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ABSTRACT

This thesis presents the study of K∗0 resonance production and elliptic flow with

the aim of probing the characteristics of the medium created in ultra-relativistic

nucleus-nucleus collisions. K∗0 has average lifetime ∼4 fm/c which is comparable to

the hadronic cascade time of the fireball (∼10 fm/c). So, K∗0 can decay within the

hadronic phase and the daughter particles can interact with the medium particles

which will shape the final K∗0 yield. These interactions are called in-medium effects

and categorised as Rescattering and Regeneration. First the production of resonances

in heavy ion collisions and their properties like mass, width and lifetime obtained

from the invariant mass distribution of the daughter particles is studied. The shape

of the invariant mass distribution following a Breit-Wigner function is derived using

Quantum Scattering and Phase shift. After getting a detailed idea about resonances

and their properties, a simulation of collision of heavy nuclei (Au-Au) at
√
sNN =

200GeV is done using AMPT model. The simulated data is analysed to obtain the

invariant mass distribution which gives the yield, mass and width of K∗0 produced

in the simulation. The reconstructed K∗0 yield is observed to decrease with the

increase in hadronic cascade time. To explain this behaviour a theoretical model was

developed which demonstrated the effect of in-medium effects like Rescattering and

Regeneration on the K∗0 yield.

The second part involves experimental data analysis of U-U collision data of STAR

at center of mass energy of 193 GeV (
√
sNN = 193GeV ) for 9.98 million events for

K∗0 study. Various experimental variables like transverse momentum, pseudorapid-

ity, vertex position etc. and their distributions are obtained from the data. The

invariant mass distribution of K∗0 is obtained which gives the actual yield, mass and

width of K∗0 produced in the experiment. Finally the ”Elliptic flow” (v2)of K∗0 is

studied, which is a very important property of the resonance and gives the experi-
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mental measurement of the momentum anisotropies produced in the collective flow

of the particle. The event planes are constructed and corrected and used to obtain

the v2 of K∗0. The plot of v2 as a function of pT for minimum-bias is obtained. The

non-zero value of v2 confirms the presence of anisotropy in collective flow of K∗0. The

elliptic flow of K∗0 is then compared with that of Φ which is also a meson resonance

like K∗0 with mass close to K∗0. The plot shows that v2 of both the particles are

quite similar as expected which confirms the efficiency of the analysis. To show the

centrality dependance, v2 vs pT is plotted for different centralities. Comparision of the

plots shows that v2 increases with increase in centrality. This confirms the presence

of different degree of anisotropies for different centralities.

iv



Contents

1 Introduction 1

2 Resonances in Heavy Ion Collisions 4

2.1 Relativistic Heavy Ion Collisions . . . . . . . . . . . . . . . . . . . . . 4

2.2 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Invariant Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Cross-section of Resonances . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Quantum Scattering Theory . . . . . . . . . . . . . . . . . . . 13

2.4.2 Partial Wave Analysis . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Breit-Wigner Distribution . . . . . . . . . . . . . . . . . . . . 20

3 K∗0 Resonance Analysis Using AMPT Simulation 22

3.1 AMPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Structure of AMPT . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Types of AMPT - Default and String melting . . . . . . . . . 24

3.2 K∗0 Resonance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 K∗0 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 AMPT Analysis and Plots . . . . . . . . . . . . . . . . . . . . 27

3.3 Systematics of Resonance Production - Rescattering and Regeneration 33

3.3.1 Kinetics and Rate Equations . . . . . . . . . . . . . . . . . . . 34

3.3.2 Time dependence of Reaction rates . . . . . . . . . . . . . . . 36

3.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



CONTENTS

4 K∗0 Resonance production in U-U collision at STAR 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Data Set - Event and Track Variables . . . . . . . . . . . . . . . . . . 42

4.2.1 Event Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Track Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Event and Track Selection . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Particle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Invariant Mass Reconstruction . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 Unlike Sign Distribution . . . . . . . . . . . . . . . . . . . . . 53

4.5.2 Like Sign Distribution . . . . . . . . . . . . . . . . . . . . . . 54

4.5.3 K∗0 Signal Distribution . . . . . . . . . . . . . . . . . . . . . 55

5 Elliptic Flow of K∗0 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Elliptic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Event Plane Estimation . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Event Plane Acceptance Correction . . . . . . . . . . . . . . . 62

5.3.3 Event Plane Resolution Correction . . . . . . . . . . . . . . . 63

5.3.4 v2 vs Invariant Mass Method . . . . . . . . . . . . . . . . . . . 64

6 Elliptic Flow of K∗0 Analysis and Results 66

6.1 Event Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Event and Track cuts . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 Event Plane Estimation . . . . . . . . . . . . . . . . . . . . . 67

6.1.3 Event Plane Flattening . . . . . . . . . . . . . . . . . . . . . . 68

6.1.4 Event Plane Resolution Correction . . . . . . . . . . . . . . . 69

vi



CONTENTS

6.1.5 Flow Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Elliptic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Event and Track cuts . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.2 Particle Selection . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.3 v2 vs Invariant mass . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.4 v2 vs pT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.5 Comparision with Φ . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.6 Centrality dependence . . . . . . . . . . . . . . . . . . . . . . 78

7 Summary and Conclusions 80

References 84

Appendix A 85

A.1 APPENDIX - I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1.1 Macro - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1.2 Macro - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1.3 Macro - 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1.4 Macro - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1.5 Macro - 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 APPENDIX - II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2.1 Mathematica Code - 1 . . . . . . . . . . . . . . . . . . . . . . 109

A.2.2 Macro - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 APPENDIX-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3.1 Invariant Mass of K∗0 . . . . . . . . . . . . . . . . . . . . . . 118

A.3.2 Event Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3.3 Elliptic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vii



List of Figures

2.1 Different stages in heavy ion collision process . . . . . . . . . . . . . 5

2.2 Space-time evolution of a system formed by relativistic heavy ion collision 5

2.3 Two body decay [8] picture of a resonance R into A and B . . . . . . 8

2.4 Qualitative plot showing the effect of re-scattering and regeneration

only processes on K∗0/K− ratio in heavy ion collision with respect to

pp collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Quantum scattering from a potential . . . . . . . . . . . . . . . . . . 13

2.6 Normalised cross-section plot as function of energy following Breit-

Wigner distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Default AMPT model . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 String Melting AMPT model . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 K∗0 invariant mass distribution obtained from K+π− and K−π+ (Un-

like sign distribution) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Invariant mass distribution obtained from K+π+ and K−π− (Like sign

distribution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 K∗0 Signal distribution fitted with Breit-Wigner + linear background

function for τHC = 0.6 fm/c . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 K∗0 invariant mass distributions for different τHC . . . . . . . . . . . 32

3.7 Modeling of rescattering and regenration to get K∗0, K and π ratios . 39

4.1 Reference Multiplicity distribution . . . . . . . . . . . . . . . . . . . 43

4.2 Centrality distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Vertex-Z distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



LIST OF FIGURES

4.4 Vertex-X vs Vertex-Y distribution . . . . . . . . . . . . . . . . . . . . 44

4.5 px distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 py distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 pz distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 pT distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 η Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 η distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 dE/dx vs p distribution . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 m2 distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.13 M2 distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.14 Unlike Sign distribution in UU data . . . . . . . . . . . . . . . . . . . 53

4.15 Like Sign distribution in UU data . . . . . . . . . . . . . . . . . . . . 55

4.16 K∗0 Signal distribution in UU data . . . . . . . . . . . . . . . . . . . 56

5.1 Collision of two heavy ions . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Spatial anisotropy in overlapped region of heavy ion collision . . . . 59

6.1 Event plane (Ψ2) distribution . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Recenter corrected Ψ2 distribution . . . . . . . . . . . . . . . . . . . . 68

6.3 Recenter and Shift corrected Ψ2 distribution . . . . . . . . . . . . . . 69

6.4 Resolution correction factor vs Centrality . . . . . . . . . . . . . . . . 70

6.5 QX vs QY distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 vSig+Bkg2 vs MπK plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7 vSig+Bkg2 vs MπK plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.8 vSig2 vs pT plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.9 Plot for vSig2 of K∗0 and Φ . . . . . . . . . . . . . . . . . . . . . . . . 77

