanonical ensemble is employed

for description when the energy, temperature, volume and the number of particles in the system

is fixed. When the system can exchange energy with the reservoir, a canonical ensemble is used.

In cases where there is an exchange of particles as well a grand canonical ensemble is chosen

which has chemical potential, temperature and volume as its conserved quantities.

In the following chapter I will be listing the details of the properties of a system of ideal

gases studied statistically. The constituents are called ideal gases as they exhibit the following

properties:

1. The collision times between them are negligibly small and this is the only means of interac-

tion amongst them.

2. They are treated as point particles of fixed mass.

19



3. The collisions between them are purely elastic.

4. Any number of particles can be accomodated in a finite volume(implied from 2).

The system we are considering is an identical indistinguishable many particle system.

Classically, this indistinguishability has to be artificially introduced into the treatment, whereas

the indistinguishbility of of a system of two non-interacting particles in quantum mechanics is

reflected naturally in its wave function. Depending on the spin, the particles are classified as

either fermions(half odd integer spin) or bosons(integer spin). The Pauli exclusion principle

forbades two fermions from having the same set of quantum numbers. This brings a distinc-

tion in the distribution function applicable for fermions and bosons. The classical treatment

with an additional condition to account for indistinguishability is called Maxwell Boltzmann

distribution.

Since my motivation for studying this system is to deal with such a system produced

in high energy collisions where large number of particles of varying energies are invloved, I

will be discussing here about the canonical and grand canonical ensemble, in particular. Let us

consider the Maxwell Boltzmann description fo a system of ideal relativistic gases.The canonical

partition function is given by:

Q(V, T,N) = (Σεe
−βε)N (4.1)

= (
4

h3

∫ ∞
0

e−β(p2+m2)
1
2 p2dp)N (4.2)

(4.3)

The grand canonical partition function is given by:

Σ∞N=0

1

N !
(zΣe−βε)N = ezΣεe

−βε

lnD(V, z, T ) = zQ1(V, T )

20



For a relativistic gas molecule, the canonical partition function is given by:

Q1V, T =
4πV

h3

∫ ∞
0

e−
m
T

(p2+m2)
1
2 p2dp

Evaluating the above integral;

∫ ∞
0

e−
m
T

(p2+m2)
1
2 p2dp = m3

∫ ∞
0

e−
m
T
coshxsinh2xcoshxdx (4.4)

=
m3

4
[

∫ ∞
0

e−
m
T
coshxcosh3xdx−

∫ ∞
0

e−
m
T
coshxcoshxdx] (4.5)

=
m3

4
[K3(

m

T
)−K1(

m

T
) (4.6)

= m2TK2(
m

T
) (4.7)

(4.8)

Q1(V, T ) =
m2T4πV

h3
K2(

m

T
)

The Bose-Einstein Grand Canonical Partition function is given by:Πε
1

1−ze−βε where

ze−βε << 1.

The Fermi Dirac grand canonical partition function is given as:Πε1 + zeβε.
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4.2 Estimating physical quantities

The number density of the system, < n >= 1
V

Σε
1

z−1eβε+a
, where value of a is 0,1 and -1 for MB,

FD and BE statistics respectively. Let us first find out the number density for a MB gas.

< n > =
4π

h3

∫ ∞
0

ze−β(p2+m2)
1
2 p2dp (4.9)

=
m4πz

4h3T
K2(

m

T
) (4.10)

(4.11)

Therefore,

D(z, V, T ) = Σ∞N=0

1

N !
(V < n >)N (4.12)

(4.13)

The number density for the other distributions have to be numerically determined.