6.10 Plot for vSig2 vs pT for different centralities . . . . . . . . . . . . . . . 78

ix



List of Tables

2.1 Resonances produced in heavy ion collision and their properties . . . 8

3.1 K∗ resonance decay channels with their B as given in PDG . . . . . . 27

3.2 Fit parameters of AMPT analysis of K∗0 invariant mass . . . . . . . 31

3.3 Cross-sections of interactions between K and π . . . . . . . . . . . . 38

4.1 Event cuts for K∗0 invariant mass analysis . . . . . . . . . . . . . . . 49

4.2 Track cuts for K∗0 invariant mass analysis . . . . . . . . . . . . . . . 50

4.3 PID cuts for K∗0 invariant mass analysis . . . . . . . . . . . . . . . . 52

4.4 Fit parameters of K∗0 invariant mass analysis . . . . . . . . . . . . . 56

6.1 Event cuts for K∗0 event planes analysis . . . . . . . . . . . . . . . . 66

6.2 Track cuts for K∗0 event planes analysis . . . . . . . . . . . . . . . . 67

6.3 Fit parameters for Recenter and Shift Corrected event plane fitting . 69

6.4 Event cuts for K∗0 elliptic flow analysis . . . . . . . . . . . . . . . . . 72

6.5 Track cuts for K∗0 elliptic flow analysis . . . . . . . . . . . . . . . . . 72

6.6 PID cuts for K∗0 elliptic flow analysis . . . . . . . . . . . . . . . . . . 74

x



Chapter 1

Introduction

The field of the ultra-relativistic heavy-ion collisions connects two big branches of

physics namely the nuclear physics and the elementary particle physics. The unifying

aspect is an attempt to analyze the properties of dense hadronic matter in terms of

elementary interactions. The fundamental theory of strong interactions is Quantum

Chromodynamics (QCD). QCD predicts that at high energy density, hadronic matter

will turn into a plasma of deconfined quarks and gluons (QGP). The search for such a

phase transition is the main motivation for the continuous experimental and theoreti-

cal efforts in the field. One of the goals of the experimental program is to recreate (on

a microscopic scale) the physical conditions that are thought to have existed in the

early universe. Lattice QCD calculations predict a phase transition from hadronic

matter to quark gluon plasma (QGP) at high temperatures and/or high densities.

Matter under such extreme conditions can be studied in the laboratory by colliding

heavy nuclei at very high energies. The Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory provides collisions of heavy nuclei and protons at

center of mass energies up to
√
sNN = 200 GeV.

Heavy ion collisions produce a lot of particles with different lifetimes. Resonances

are particles with shorter lifetime which decay into their daughter particles. They

can only be detected by the invariant mass reconstruction of their daughter particles.
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1 Introduction

The typical lifetime of a resonance is a few fm/c, which is comparable to the expected

lifetime of the hot and dense matter produced in heavy-ion collisions. Inside hadron

gas, which is a hot and dense system after Chemical freeze-out, resonances are in close

proximity with other strongly interacting hadrons. The interactions of the daughter

particles of the resonance with the medium gives rise to in-medium effects related to

the high density and/or high temperature of the medium which can modify various

resonance properties, such as mass, width, and even the mass line shape. Thus,

measurements of various resonance properties can provide detailed information about

the interaction dynamics in relativistic heavy-ion collisions. K∗0 is one such resonance

with average lifetime ∼4 fm/c which is comparable to the hadronic cascade time (time

periond between Chemical and Kinetic freeze-out) of the fireball (∼10 fm/c). So, K∗0

can decay within the hadronic phase and the daughter particles can interact with the

medium particles which will shape the final K∗0 yield.

In this report we present the study of K∗0 production via its hadronic decay

channel (K∗0 → K+π− and K∗0 → K−π+). The study is divided in two parts.

In the first part we will learn in detail about resonances, their production in heavy

ion collision experiments and their properties like mass, width and lifetime from the

invariant mass distribution of the daughter particles. Then we will use AMPT model

to simulate the collision experiment of two gold (Au) nuclei at center of mass energy of

200 GeV (
√
sNN = 200GeV ) with a fixed hadronic cascade time (τHC). The simulated

data will be analysed to get the invariant mass distribution of K∗0 and fitted with

Breit-Wigner function to obtain different parameters like the mass, yield and width

of the resonance. By varying the hadronic cascade time (τHC), the effect of τHC on

the K∗0 yield will be seen. Finally a theoretical model will be developed to explain

this effect by studying the interaction of the daughter particles of K∗0 - Kaons and

2



1 Introduction

Pions with the hadron gas medium giving rise to two important phenomena called

Rescattering and Regeneration. The effect of these phenomena on the K∗0 yield will

be shown by simulating the model to obtain the K∗0 yield as a function of hadronic

cascade time τHC .

The second part involves experimental data analysis of U-U collision data of STAR

at center of mass energy of 193 GeV (
√
sNN = 193GeV ). The analysis is done to get

the invariant mass distribution of K∗0 from experiment and fitted with Breit-Wigner

function to obtain different parameters like the mass, yield and width of the resonance

to verify the results obtained from simulation. The results obtained are compared

with the PDG values to check the efficiency of the analysis. Finally we study ”Elliptic

flow” of K∗0, which is a very important property of the resonance. Elliptic flow is the

experimental measurement of the momentum anisotropies produced in the collective

flow of the particle. The elliptic flow of K∗0 is compared with that of Φ which is

also a meson resonance like K∗0 with mass close to K∗0. The elliptic flow is plotted

for different centralities to show its dependence on centrality and initial position

anisotropy.

3



Chapter 2

Resonances in Heavy Ion Collisions

2.1 Relativistic Heavy Ion Collisions

In a heavy ion collision experiment two heavy nuclei collide at relativistic velocities.

Due to very high velocity they are Lorentz contracted along the direction of motion

and appears like a pan cake. Fig. 2.1 describes schematically different stages in a

heavy ion collision. The energy carried by the incoming hadrons are deposited within

a small region in space in a short duration of time. The energy density at the collision

center is sufficiently high and it can form a strongly interacting matter consisting of

deconfined quarks and gluons, called quark gluon plasma (QGP). Model calculations

indicate that beyond a critical energy density of ∼ 1GeV/fm3 (or temperature ∼ 200

MeV) matter can exist in a QGP phase. Initially the QGP may not be in thermal

equilibrium, but subsequent expansion may bring it to a local thermal equilibrium at

some proper time τ0 . The plasma then may behave like a hydrodynamic fluid.

The space-time (z-t) evolution of heavy ion collision is shown in Fig. 2.2. As the

system expands both temperature and density decreases. Eventually, at a particular

temperature called Critical Temperature (Tc), quark confinement occurs leading to

particle production. Hadrons are produced from free quarks and gluons. On further

expansion and cooling two important stages occur called - Chemical freeze-out and

4



2 Resonances in Heavy Ion Collisions

Figure 2.1: Different stages in heavy ion collision process

kinetic-freeze-out.

Figure 2.2: Space-time evolution of a system formed by relativistic heavy ion collision

Chemical freeze-out occurs when the temperature of the system falls below a freeze

out temperature called chemical freeze out temperature (Tch ). Its called chemical

freeze-out because at this point the chemical composition of the produced particles

get fixed. All inelastic collisions stop as the mean free path of the particles becomes

5



2 Resonances in Heavy Ion Collisions

comparable with the inelastic cross-section. Particle production stops and particle

ratios become fixed. At this point the system is in thermal and chemical equilibrium.

The system is now a non-interacting ideal gas composed of hadrons called ”Hadron

gas”. After the chemical freeze out the constituents can interact among themselves

via elastic scattering only which may further change the shape of their transverse

momentum spectra. On further expansion and cooling of the system, at a particular

temperature called kinetic freeze out temperature (Tfo), kinetic or thermal freeze-out

takes place. At this stage, the mean free path of the hadrons exceeds the dynamical

size of the system, and the elastic interaction among the hadrons ceases. The momen-

tum distribution of the particles become fixed. After that the hadrons stream freely

to the detector and get detected. The whole system from QGP to free streaming

particles is called fireball. And the phase between Chemical and Kinetic Freeze-out

is called Hadron gas.

2.2 Resonances

A lot of particles are produced in the heavy ion collision. Most particles have lifetimes

τ ≥ 10−12 sec, which do not decay before hitting the detectors like protons. These are

called stable particles and are observed directly in the detectors. But there are many

particles with shorter lifetimes which decay into daughter particles before hitting the

detectors. These unstable particles are called ”Resonances” which decay in a very

short time through strong interactions. The resonances can not be detected directly

in an experiment. The only way they detected is by reconstructing the invariant mass

of their decay products. Resonance are produced by the interaction of their daughter

particles form the intermediate ”Resonance” which then again decays back to the

daughter particles.

6



2 Resonances in Heavy Ion Collisions

A resonance is observed as a peak located around a certain energy found in the

plot of differential cross sections as a function of energy in scattering experiments.

These peaks are associated with subatomic particles (baryons and mesons like K∗0,

Λ, ρ etc) and their excitations. The width of the resonance (Γ) is related to the

lifetime of the particle (τ) by the relation : Γ = ~/τ . The experimental measurement

of short-lived hadron resonances can potentially be very useful in clarifying some of

the least understood aspects of heavy ion collisions.

2.2.1 Invariant Mass

Suppose ’R’ is a resonance particle with mass ’M’, decays into its two daughter parti-

cles ’A’ and ’B’. In the laboratory frame let the energy and momentum of ’R’ before

its decay be ER and ~pR respectively. After its decay into daughter particles ’A and

’B’, let the energy and momentum of ’A’ be EA and ~pA, and energy and momentum

of ’B’ be EB and ~pB respectively. The four momentum of the particles are given as

follows :

PR = (ER, ~pR) (2.1)

PA = (EA, ~pA) (2.2)

PB = (EB, ~pB) (2.3)

The decay is shown in Fig. 2.3.

Now, conservation of four momentum gives :

PR = PA + PB

⇒P 2
R = (PA + PB)2

⇒M2 = (EA + EB)2 − (~pA + ~pB)2

⇒M =
√

(EA + EB)2 − (~pA + ~pB)2

(2.4)

7



2 Resonances in Heavy Ion Collisions

Figure 2.3: Two body decay [8] picture of a resonance R into A and B

Invariant mass [8] of the resonance is given by Eq. (2.4). The name invariant

signifies that it is frame independent which means its value remains the same in

different coordinate frames (for example laboratory frame or centre of mass frame).

2.3 Motivation

Resonance Mass (in MeV/c2) Major Decay Channel Branching Ratio (B) τ (in fm/c)
ρ0 770 π+π− 1 1.1
∆ 1232 pπ 1 1.6
f 0 980 π+π− 2/3 2.6
K∗0 892 Kπ 2/3 4
Σ∗ 1385 ∆π 0.88 5.5
Λ∗ 1520 pK 0.45 12.6
Φ 1020 K+K− 0.49 45

Table 2.1: Resonances produced in heavy ion collision and their properties

Some of the important resonances measured in high energy experiments and their

properties like their mass, decay channels, branching ratio and lifetime are given in

8



2 Resonances in Heavy Ion Collisions

the Table 2.1. The fireball lifetime in heavy ion collisions is of the order of 45 fm/c. As

shown in the table the resonances have lifetime within the range 1.1 to 45 fm/c, which

covers the typical lifetime of the fireball produced in heavy ion collisions. The short

lived resonances are very useful tool in high energy collisions to study the dynamics

and properties of a strongly interacting medium. By studying the properties of the

above resonance we can get a complete picture of the details of the dynamic processes

going inside the fireball.

We are interested in one of these resonance which is K∗0. It is chosen because of

its short average lifetime ∼4 fm/c which is comparable to the time interval between

the two frezze-outs, called the lifetime of the hadron gas or the hadronic cascade (∼10

fm/c). It means K∗0 can decay within the hadron gas and the daughter particles -

K and π can interact with the medium particles of the hadron gas and give rise to

in-medium effects like Rescattering and Regeneration which will be discussed in detail

in later sections of the report. Rescattering process decreases the resonance yield and

regeneration process increases the resonance yield. Model calculations suggest that

such re-scattering is most probable for low momentum resonances. High momentum

resonances are more likely escape the medium and hence may not be affected by re-

scattering. These two competing processes, the re-scattering and re-generation, will

decide the final yield of the resonance. The rescattering and regeneration effect can

be understood better through resonance to non-resonance ratio (such as K∗0/K−) in

AA and pp collisions. A naive expectation of re-scattering and re-generation effect on

K∗0/K− ratio is qualitatively shown in Fig. 2.4. If there is only re-scattering effect

present in the hadronic phase of heavy ion collision, then this ratio should be smaller

than pp collision and follow the blue line as a function of collision centrality. Here,

collision centrality is a measure of how central the collision between the two nuclei

9



2 Resonances in Heavy Ion Collisions

was and determines the overlapping region of the two nuclei in the collision. Thus

the suppression in central collision should be more than peripheral collision. For re-

generation only case the ratio should be above the pp measurement and follow the

red line. The experimental measurement of collision centrality dependence K∗0/K−

ratio in heavy ion with respect to measurement in pp collisions is sensitive to the

nature of the hadronic phase. Thus this ratio can be used to extract the lifetime of

the hadron gas phase in heavy ion collision.

Figure 2.4: Qualitative plot showing the effect of re-scattering and regeneration only
processes on K∗0/K− ratio in heavy ion collision with respect to pp collision

Our aim in this project is to understand the systematics of the in-medium effects

of rescattering and regeneration on the yield of K∗0 resonance produced in the heavy

ion collisions. We first will study the resonance production, their cross-section and

their properties like their invariant mass distribution. Then we will try to see if there

is any effect of rescattering and regeneration in K∗0 yield using AMPT simulations.

Finally we will try to develop a theoretical model to explain these effects and perform

simulations using the model to get K∗0 yield as function of hadronic cascade time.

10



2 Resonances in Heavy Ion Collisions

2.4 Cross-section of Resonances

The cross section of a resonance particle follows a Breit-Wigner distribution. The

derivation of this distribution [6] is presented in this section. By solving the time

independent Schrodinger equation, stationary states are obtained as solutions repre-

sented as ψr.

Hψ = Eψ (2.5)

Here, H is the time independent Hamiltonian and E is the energy eigenvalue. The

stationary solutions are represented by ψ(r). The solution of the time dependent

Schrodinger equation consists of a time independent solution and a time dependent

part given by :

Ψ(r, t) = ψ(r) · e−iEt/~ (2.6)

Probability of finding a particle with this wave function is :

P = |Ψ(r, t)|2 (2.7)

Resonances decay with time, so similar to the radioactive decay process, the prob-

ability associated with the wave function should decay with time as follows :

P (t) = |Ψ(r, t)|2(t) = |ψ(r)|2 · e−t/τ (2.8)

where, τ = 1/W is the mean lifetime of the state with decay rate W. So, now the

total time dependent wave function becomes :

Ψ(r, t) = ψ(r) · e−iEt/~ · e−t/2τ (2.9)
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2 Resonances in Heavy Ion Collisions

Now from the minimum energy-time uncertainty principle :

∆E ·∆t ' ~ ⇒ ∆E =
~
τ

(2.10)

For strong decays τ is immeasurably small so another quantity decay width Γ is

considered which is the natural spread in energy of the decaying state given by :

Γ =
~
τ

= ~W = 2π|M |2
∫
ρfdΩ (2.11)

where, ρf is the density of states and dΩ is the differential solid angle. Now the wave

function for a non-stationary decaying state of central angular frequency ωR = ER/~,

where ER is the resonance energy, and the lifetime τ = ~/Γ can be written as :

ψ(t) = ψ(r)e−iωRte−t/2τ = ψ(r)e−t(iER+Γ/2) (2.12)

Broad states with finite width and lifetimes, which can be formed by the collision

of the particles into which they decay are called resonances. The energy dependence

of the cross-section for creating the resonant state from its constituents is obtained

from the Fourier transform of the time pulse. Taking the Fourier transform of the

above equation :

g(ω) =

∫ ∞
0

ψ(t)eiωt (2.13)

with ω = E/~ = E in natural units. The amplitude as a function of E is then :

χ(E) =

∫ ∞
0

ψ(t)eiωt = ψ(r)

∫ ∞
0

e−t[i(ER−E)+Γ/2] =
ψ(0)

(E − ER + iΓ/2)
(2.14)

The cross-section σ(E) which gives the probability of two particles a and b forming

the resonant state c will be proportional to χ∗(E)χ(e) :

σ(E) = σmax
Γ2/4

(E − ER)2 + Γ2/4
(2.15)

Its not the complete picture. To obtain the exact form of σ(E), the exact form of

σmax has to be determined. For this we have to look at the quantum picture of the

scattering theory [5].
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2 Resonances in Heavy Ion Collisions

2.4.1 Quantum Scattering Theory

Figure 2.5: Quantum scattering from a potential

Assume an incident beam of particles traveling along z-direction encounters a

potential and is scattered by the potential. The incoming beam can be represented

by a plane wave Aeikz, corresponding to momentum p = ~k. Quantum scattering

from the potential[5] results in outgoing spherical waves as shown in Fig. 2.5. So, the

total wave function :

ψ(r, θ) ≈ A

[
eikz + f(θ)

eikr

r

]
(2.16)

Here, k ≡
√

2mE
~ is the wave vector and f(θ) is the scattering amplitude. f(θ)

gives the probability of scattering in a given direction θ. It seems very similar to

differential cross-section which is defined as :

D(θ) =
dσ

dΩ
(2.17)

A relation between differential cross-section and scattering amplitude can be derived

as follows.

Probability of incident particle with velocity ’v’ going through cross-sectional area

’dσ’ in time ’dt’ :

dPin = |ψin|2dV = |A|2(vdt)dσ (2.18)
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Probability of observing scattered particle in solid angle dΩ :

dPsc = |ψsc|2dV =
|A|2|f |2

r2
(vdt)r2dΩ (2.19)

These two probabilities should be equal.

dPin = dPsc (2.20)

⇒D(θ) =
dσ

dΩ
= |f(θ)|2 (2.21)

The scattering amplitude f(θ) is obtained by solving Quantum scattering problem

using Partial Wave Analysis method[5].