The pressure of the system can be calculated from the integral:

P =
kT

a

∫ ∞
0

ln[1 + aze−βε]
4πp2

h3
dp (4.14)

=
4πkT

ah3
[
p3

3
ln[1 + aze−βε]|∞0 +

∫ ∞
0

p3 aze−βε

1 + aze−βε
β
dε

dp
dp] (4.15)

(4.16)

The entropy density follows from the Maxwell’s relations and is given by P
T

.
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Chapter 5

Excluded hadron gas model

5.1 Excluded Volume van der Waals gas

An extension to the ideal gas picture based on the van der Waals(VDW) excluded volume pro-

cedure is suggested to phenomenologically take into account the repulsive interactions between

hadrons. For a two identical particle system, the presence of the other molecule restricts the

volume available for it. The volume restricted for a pair of molecules is 4
3
π(2r)3. Therefore,

excluded volume for one molecule is 4 ∗ 4
3
πr3.

5.2 Statistical analysis of an excluded volume VDW hadron

gas

The canonical ensemble treatment requires local conservation of physical quantities like strangeness,

charge and baryon number. Since this need not be the case in actual high energy collisions,

canonical ensemble is not preferred for describing a hadron gas system. To add to it, as the

number of particles produced can be considerably large the grand canonical ensemble is a better
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Figure 5.1: Excluded Volume Vanderwaal Gas
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choice. However, the additional requirement of considering the non zero radius of the hadron

makes it difficult for the incorporating a grand canonical ensemble framework. This makes the

number of molecules that can be accomodated in a finite volume bounded which is incompatible

with the propositions of the grand canonical ensemble. Furthermore, a momentary glance at

the physical phenomenon would tell us that in fact during the process, we donot confine the

particles to a fixed volume, the particles are produced and as they increase in number, the

volume expands alongwith. Its apparently the pressure that is preserved. Therefore, we chose

the grand canonical pressure partition function to describe our system. This function would

involve an integration over all volumes also.

5.3 Grand Canonical Pressure Partition function

The general grand canonical pressure partition function is given by:

K(P, z, T ) =

∫ ∞
0

dV e−PVD(z, V, T ) (5.1)

=

∫ ∞
0

dV e−V (P+
lnD(z,V,T ))

V (5.2)

(5.3)

where D(z,V,T) is the Grand canonical partition function.Its noteworthy to mention that a

singularity exists for the function when P = limV→∞
D(z,V,T )

V
.

For a gas of excluded volume VDW hadron, the grand canonical pressure partition

function is given by:

K(s, z, T ) =

∫ ∞
vjN

dV e−sVD(zj, V, T ) (5.4)

= Σ∞N=0

< nj >
N

N !

∫ ∞
vjN

dV e−(s(V−vjN))(V − vjN)N (5.5)

(5.6)
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Evaluating the above integral:

∫ ∞
vjN

dV e−(s(V−vjN))(V − vjN)N =
−1

s
e−(V−vjN)s(V − vjN)N |∞vjN +

∫ ∞
vjN

dV
N

s
e−V s(V − vjN)N−1(5.7)

=
N !e−vjN

sN+1
(5.8)

(5.9)

K(s, z, T ) = 1
s

Σ∞N=0

(< nj > e−vjs)N

sN
(5.10)

=
1

s

1

1− <nj>e
−vjs

s

(5.11)

=
1

s− e−vjs < nj >
(5.12)

5.3.1 Pressure in the system

Pressure=limV→∞ T
lnD(V,z,T )

V
=Ts∗ where s* is the pole singularity of the grand canonical par-

tiition function. Hence, the pressure can be found to obey a transcedental equation given

by:

p = e−vp/TTφ (5.14)

(5.15)

where φ = Σiφi(Here on φj means ideal gas number density of jth gas and φ = Σjφj.n would be

used for denoting the modified number density.) is the total ideal hadron gas number density

derived above.
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5.3.2 Number density

ni =
∂p

∂µi

Taking the derivative of the transcedental equation for pressure with respect to µi on both

sides,
∂p

∂µi
= −vφe

−vp
T
∂p

∂µi
+ e

−vp
T φi

Let xi = e
−vp
T φi and x = Σixi, then

ni =
xi

1 + vx

5.3.3 Entropy density

s =
∂p

∂T

Taking the derivative of the transcedental equation for pressure with respect to temper-

ature on both sides,

∂p

∂T
= p

v

T
e−

vp
T φ− ve−

vp
T φ

∂p

∂T
+ e−

vp
T φ+ e−

vp
T T

∂φ

∂T

Since p = e−
vp
T φT and retaining the definition for x,

s =
x

1 + vx
(1 + vx+

T

φ

∂φ

∂T
)