2.4.2 Partial Wave Analysis

When the potential is central, i.e., spherically symmetric V (~r) = V (r), angular

momentum is conserved due to Noethers theorem. Therefore, we can expand the

wave function in the eigenstates of the angular momentum. Obtained waves with

definite angular momenta are called partial waves. The main idea of the partial

wave analysis method [5] is that it assumes the incoming wave as a superposition of

different partial waves. Each partial wave is scattered individually from the scattering

potential.So, the outgoing wave is also a superposition of partial spherical waves. We

can solve the scattering problem for each partial wave separately, and then in the end

put them together to obtain the full scattering amplitude.

Schrodinger’s equation for a spherically symmetrical potential V(r) :

−~
2m

O2ψ + V (r)ψ = Eψ (2.22)

admits the separable solutions :

ψ(r, θ, φ) = R(r)Y m
l (θ, φ) (2.23)

14



2 Resonances in Heavy Ion Collisions

where, R(r) is the radial solution and Y m
l (θ, φ) is the angular solution called Spherical

Harmonics. Taking u(r) = rR(r), we get the radial equation :

−~
2m

d2u

dr2
+

[
V (r) +

−~
2m

l(l + 1)

r2

]
u = Eu (2.24)

where, V(r) is the scattering potential and ’l’ is the angular momentum quantum

number. Before solving this radial equation, we divide the space in 3 zones because

for finite scattering potential the value of potential falls with radial distance (r).

(i) Scattering region - Its the region close to the scattering centre where the poten-

tial is non-zero.

(ii) Intermediate region - In this region the potential can be ignored but not the

centrifugal term.

(iii) Radiation zone - for very large value of r, potential is essentially zero.

At intermediate region, V ≡ 0, but centrifugal term is not 0. So, the radial

equation becomes :

d2u

dr2
+
l(l + 1)

r2
u = −k2u (2.25)

Its solution is represented in terms of spherical Bessel functions :

u(r) = Arjl(kr) +Brnl(kr) (2.26)

However, neither jl(∼sine function) nor nl(∼cosine function) represents an outgoing

(or incoming) wave. What we need are the linear combinations analogous to eikr and

e−ikr which are known as spherical Hankel functions.

h
(1)
l (x) ≡= jl(x) + inl(x) ; h

(2)
l (x) ≡= jl(x)− inl(x) (2.27)

At large r, the Hankel function of first kind, h
(1)
l (kr) goes like eikr/r, whereas the

Hankel function of second kind, h
(2)
l (kr) goes like e−ikr/r. For outgoing waves, then,
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we need spherical Hankel functions of the first kind :

R(r) ∼ h
(1)
l (kr) (2.28)

So, the wave function outside scattering region where V (r) = 0 is given by :

ψ(r, θ, φ) = A

[
eikz +

∑
l,m

Cl,mh
(1)
l (kr)Y m

l (θ, φ)

]
(2.29)

Here, the first term is the incident plane wave and the second term is the outgoing

spherical wave. Since, we assumed V(r) is spherically symmetric, so there is no ’φ’-

dependence of ψ. This implies only m=0 terms survive.

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cosθ) (2.30)

Now, the wave function becomes :

ψ(r, θ) = A

[
eikz +

∞∑
l=0

Cl,0

√
2l + 1

4π
h

(1)
l (kr)Pl(cosθ)

]
(2.31)

From solution of spherical harmonics Y m
l (θ, φ) of hydrogen atom the coefficient Cl,0

is obtained as:

Cl,0 = kil+1
√

4π(2l + 1)al (2.32)

For very large r, the Hankel function goes like (−i)l+1eikr/kr. So, Eq-(2.31) be-

comes :

ψ(r, θ) = A

[
eikz +

∞∑
l=0

(2l + 1)alPl(cosθ)
eikr

r

]
(2.33)

Comparing this equation with Eq-(2.16) we get the scattering amplitude as :

f(θ) =
∞∑
l=0

(2l + 1)alPl(cosθ) (2.34)

It tells how to compute scattering amplitude, f(θ) in terms of partial wave amplitudes

al. The differential cross-section is :

D(θ) = |f(θ)|2 =
∑
l

∑
l′

(2l + 1)(2l′ + 1)a∗l al′Pl(cosθ)Pl′(cosθ) (2.35)
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2 Resonances in Heavy Ion Collisions

The total cross-section is the integral of differential cross-section.

σ =

∫
D(θ)dΩ =

∫ ∑
l

∑
l′

(2l + 1)(2l′ + 1)a∗l al′Pl(cosθ)Pl′(cosθ)sinθdθdφ (2.36)

Using the orthogonality of the Legendre polynomials we get :

σ = 4π
∞∑
l=0

(2l + 1)|al|2 (2.37)

This equation is called Optical theorem. For finding σ, the partial wave amplitudes

(al) have to be determined. This is accomplished by solving the Schrodinger equation

in the interior region (where V(r) is non-zero) and matching with the exterior solution

using proper boundary conditions. The problem here is - spherical coordinates are

used for the scattered wave, but Cartesian coordinates are used for the incident wave.

We need to rewrite the wave function in a more consistent way. This is done by using

Rayleigh’s formula which expands a plane wave in terms of spherical waves.

eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cosθ) (2.38)

Using this the wave function in the exterior region can be expressed entirely in terms

of spherical coordinates, r and θ.

ψ(r, θ) = A
∞∑
l=0

(2l + 1) [jl(kr) + ikalhl(kr)]Pl(cosθ) (2.39)

2.4.3 Phase Shift

For getting σ, we need to compute al first. Amplitudes are complex quantities, so

finding them is a bit difficult. This problem can be made simpler by expressing σ in

terms of phase shift (δ) which is a real quantity.

First lets consider the problem of one-dimensional scattering from a localized potential

V(x) at x=0, so a wave incident from the left,

ψi(x) = Aeikx (x < −a) (2.40)
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is entirely reflected.

ψr(x) = Be−ikx (x < −a) (2.41)

By conservation of probability, the amplitude of incident and reflected wave must be

same but may not have the same phase. If there is no potential present then, B=-A

because the total wave function must vanish at x=0.

ψ0(x) = A
(
eikx − e−ikx

)
(V (x) = 0) (2.42)

If the potential is not zero, the wave function takes the form :

ψ(x) = A
(
eikx − ei(2δ−kx)

)
(V (x) 6= 0) (2.43)

Now, the whole scattering problem is reduced to the calculation of the phase shift.

This is done by solving the Schrodinger equation in the region (−a < x < 0), and

imposing the appropriate boundary conditions. The use of makes the physical inter-

pretation very simple. The conservation of probability limits the effect of potential

to only shift the phase of the reflected wave.

Now, in our 3-dimensional scattering problem, the incident plane wave (Aeikz)

has no angular momentum component in the z-direction (m 6= 0). But it includes

all values of the total angular momentum (l=0,1,2,3,4...) as by Rayleigh’s formula

the incident plane wave can be expressed as a linear combination of partial spherical

waves. Because in a spherically symmetric potential angular momentum is conserved,

each partial wave (labelled by a particular l) scatters independently, with no change

in amplitude but only in phase. The ’l’th incident partial wave in V(r)=0, is (from

Eq.(2.38))

ψl0 = Ail(2l + 1)jl(kr)Pl(cosθ) (2.44)

Here,

jl(x) =
1

2

[
h

(1)
l (x) + h

(2)
l (x)

]
≈ 1

2x

[
(−i)l+1eix + il+1e−ix

]
, for x� 1 (2.45)
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2 Resonances in Heavy Ion Collisions

So, for large r :

ψl0 ≈ A
2l + 1

2ikr

[
eikr − (−1)l+1e−ikr

]
Pl(cosθ) , for V (r) = 0 (2.46)

Here, the first term is the outgoing wave and the second term is the incoming wave.

Now, when the potential V(r) is turned on, the incoming wave is unchanged and the

outgoing wave picks up a total phase shift of 2δl (δl for way in and δl for way out).

ψl = A
2l + 1

2ikr

[
eikr+2δl − (−1)l+1e−ikr

]
Pl(cosθ) , for V (r) = 0 (2.47)

In the last section the whole theory was expressed in terms of partial wave am-

plitudes al. Here we have formulated everything in terms of the phase shift δl. The

connection between al and δl can be found by comparing asymptotic (large r) equa-

tions for both the cases. In partial wave analysis formalism, we got :

ψl = A
[
eikz + kil+1(2l + 1)alh

′
l(kr)

]
Pl(cosθ) (2.48)

Expressing eikz in terms of incoming and outgoing waves and using the asymptotic

form of h′l(kr), we get :

ψl = A

[
2l + 1

2ikr
(eikr − (−1)le−ikr) +

2l + 1

r
eikral

]
Pl(cosθ) (2.49)

Comparing the total wave function in phase shift formalism Eq. (2.47) with the

total wave function in partial wave analysis formalism Eq. (2.49), we get relation

between al and δl :

al =
eiδl

k
sin(δl) (2.50)
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2.4.4 Breit-Wigner Distribution

Previously we obtained scattering amplitude f(θ) in terms of partial wave amplitudes

al. Expressing f(θ) in terms of phase shift δl using Eq. (2.50) :

f(θ) =
∑
l

(2l + 1)alPl(cosθ) (2.51)

⇒f(θ) =
1

k

∑
l

(2l + 1)eiδlsin(δl)Pl(cosθ) (2.52)

The total cross-section (Eq. (2.37)) is given as :

σ =
4π

k2

∞∑
l

(2l + 1)sin2(δl) (2.53)

or, σ =
4π

k2

∞∑
l

(2l + 1)
1

1 + cot2(δl)
(2.54)

Resonance occurs at maximum of σ or minimum of cot2(δl), [7]. At δl = π/2,

cot2(δl) = 0, its minimum value. Cross-section (σ) is a function of energy. At the

minimum σ point resonance occurs and the corresponding energy is called the reso-

nance energy ER. Taylor series expansion of cot(δl)(E) around π/2 or ER is given by

:

cotδl(E) = cotδl(ER)+(E−ER)

(
∂cotδl
∂E

)
E=ER

+
1

2
(E−ER)2

(
∂2cotδl
∂E2

)
E=ER

+ ........

(2.55)

Here,
(
∂cotδl
∂E

)
E=ER

= -
(
∂δl
∂E

)
E=ER

and cotδl(ER) = 0. Neglecting the higher order

terms we get :

cotδl = −(E − ER)

(
∂δl
∂E

)
E=ER

= −E − ER
A

(2.56)

The cross-section for the ’l’th partial [7] wave becomes :

σl =
4π

k2
(2l + 1)

1

1 + cot2δl
=

4π

k2
(2l + 1)

A2

(E − ER)2 + A2
(2.57)
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Previously we derived the cross-section distribution of resonance in Eq.(2.15).

Comparing it with the above equation we get :

A =
Γ

2
, σmax =

4π

k2
(2l + 1) (2.58)

Hence, the final expression for the cross-section of a resonance as a function of

energy is:

σ(E) =
4π

k2
(2l + 1)

Γ2/4

(E − ER)2 + Γ2/4
(2.59)

This is called Breit-Wigner distribution of Resonance cross-section. In case of decay of

a resonance into its daughter particles, the invariant mass distribution of the resonance

obtained from its daughter particles follows this Breit-Wigner distribution. At E

= ER, σ(ER) = σmax. At E = ER ± Γ
2
, the cross-section becomes half (σ(ER ±

Γ/2) = σmax
2

). Γ is the Full Width at Half Maximum (FWHM) of the Breit-Wigner

distribution. This can be verified by plotting σ/σmax, and finding the width at σ
σmax

=

0.5. The shape of the Breit-Wigner resonance curve is shown in Fig. 2.6.

Figure 2.6: Normalised cross-section plot as function of energy following Breit-Wigner
distribution
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Chapter 3

K∗0 Resonance Analysis Using AMPT
Simulation

This chapter presents the invariant mass analysis of K∗0 using AMPT simulation.

First a brief description of AMPT is given. Then the complete analysis using AMPT

simulation is discussed with results and plots. will be developed to explain this effect

by studying the interaction of the daughter particles of K∗0 - Kaons and Pions with

the hadron gas medium giving rise to two important phenomena called Rescattering

and Regeneration. The effect of these phenomena on the K∗0 yield will be shown by

simulating the model to obtain the K∗0 yield as a function of hadronic cascade time

τHC .

3.1 AMPT

To understand the extensive experimental results of the relativistic heavy ion colli-

sion experiments, many theoretical models have been introduced. They are broadly

divided into three categories :

(i) Thermal Models - are based on the assumptions of global and thermal equilib-

rium.

(ii) Hydrodynamic Models - are based only on the assumption of local thermal
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equilibrium,

(iii) Transport Models - treat nonequilibrium dynamics explicitly.

Thermal models have been very successful in accounting for the yield of various

particles and their ratios, while the hydrodynamic models are particularly useful for

understanding the collective behavior of low transverse momentum particles such

as the elliptic flow. Since transport models treat chemical and thermal freeze-out

dynamically, they are also natural and powerful tools for studying the Hanbury-

Brown-Twiss interferometry of hadrons.

The dense matter created in heavy ion collisions at RHIC may not achieve full

thermal or chemical equilibrium as a result of its finite volume and energy. To ad-

dress such nonequilibrium many-body dynamics, a multiphase transport (AMPT)

model [1], has been developed that includes both initial partonic and final hadronic

interactions and the transition between these two phases of matter.

3.1.1 Structure of AMPT

The AMPT model consists of four main components: the initial conditions, partonic

interactions, conversion from the partonic to the hadronic matter, and hadronic in-

teractions. For each component different models are used as follows :

(i) Initial Conditions - The initial conditions, which include the spatial and momen-

tum distributions of minijet partons and soft string excitations, are obtained

from the Heavy Ion Jet Interaction Generator (HIJING) model.

(ii) Partonic Interactions - Scatterings among partons are modeled by Zhangs Par-

ton Cascade (ZPC), which at present includes only two-body scatterings with

cross sections obtained from the pQCD with screening masses.
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(iii) Partonic to Hadronic conversion - The hadronization process is based on either

the Lund string fragmentation model or on a quark coalescence model.

(iv) Hadronic interactions - Scatterings among the resulting hadrons are described

by A Relativistic Transport (ART) model.

3.1.2 Types of AMPT - Default and String melting

Based on the two models used for the third stage that is partonic matter to hadronic

matter conversion stage, two variants of the AMPT model are classified.

Figure 3.1: Default AMPT model Figure 3.2: String Melting AMPT model

(a) Default AMPT Model -

In the Default AMPT model Partons are recombined with their parent strings

when they stop interacting, and the resulting strings are converted to hadrons

using the Lund string fragmentation model.
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(b) String Melting AMPT Model (AMPT-SM) -

In the AMPT model with string melting, a quark coalescence model is used to

combine partons into hadrons.

Since the default AMPT model reproduces the yield and transverse momentum

spectra much better than AMPT-SM, we have chosen the AMPT default for our study.

Final results are obtained after the termination of hadronic cascade. The termination

time of hadronic cascade (τHC ) can be tuned by an input parameter called NTMAX,

which is the number of time steps (each step corresponds to 0.2 fm/c) of the hadronic

interactions. The default value of NTMAX is 150 which corresponds to a value of τHC

= 30 fm/c, while NTMAX = 3, corresponding to τHC = 0.6 fm/c effectively turns off

the hadronic cascade. Fig. 3.1 and Fig. 3.2 show the structure of Default AMPT and

AMPT with string melting model.

25



3 K∗0 Resonance Analysis Using AMPT Simulation

3.2 K∗0 Resonance Analysis

3.2.1 K∗0 Resonance

The production of resonances in heavy-ion collisions is expected to be sensitive to the

properties of strongly interacting matter produced in these collisions. The resonance

production may be affected by the onset of deconfined phase of quarks and gluons

called the quark gluon plasma (QGP). The Large Hadron Collider (LHC) at CERN

can provide collisions of heavy nuclei at center of mass energies up to 5.5 TeV per

nucleon, where such a QGP can be formed. The resonance like K∗0(892) meson is of

particular interest because it has a small lifetime (∼ 4 fm/c) compared to hadronic

cascade time (∼ 10 fm/c at LHC). So the characteristic properties of K∗0 such as

its mass, invariant mass distribution width and yield could be modified relative to

systems where there is no QGP (like small systems of minimum bias pp collisions).

Due to short lifetime, decay particles of resonances may undergo in-medium effects like

rescattering and K∗0 contains a strange quark, it may also provide some information

regarding the strangeness enhancement for the system.

Properties

Isospin, I = 1
2
.

Angular Momentum, J = 1. So, its a vector meson.

Parity, P = -1.

Mass = 895.81± 0.19 MeV.

Decay Width (Γ) = 47.4± 0.6 MeV.