(5.15)

s = An,where n is the total number density of the system and A = 1 + vx + T
φ
∂φ
∂T

.As

mentioned earlier entropy density is a multiplicative factor times number density.
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Chapter 6

Viscosity of the hadron gas

The viscosity a system of hadrons can be determined in a manner similar to the one carried

out for ordinary gases. Viscosity is assumed to depend on number density, mean free path and

average momentum of the distribution. The only difference lies in the fact that the system

is relativistic and the particles are either fermions or bosons. Depending on the nature of

particles, Fermi-Dirac, Bose-Einstein or Maxwell Boltzmann distribution may be chosen.

6.1 Deriving an expression for viscosity of hadron gas

Average momentum of the system=Σpp×Numberofparticleswithmomentum′p′
Totalnumberofparticles

.

For a Maxwell Boltzmanian Distribution, it is given as:

< |p| >=

∫∞
0
dpp3e−

1
T

(m2+p2)
1
2∫∞

0
dpp2e−

1
T

(m2+p2)
1
2

(6.1)

The integral in the numerator was evaluated previously, and was expressed in terms of
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Modified Bessel function of 2nd kind.∫ ∞
0

dpp2e−
1
T

(m2+p2)
1
2 = m2TK2(

m

T
)

∫ ∞
0

dpp3e−
1
T

(m2+p2)
1
2 = m4

∫ ∞
0

dxsinh3xcoshxe−
m
T
coshx (6.2)

= T 4 2
3
2

√
π

(
3

2
z

3
2K 3

2
(
m

T
)−K ′3

2
(
m

T
)) (6.3)

= T 4 2
3
2

√
π

m

T

5
2
(

3T

2m
K 3

2
(
m

T
)−K ′3

2
(
m

T
)) (6.4)

= T 4 2
3
2

√
π

(
m

T
)
5
2

1

2
(K 5

2
(
m

T
)−K 1

2
(
m

T
) +K 5

2
(
m

T
) +K 1

2
(
m

T
)) (6.5)

= T 4 2
3
2

√
π

(
m

T
)
5
2K 5

2
(
m

T
) (6.6)

< |p| > =
T 4 2

3
2√
π
(m
T

)
5
2K 5

2
(m
T

)

m2TK2(m
T

)
(6.7)

=

√
8mT

π

K 5
2
(m
T

)

K2(m
T

)
(6.8)

As noted earlier, λ ∝ 1
r2

.

The final expression for the viscosity of a relativistic gas of identical hadrons is:

η =
5
√
mT

64
√
πr2

K 5
2
(m
T

)

K2(m
T

)
(6.9)

For a gas containing a mixture of different hadrons of same radius;

η =
5
√
T

64
√
πr2

Σi

√
mi

K 5
2
(mi
T

)

K2(mi
T

)
(6.10)
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6.2 Ratio of Viscosity to entropy density(ηs)

In case of ordinary fluids, kinematic viscosity which is the ratio of absolute viscosity to mass

density is preferred for comparing of viscous behaviour of different samples. This quantitiy

would give a better estimate of the strength of the interaction between the molecules if their

intermolecular separation were same. Analogous to kinematic viscosity, we introduce a quantity

which is the ratio of viscosity to entropy density for describing the fluidity of the media created

in heavy ion collisions. This is because entropy density is number density times a multiplicative

factor and the ratio in natural units is dimensionless.The ratio of viscosity to entropy density

gives the viscosity of the system which has an entropy density of 1fm−3.η
s

values which are

viscosities of isoentropic systems give a better insight in comparing the fluidity of two different

samples.
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Chapter 7

Computational Results

7.1 Characteristics of pion

SPIN:0(BOSON) (7.0)