Decay Modes

The different decay channels and their branching ratios B of the K∗ resonance as

given in Particle Data Group (PDG) [2] are tabulated in Table 3.1.
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3 K∗0 Resonance Analysis Using AMPT Simulation

Table 3.1: K∗ resonance decay channels with their B as given in PDG

Decay Mode Branching Ratio(B)
K∗0 −→ Kπ ∼1
K∗0 −→ K0γ 2.46± 0.21× 10−3

K∗0 −→ K±γ 9.9± 0.9× 10−4

K∗0 −→ Kππ < 7× 10−4

3.2.2 AMPT Analysis and Plots

Simulated events of Au-Au collision were generated using Default AMPT model for

centre of mass energy 200 GeV (
√
sNN = 200GeV ). The hadronic cascade time

was set to 0.6 fm/c by fixing the value of the parameter NTMAX = 3. The data

was generated for 50000 events. The output of the AMPT were text files containing

the following information of all the produced particles - particle identification, mass,

position coordinates, momentum coordinates. We generated a root file containing a

tree with the information from all the text files arranged in the branches of a tree.

The root file was then used for further analysis. The complete codes in ROOT Macros

are given in Macro-1 and Macro-2 of APPENDIX-I.

Unlike Sign Invariant Mass Distribution

Out of all the produced particles, the Kaons (K±) and Pions (π±) were selected

from the root file using their particle identification numbers and their properties like

position coordinates and momentum coordinates were extracted. The PID as given

in Particle Data Group (PDG) :

K+ = 321, K− = −321, π+ = 211, π− = −211 (3.1)
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Figure 3.3: K∗0 invariant mass distribution obtained from K+π− and K−π+ (Unlike
sign distribution)

Energy of these Kaons and Pions are found from their mass and momentum using

the following formula :-

E =
√
p2
x + p2

y + p2
z +m2 (3.2)

The two decay channels for K∗0 resonance are as follows :-

K∗0 −→ K+π− and K∗0 −→ K−π+ (3.3)

The invariant mass of the K∗0 is calculated from the above two decay channels using

the energies and momenta of the Kaons and Pions as follows :

MK∗0 =
√

[EK+ + Eπ− ]2 − [(pxK+ + pxπ− )2 + (pyK+ + pyπ− )2 + (pzK+ + pzπ− )2]

(3.4)

MK∗0 =
√

[EK− + Eπ+ ]2 − [(pxK− + pxπ+ )2 + (pyK− + pyπ+ )2 + (pzK− + pzπ+ )2]

(3.5)

Histogram of invariant mass of K∗0 is constructed. As in these two cases, sign of

Kaons and Pions are opposite, so this is called Unlike sign distribution. The plot of

the unlike sign invariant mass distribution is shown in Fig. 3.3.
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Here, we dont get a signal peaking at K∗0 mass. So, we expect that there is some

background which we need to remove to get a clear signal.

Like Sign Background

Invariant mass of K+π+ and K−π− are calculated using the energies and momentum

of Kaons and Pions as follows :-

M =
√

[EK+ + Eπ+ ]2 − [(pxK+ + pxπ+ )2 + (pyK+ + pyπ+ )2 + (pzK+ + pzπ+ )2] (3.6)

M =
√

[EK− + Eπ− ]2 − [(pxK− + pxπ− )2 + (pyK− + pyπ− )2 + (pzK− + pzπ− )2] (3.7)

Histogram of invariant mass is constructed. As in these two cases, sign of Kaons

and Pions are same, so this is called Like sign distribution. The plot of the like sign

invariant mass distribution is shown in Fig. 3.4. The complete codes for unlike and

like distribution are given in Macro-3 of APPENDIX-I.
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Figure 3.4: Invariant mass distribution obtained from K+π+ and K−π− (Like sign
distribution)
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K∗0 Signal Distribution

As observed in the Unlike sign invariant mass distribution of K and π, we do not

get a K∗0 peak. The invariant mass reconstruction of all the K+π− and K−π+

pairs do not give the correct result and is dominated by background events. Along

with the daughter Kπ pairs, it also involves the background combinations of Kπ

pairs not originating from K∗0 decay. To observe the signal we need to subtract the

statistical or combinatorial background from the same event Kπ pairs distribution.

The combinatorial background is estimated using like sign method. In this method

the background is the Like sign invariant mass distribution. It is subtracted from the

Unlike sign invariant mass distribution to get the signal distribution as shown in the

Fig. 3.5.
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Figure 3.5: K∗0 Signal distribution fitted with Breit-Wigner + linear background
function for τHC = 0.6 fm/c
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Table 3.2: Fit parameters of AMPT analysis of K∗0 invariant mass

Parameter Value
Yield 5.368× 106 ± 163261
Mass 0.894861± 0.000545235 MeV/c2

Width 0.0529776± 0.00179965 MeV/c2

Linear Bkg Slope −43791.2± 21232.2 (MeV/c2)−1

Linear Bkg Intercept 53826.6± 21703

The signal is fitted with a combination of Breit-Wigner function and linear back-

ground to get the Mass, Width and Yield of K∗0. The fit parameters are tabulated

in Table 3.2. The complete code is given in Macro-4 of APPENDIX-I.

Dependence of Yield on Hadronic cascade time

The whole analysis is repeated for NTMAX = 5, 10, 20, 30 and 40 values corre-

sponding to hadronic cascade time, τHC = 1, 2, 4, 6 and 8 fm/c as each time step

corresponds to 0.2 fm/c. The K∗0 signal distribution is obtained for each case and

fitted with a combination Breit-Wigner function and linear background function to

obtain the corresponding K∗0 yield, mass and width. A comparison plot of the signal

invariant mass distribution is shown in Fig. 3.6.

The termination time of the hadronic cascade time is varied from 1 to 8 fm/c

(shown by different coloured lines). The number of events in each configuration are

kept same i.e. 50000 in order to make a proper comparison. It is clearly observed

that the invariant mass signal decreases with increase in hadronic cascade time. An

increase in hadronic cascade means there is more time for K∗0 and its daughter

particles to interact with the medium which leads to increase in hadronic re-scattering.

It is expected because of the change in momentum of the daughters of K∗0 - π and

K, due to rescattering. In the next section we will try to develop a theoretical model
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Figure 3.6: K∗0 invariant mass distributions for different τHC

to explain this result. The complete code is given in Macro-5 of APPENDIX-I.
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3 K∗0 Resonance Analysis Using AMPT Simulation

3.3 Systematics of Resonance Production - Rescat-

tering and Regeneration

As observed in the AMPT results, the yield of K∗0 decreases with the increasing

hadronic cascade time. To explain this result, we try to study the systematics of

K∗0 production in the fireball and analyse the effect of two important phenomena

- Rescattering and Regeneration, occurring within the hadron gas which shape the

final K∗0 yield.

Stable hadrons like π, K, and p are directly observed in heavy ion collision ex-

periments. A few more particles like Λ, Ξ and Ω are also observed by reconstruction

from their decay products. Since the lifetime of the hadron gas is O ∼ 10−22 seconds

which is negligible compared to that of Λ, Ξ and Ω whose lifetime is O ∼ 10−10

seconds, they decay while free streaming to the detector. Thus one expects accurate

reconstruction for these hadrons. Problem arises in the case of resonances like K∗0,

Σ∗, ∆∗ etc. Their lifetime is typically of the same order as the hadron gas lifetime

and hence a fraction of them can decay inside the hadron gas itself. For example in

case of K∗0, the daughter particles - Kπ could undergo elastic scattering with the

medium particles and loose their energy or momentum. We can not reconstruct back

the resonance which results in loss in K∗0 yield. This phenomenon is called ”Rescat-

tering”. On the other hand, some of the pions and kaons present in the medium can

re-generate K∗0 via pseudo-elastic interactions (Kπ → K∗0 → Kπ) which results in

gain in K∗0 yield. This is known as ”Regeneration”. Thus an estimation of resonance

yield requires in addition to determination of the chemical freeze-out (CFO) surface,

a correct modeling of the late stage fireball expansion between chemical and kinetic

freeze-out (KFO) of the interacting hadron medium, called the hadron gas evolution

in which elastic and pseudo-elastic collisions are still on. Thus, while the analysis of
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stable hadron yields provide us an opportunity to comprehend the thermodynamic

state of the fireball at the time of CFO, it is expected that by analysing the yield

of resonances one can learn a lot about the hadron gas evolution and the hadronic

medium properties between CFO and KFO.

3.3.1 Kinetics and Rate Equations

Let us consider a resonance R that decays into the daughter hadrons A and B with

decay width Γ. Now both A and B can interact with the thermal particles that are

already present in the hadron gas and scatter elastically that will result in a loss of

signal for the parent resonance R. This is rescattering. In case there is a possibility

that the daughter particles interact with the medium particles through a pseudo

elastic channel to give back R, then this will result in partial recovery of the lost

signal. The kinetic equations can be written as follows :

R
k1−→A+B (3.8)

A
k2−→ A′ (3.9)

A
k3−→ R (3.10)

B
k4−→ B′ (3.11)

B
k5−→ R (3.12)

Here, Eq. (3.8) is the decay of R, Eq. (3.9) and Eq. (3.11) are the rescattering

and Eq. (3.10) and Eq. (3.12) are the regeneration processes. Here A’ and B’ refer

to the state of the daughter hadrons A and B respectively due to elastic collision

and hence can not yield R by invariant mass reconstruction. The different reaction

rates are referred to as ki, i running from 1 to 5. Denoting the number density of

each species of particles as Ni where i can be R (for resonance), A and B (for the

daughters), we write down the differential equations governing the rate of change of
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Ni from the above kinetic equations :

1

NR

dNR

dt
+ k1 − k3

(
NA

NR

)
− k5

(
NB

NR

)
= 0 (3.13)

d

dt

(
NA

NR

)
+ (k2 + k3 − k1)

(
NA

NR

)
+ k3

(
NA

NR

)2

+ k5

(
NA

NR

)(
NB

NR

)
= 0 (3.14)

d

dt

(
NB

NR

)
+ (k4 + k5 − k1)

(
NB

NR

)
+ k5

(
NB

NR

)2

+ k3

(
NA

NR

)(
NB

NR

)
= 0 (3.15)

Assuming
(
NA
NR

)2

∼
(
NB
NR

)2

∼
(
NA
NR

)(
NB
NR

)
� 1, then Eq. (3.14) and Eq. (3.15)

become :

d

dt

(
NA

NR

)
+ kA

(
NA

NR

)
− k1 = 0 (3.16)

d

dt

(
NB

NR

)
+ kB

(
NB

NR

)
− k1 = 0 (3.17)

where, kA = k2 + k3 − k1 and kB = k4 + k5 − k1. Solving for
(
NA
NR

)
and

(
NB
NR

)
from

the equations, we get :(
NA

NR

)
t2

=

((
NA

NR

)
t1

−
(
k1

kA

))
exp(−kA(t2 − t1)) +

(
k1

kA

)
(3.18)

(
NB

NR

)
t2

=

((
NB

NR

)
t1

−
(
k1

kB

))
exp(−kB(t2 − t1)) +

(
k1

kB

)
(3.19)

Putting Eq. (3.18) and Eq. (3.19) in Eq. (3.13), and solving for NR we get :

NR(t2) =NR(t1)exp [ (−k1 + k3NA2 + k5NB2(t2 − t1)

− k3

kA
NA1(exp(−kAt2)− exp(−kAt1))

− k5

kB
NB1(exp(−kBt2)− exp(−kBt1))]

(3.20)

where,
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NA1 =

((
NA

NR

)
t1

−
(
k1

kA

))
exp(kAt1)) (3.21)

NA2 =

(
k1

kA

)
(3.22)

NB1 =

((
NB

NR

)
t1

−
(
k1

kB

))
exp(kBt1)) (3.23)

NB2 =

(
k1

kB

)
(3.24)

3.3.2 Time dependence of Reaction rates

The reaction rates ki’s were assumed to be time-independent in the previous section.

But in heavy ion collisions, within the fireball the time-dependency of the reaction

rates should be considered([3], [4]). Here, we will try to model this and incorporate

the time-dependence into the reaction rates.

First consider our desired decay of the resonance :

K∗0 −→ Kπ (3.25)

We assume that both rescattering and regeneration as described previously can

take place. The decay products travel through the medium with speed vi (where i

can mean either K or π). The interaction probability is proportional to vi,the inter-

action cross-section of the decay product with each particle in the hadronic medium

σij(vi)(where j can refer to either pions, Kaons, nucleons or antinucleons), and the

particle density of the fireball (ρj). At relativistic speed due to Lorentz contrac-

tion, the volume of the system decreases which increases ρj by the Lorentz factor,

γi = 1√
1−v2i

. But ρj also decreases due to the collective expansion of the fireball

which is parametrized by the flow velocity vflow, assumed to be of the order of the

relativistic speed of sound (c/
√

3). Taking into account both the factors, the time
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dependence of the densities as given in [3] is given as :

ρj(t) = γiρ0j

(
R

R + vflowt

)3

(3.26)

where, ’R’ is the fireball radius and ρ0j is the density of j at hadronisation, which can

be calculated from chemical freeze-out temperature (T) and chemical potentials (µB).

Now, the time dependent reaction rates are given by the interaction probabilities :

ki(t) = Pi(t) = σijρj(t)vi (3.27)

=
∑
vi

[σiπρ0π + σiKρ0K + σiNρ0N + σiN̄ρ0N̄ ]γivi

(
R

R + vflowt

)3

(3.28)

Now, using average as :

∑
vi

σ(vi)viγi '< σ >< viγi >=< σ >
pi
mi

(3.29)

So, the reaction rates become :-

ki(t) = [< σiπ > ρ0π+ < σiK > ρ0K+ < σiN>ρ0N+ < σiN̄ > ρ0N̄ ]
pi
mi

(
R

R + vflowt

)3

(3.30)

Here, ’i’ can be Kaon or pion. The required density at hadronization (ρ0j) [3] is

obtained through :

ρ0j =
g

(2π~c)3
4πm2(λqγq)

3TK2(
m

T
) (3.31)

3.3.3 Analysis

The cross-section of different elastic and pseudo-elastic interactions are given in Table

3.3.

Here the conversion factor of 1 mbarn = 25 × 10−7 MeV −2 is used. The

inelastic cross-sections σKN and σπN are both zero. The densities are calculated as :

ρ0j =
g

2π2
m2TK2(

m

T
) (3.32)
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Table 3.3: Cross-sections of interactions between K and π

Type Cross-section Value in MeV −2

Elastic σKK 20× 25× 10−7

Elastic σKπ 20× 25× 10−7

Elastic σKN 40× 25× 10−7

Elastic σππ 20× 25× 10−7

Elastic σπK 20× 25× 10−7

Elastic σπN 40× 25× 10−7

Inelastic σπK 20× 25× 10−7

Inelastic σπK 20× 25× 10−7

where, K2(m/T ) is the second Bessel function.

The other input parameters used in the code are as follows :

Volume at Chemical freeze-out, VCFO = 5× 10−4 MeV.

Temperature at Chemical freeze-out, TCFO = 155 MeV.

The fireball radius can be calculated using :

R =

(
VCFO
4/3π

)1/3

(3.33)

Using these cross-section values, input values and all the equations derived in the

previous sections, we modeled a Mathematica code to compute the normalised yield

of K∗0 (NR(t)), daughter Pions (NA(t)) and daughter Kaons (NA(t)), (normalised

with the K∗0 yield at Chemical Freeze-out) as a function of the time elapsed after

Chemical Freeze-out (τ). The algorithm of the code is as follows :

• First the densities at hadronisation are calculated for K and π using Eq.(3.32).

• Using Eq.(3.30) the time dependent reaction rates are calculated.

• The initial particle yields are divided by the K∗0 yield at hadronisation. So,

initial values are : N(K∗0) =1, N(K)=0 and N(π)=0. These values are actually

normalised yields or ratios.
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• Using Eq.(3.18) to (3.24) and looping over time interval the K∗0, K and π

ratios at different τ are calculated.

The full Mathematica code is given in ”Mathematica Code-1” of APPENDIX-II.

These values are plotted and the plot is shown in Fig. 3.7. The full ROOT code is

given in ”Macro-1” of APPENDIX-II.
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Figure 3.7: Modeling of rescattering and regenration to get K∗0, K and π ratios

As seen in the plot, with higher τ , K∗0 number ratio decreases and K and π

number ratios increases. Also it is observed that at some later τ , Kaon yield is higher

than Pion ratio. The reason is π has lower mass, so higher speed and the interaction

probability derived in Eq.(3.28) is proportional to speed, which means π interaction

is more than K. Hence, π yield is less than K yield.

In AMPT simulations , the hadronic cascade time or the hadron gas lifetime (τHC)
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is controlled using a parameter NTMAX. With higher values of this parameter, τHC is

higher which leads to higher rescattering. This fall in the K∗0 number ratio as a result

of rescattering and regeneration explains the effect of these in-medium effects on the

decrease in K∗0 yield with τHC observed in AMPT invariant mass distributions.

But in experiments there is no such parameter to control τHC . And τHC has to be

calculated from the experimental data. The significance of this model is that using

this model and this plot we can calculate τHC which is the time interval between

Chemical and Kinetic Freeze-outs. From the experimental data we can find the K∗0

number ratios at different centralities and compare that value with our model plot to

get the corresponding τHC . And also the accuracy of the model can be analysed from

the experimental data.
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Chapter 4

K∗0 Resonance production in U-U
collision at STAR

This chapter presents the results of K∗0 resonance production in U-U collisions at

√
sNN = 193GeV at STAR. Specifically we present different variables obtained from

the collision data and the invariant mass reconstruction of neutral K∗ meson and its

derived observables to address the physical mechanism behind the resonance produc-

tion.