ISOSPIN:3(π0, π+, π−) (7.1)

CONSTITUENT QUARKS:π0(uū),π+(ud̄),π−(dū) (7.2)

MASS=134.98 MeV (7.3)

µB = µS = µQ = 0 (7.4)

γS = 0 (7.5)
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7.2 Computation

The expressions derived for viscosity, entropy density and their ratio using the one component

Van der waal excluded volume gas model have been numerically determined using c++ code.

The average momentum of the system was determined using numerical integration technique

and the other specified parameters plugged into the expression to calculate viscosity. The

pressure of the system was calculated to an error of 0.01Mev
fm3 by allowing the simultaneous

evaluation of the functions y(x) = x and g(x) = e−
vx
T Tφ and thereby observing their equivalence

at some point.The temperature derivative of ideal gas number density was also obtained using

numerical integration. The program also takes into account the requisite factors to ensure

proper unit conversions. As mentioned earlier, the program assumes that the particles have

hard core radii. Further, it would be assumed that the radii is the same for all particles. The

differences in the study using Maxwell Boltzmanian statistics and Bose Einstein statistics is

tabulated. The results are given in natural units.

7.3 Mixture of pion gas in a Maxwell Boltzmanian en-

semble
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Table 7.1: Pion gas with radius=0.5 fm

T(MeV) K P(MeV
fm3 ) φ(fm−3) R n(fm−3) η(GeV 3fm−3) s(fm3) η

s

64.3 1.51232 0.4 0.00508051 0.976808 0.00496268 70.2769 0.0257762 13.84

74.3 1.58493 0.7 0.00914451 0.962408 0.00880075 79.1715 0.0437774 9.18

84.3 1.65554 1.3 0.0149065 0.939839 0.0140097 88.0884 0.0675118 6.623

94.3 1.72424 2.1 0.0226297 0.913165 0.0206647 97.0326 0.0972868 5.063

104.3 1.79111 3.2 0.0325696 0.881437 0.0287081 106.005 0.132885 4.049

114.3 1.85624 4.8 0.0449765 0.843142 0.0379216 115.006 0.173439 3.366

124.3 1.91973 6.7 0.060097 0.803052 0.048261 124.034 0.218974 2.875

134.3 1.98168 9.2 0.0781754 0.758818 0.0593209 133.087 0.267866 2.522

144.3 2.04215 12.1 0.0994546 0.714249 0.0710354 142.163 0.320085 2.254

154.3 2.10124 15.6 0.124176 0.668608 0.0830252 151.26 0.374118 2.052

164.3 2.15902 19.6 0.152581 0.623802 0.0951803 160.376 0.429681 1.895

Table 7.2: Pion gas with radius=0.3 fm

T(MeV) K P(MeV
fm3 ) φ(fm−3) R n(fm−3) η(GeV fm−3) s(fm3) η

s

64.3 1.51232 0.4 0.00508051 0.994912 0.00505466 195.214 0.0262124 37.804

74.3 1.58493 0.7 0.00914451 0.991666 0.0090683 219.921 0.0449754 24.821

84.3 1.65554 1.3 0.0149065 0.986449 0.0147045 244.69 0.0705141 17.615

94.3 1.72424 2.2 0.0226297 0.979588 0.0221678 269.535 0.103586 13.208

104.3 1.79111 3.4 0.0325696 0.971274 0.031634 294.46 0.144865 10.318

114.3 1.85624 5.1 0.0449765 0.960876 0.0432168 319.462 0.194793 8.325

124.3 1.91973 7.3 0.060097 0.948691 0.0570135 344.54 0.253789 6.891

134.3 1.98168 10.2 0.0781754 0.93433 0.0730417 369.686 0.321961 5.829

144.3 2.04215 13.8 0.0994546 0.918139 0.0913132 394.897 0.399439 5.018

154.3 2.10124 18.2 0.124176 0.900148 0.111777 420.166 0.486113 4.388

164.3 2.15902 23.5001 0.152581 0.880436 0.134338 445.489 0.581714 3.887
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Table 7.3: Pion gas with radius=0.1 fm

T(MeV) K P(MeV
fm3 ) φ(fm−3) R n(fm−3) η(GeV fm−3) s(fm3) η

s

64.3 1.51232 0.4 0.00508051 0.999811 0.00507955 1756.92 0.0263303 338.712

74.3 1.58493 0.7 0.00914451 0.999689 0.00914167 1979.29 0.045303 221.777

84.3 1.65554 1.3 0.0149065 0.999492 0.0148989 2202.21 0.0713505 156.674

94.3 1.72424 2.2 0.0226297 0.999231 0.0226123 2425.82 0.105442 116.782

104.3 1.79111 3.4 0.0325696 0.99891 0.0325341 2650.14 0.148532 90.57

114.3 1.85624 5.2 0.0449765 0.998487 0.0449084 2875.16 0.201556 72.41

124.3 1.91973 7.5 0.060097 0.997987 0.059976 3100.86 0.265449 59.30

134.3 1.98168 10.5 0.0781754 0.997388 0.0779712 3327.18 0.341129 49.51

144.3 2.04215 14.4 0.0994546 0.996673 0.0991238 3554.07 0.429502 42.004

154.3 2.10124 19.2 0.124176 0.995852 0.123661 3781.5 0.531471 36.118

164.3 2.15902 25.1001 0.152581 0.994909 0.151804 4009.4 0.647917 31.412
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Figure 7.2: Variation of number density with temperature for varying radii

Table 7.4: Temperature and chemical potential of systems of different beam energies

Beam energy(GeV) T(MeV) µB

SIS 2.32 64.3 800.8

AGS 4.86 116.5 562.2

SPS 17.3 154.4 228.6

RHIC 200 161.1 23.5

Table 7.5: Variation of viscosity with radius

r(fm) K P(MeV
fm3 ) φ(fm−3) R n(fm−3) η(GeV fm−3) s(fm3) η

s

0.1 1.51232 0.4 0.00508051 0.999811 0.00507955 1756.92 0.0263303 66726.3

0.3 1.51232 0.4 0.00508051 0.994912 0.00505466 195.214 0.0262124 7447.37

0.5 1.51232 0.4 0.00508051 0.976808 0.00496268 70.2769 0.0257762 2726.43

0.7 1.51232 0.4 0.00508051 0.938472 0.00476792 35.8556 0.0248488 1442.95
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Figure 7.6: Ratio of Viscosity Vs Entropy Density as a function of radius for varying beam

energies
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7.4 Dependence of viscosity on temperature and radius

of pion

The pressure of the system wa found to increase with increase in temperature. The plots show

that while the viscosity and the entropy density of the system increase with increase in temper-

ature, the ratio of both decreases which is due to the faster increase of the denominator(entropy

density) with temperature.

On increaing the radius of the particles,the viscosity, entropy density and the ratio were

found to decrease. Although not evident from the table placed above, the pressure of the system

also reflected a decreasing dependence on radius which could not be spotted with a program of

accuracy only upto 0.1. Further magnification of the pressure-radii dependence produced the

plot that has been shown.

The positive rate of change of number density and thereby the entropy density is because

the system has a non-negative chemical potential.
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Table 7.6: Difference in pressure calculations using both statistics(r=0.5 fm)

T(MeV)) p(BE)(MeV fm−3) p(MB)(MeV fm−3) Relative error

64.3 0.333999 0.323999 0.0308639

74.3 0.695995 0.666995 0.043478

84.3 1.283 1.22 0.0516417

94.3 2.16203 2.04003 0.0597986

104.3 3.40094 3.18695 0.0671439

114.3 5.05982 4.71584 0.0729403

124.3 7.19466 6.6757 0.077739

134.3 9.85035 9.10905 0.0813806

144.3 13.0626 12.0492 0.0841057

154.3 16.8564 15.5216 0.0859911

164.3 21.248 19.5429 0.0872472

7.5 Mixture of pions using Bose-Einstein Statistics

Due to the small value of pion mass, the Maxwell Boltzmanian Statitistics might not be a good

approximation to the actual statistics displayed, the Bose Einstein one. So, in this section I

analyse the differences in the magnitude of the quantities studied at various temperatures using

both statistics.

The relative error obtained is quite significant for a pion gas. e
m
T decreases asm increases.

When, e
m
T >> 1, MB statistics is a good approximation for the system. I expect the error to

decrease as I include more particles of higher masses.
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Table 7.7: Difference in number density using both statistics(r=0.5 fm)

T(MeV)) n(fm−3)(MB)) n(fm−3)(BE) Relative error

64.3 0.00497477 0.00513757 0.0316878

74.3 0.0088086 0.009179 0.040353

84.3 0.0140363 0.0147437 0.0479745

94.3 0.0206902 0.0218771 0.0542527

104.3 0.0287143 0.0305173 0.0590808

114.3 0.0379738 0.0405083 0.0625684

124.3 0.048277 0.0516197 0.0647577

134.3 0.0593928 0.063579 0.065842

144.3 0.0710765 0.0761002 0.0660142

154.3 0.0830948 0.0889112 0.0654188

164.3 0.0952326 0.10177 0.0642383

Table 7.8: Differences in viscosity calculations

T(MeV)) v(BE)(MeV fm−2) w(MB)(MeV fm−2) Relativeerror

64.3 69.3287 70.2767 -0.0136743

74.3 77.7466 75.9947 0.0225326

84.3 86.112 82.1833 0.0456239

94.3 94.4418 88.6756 0.0610557

104.3 102.747 95.3694 0.0718055

114.3 111.036 102.201 0.0795731

124.3 119.314 109.13 0.0853533

134.3 127.586 116.128 0.089803

144.3 135.853 123.186 0.0932443

154.3 144.119 130.281 0.096016

164.3 152.384 137.413 0.098247
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Table 7.9: Differences in entropy density using both statistics

T(MeV)) s(MB)(fm−3) s(BE)(fm−3) Relative error

64.3 0.0258388 0.0270187 0.0436688

74.3 0.0438161 0.0463298 0.0542573

84.3 0.0676414 0.0722105 0.0632747

94.3 0.0974089 0.104805 0.0705723

104.3 0.132912 0.143871 0.0761726

114.3 0.173685 0.188833 0.0802175

124.3 0.219047 0.238846 0.0828917

134.3 0.268202 0.292916 0.0843755

144.3 0.320277 0.349998 0.0849168

154.3 0.374449 0.409082 0.0846615

164.3 0.429933 0.469261 0.0838082

Table 7.10: Differences in η
s

using both statistics

T(MeV)) η
s
(MB)) η

s
(BE)(fm−3) Relative error

64.3 2719.81 2565.95 -0.0599615

74.3 1734.4 1678.11 -0.0335447

84.3 1214.98 1192.51 -0.0188431

94.3 910.343 901.116 -0.0102393

104.3 717.536 714.16 -0.00472727

114.3 588.426 588.014 -0.000700633

124.3 498.205 499.546 0.00268415

134.3 432.988 435.57 0.00592762

144.3 384.622 388.154 0.00910017

154.3 347.927 352.297 0.0124047

164.3 319.615 324.732 0.0157596
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Chapter 8

What more?

I am currently working on computationally determing the viscosity and η
s

of a system consist-

ing of all the discovered and proposed hadrons which have mass less than 2 GeV. Since the

experiments have shown close to a perfect liquid like behaviour, the η
s

expected for the system

is considerably low.
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