4.1 Introduction

In the last sections we studied the production and properties of K∗0 resonance using

AMPT simulated data. The algorithm for invariant mass reconstruction was devel-

oped in ROOT Macros. The next step is to analyse experimental data from STAR

to find the actual invariant mass and properties of K∗0. The analysis of experimental

data is far too complicated than analysing the simulated data and their results can

be very different. In simulated data we know the PID of all the particles produced

in the collision simulation but in experimental data we have to identify the particles

using the energy loss of the tracks and the estimated mass of the tracks which are

prone to errors and lead to mis-identification of particles.
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4 K∗0 Resonance production in U-U collision at STAR

The production of resonances in heavy-ion collisions is expected to be sensitive

to the properties of strongly interacting matter [1] produced in these collisions. The

resonance production may be affected by the onset of deconfined phase of quarks

and gluons called the quark gluon plasma (QGP). The importance of the resonance

like K∗0 meson is that it has a small lifetime (∼ 4 fm/c) compared to the one of

the hadron gas (∼ 10 fm/c at LHC). So the characteristic properties of K∗0 such as

its mass, invariant mass distribution width and yield could be modified relative to

systems where there is no QGP (like small systems of minimum bias pp collisions).

Due to short lifetime, decay particles of resonances may undergo rescattering and

re-generation effects. These are the two most important process which a typical

resonance could undergo. Study of K∗0 resonance and its properties can provide a

lot of information on the hadron gas evolution and the hadronic medium properties

between CFO and KFO.

First we will analyse important variables in the collision data. Then we will define

the event and track selection cuts used and the cuts used for particle identification.

Finally the invariant mass of K∗0 resonance will be reconstructed and fitted with

Breit-Wigner function to get the yield, mass and width of K∗0.

4.2 Data Set - Event and Track Variables

The analysis is done from the collision data in U-U collisions at
√
sNN = 193GeV

recorded by the STAR detector. We are using the Time Projection Chamber (TPC)

and the Time Of Flight (TOF) detectors of the STAR to carry out the analysis.

The offline data is converted into NTuples in ROOT which organises the raw data

to give valuable information on the event variables and track variables. Plots of the

important event and track variables as obtained from the data are given below.
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4.2.1 Event Variables

Events are the particular collisions. One event contains all the information on all the

particles produced in that particular collision. Some important event variables are :

1. Reference Multiplicity :

Reference multiplicity of an event gives the number of tracks in that event lying in the

pseudorapidity range of −0.5 < η < 0.5. The distribution of reference multiplicity

is used to define the centrality. The plot of the reference multiplicity distribution is

shown in Fig. 4.1
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Figure 4.2: Centrality distribution

2. Centrality :

Centrality of a collision gives information on how close the two bunches of nuclei were

while colliding. It has a very small value for head-on collision and a large value for

peripheral collision. It is directly dependent on the impact parameter which is the

distance between the center of the two colliding bunches. As the impact parameter

is unknown in the experiment, so direct determination of the centrality of the event
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is not possible. It is estimated using the reference multiplicity distribution. The plot

of the centrality distribution is shown in Fig. 4.2

3. Vertex :

It gives the position of the primary vertex of the collision which is the point where

the two nuclei collide. The plot of the Z-position of the vertex and the 2D plot of the

X and Y-positions are shown in Fig 4.3 and Fig. 4.4.
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Figure 4.3: Vertex-Z distribution
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Figure 4.4: Vertex-X vs Vertex-Y distri-
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4.2.2 Track Variables

Track variables show the properties of all the tracks present in a particular event.

Some important track variables are discussed below. All the plots shown are for

charged pion, kaon and proton tracks. 1. Momentum :

It covers the momentum coordinates (px, py, pz) and the total momentum (p) of the

track given by :

p =
√
p2
x + p2

y + p2
z (4.1)
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4 K∗0 Resonance production in U-U collision at STAR

The distributions of px, py, pz are shown in Fig. 4.5 , Fig. 4.6 and Fig. 4.7. There is

a dip in the distributions of px and py at value 0, but no such dip in the distribution

of pz. The reason due to the cuts on the transverse momentum pT which is discussed

next.
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Figure 4.5: px distribution
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Figure 4.6: py distribution
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Figure 4.7: pz distribution
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Figure 4.8: pT distribution
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2. Transverse Momentum :

Transverse momentum is momentum of the track in the transverse plane (xy-plane)

which is the plane perpendicular to the beam direction (z-axis). It is given by :

pT =
√
p2
x + p2

y (4.2)

The log scale plot of px and py is shown in Fig 4.8. It is clearly visible in the log plot

that pT is restricted to lie between 0.15 and 10 GeV/c using a selection cut on the

tracks. So, the tracks which have px and py both ∼ 0 have been removed so there

is a dip in the px and py distributions at 0. But still the count is non-zero, because

the tracks with px ∼ 0 and py ∼ 0.15 Gev/c and vice-versa satisfy the minimum pT

criteria and are not rejected. There is no restriction on pz being 0, so there is no such

dip in pz distribution.

3. Pseudorapidity

Pseudorapidity (η), is a commonly used spatial coordinate describing the angle of a

particle relative to the beam axis. It is given by :

η =
1

2
ln

(
|p|+ pz
|p| − pz

)
= tan−1

(
pz
|p|

)
(4.3)

The η values related to beam angle is shown in Fig. 4.9. The plot of η distribution is

shown in Fig. 4.10. In the distribution we can see a dip around value 0. This is due

to the finite mass of the particles. For massless photons there will be no dip in the η

distribution.
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Figure 4.9: η Values
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Figure 4.10: η distribution

4. Energy loss

It is the energy lost by the track in the TPC detector. The energy losss of a charged
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particle is given by Bethe-Bloch formula :

− dE

dx
= Kz2Z

A

1

β2

[
1

2
lnf(β)− β2 − δ(βγ)

2

]
(4.4)

A plot of energy loss vs momentum is shown in Fig. 4.11. Three bands corresponding

to pion, kaon and proton are seen in the plot.
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Figure 4.11: dE/dx vs p distribution
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Figure 4.12: m2 distribution
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5. Mass :

The mass of the track is obtained using the TOF detector given by :

m2 =
p2

β2 − 1
(4.5)

where β = v/c. The plot of m2 distribution is shown in Fig. 4.12. There are three

peaks corresponding to pion, kaon and proton seen in the plot.

4.3 Event and Track Selection

The heavy ion collision process produces a lot of events with numerous tracks. To

improve the quality of the analysis we select good quality events and tracks by using

some cuts on the variables described above which are called selection cuts.

Event Cuts

Table 4.1: Event cuts for K∗0 invariant mass analysis

Cut name Cut value
VZ range -30 < VZ <30 cm
Vr range -2 < Vr <2 cm

We have applied two event cuts on the event variables. First is the cut on the Z-

position of the vertex (Vz). Vz is selected in the analysis presented here to be between

±30 cm from the interaction point to ensure uniform detector acceptance in the η

range studied, because events with Vz far from the interaction point will cause a loss

in the acceptance. Similarly Vr given by :

Vr =
√
V 2
x + V 2

y (4.6)

is selected to lie between ±2. The applied event cuts are tabulated in Table 4.1.
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Table 4.2: Track cuts for K∗0 invariant mass analysis

Cut name Cut value
DCA range -3 < DCA <3 cm
pT range 0.2 < pT < 10 GeV/c

TPC Hit Points NHitsFit>15
η range -0.5 < η < 0.5

Track Cuts

Since the K∗0 decays in such a short time that the daughter kaons and pions seem

to originate from the interaction point. So, the tracks used in the presented analysis

are called ”primary tracks”, meaning that the vertex is included as one of the tracks

fit points. Track candidates whose distance of closest approach (DCA) to the pri-

mary interaction vertex was less than 3 cm were selected. To ensure optimal particle

identification and momentum resolution it is necessary to apply quality cuts in the

tracks measured in the TPC. Each track has a number of fit points associated with it

by the STAR tracking software. In order to ensure accurate track momentum recon-

struction and good dE/dx resolution, short tracks were eliminated from the analysis

by requiring all tracks to have a minimum number of 15 fit points. For all the track

candidates, the ratio between the number of TPC track fit points over the maximum

possible points was required to be greater than 0.55 to avoid selecting split tracks. To

maintain reasonable momentum resolution, only tracks with pT larger than 0.2 GeV/c

are selected. To avoid the acceptance drop in the high-η range all track candidates

are required to have |η| < 0.5. The applied track cuts are tabulated in Table 4.2.

4.4 Particle Selection

The decay products of K∗0, pions and kaons, are identified using the combination of

Time Projection Chamber (TPC) and Time of Flight (TOF) detectors. In addition to
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momentum information, the TPC provides particle identification for charged particles

by measuring their ionization energy loss (dE/dx). The plot of DE/dx is shown in Fig.

Different bands seen represent Bethe-Bloch distributions folded with the experimental

resolutions and correspond to different particle species. In the plot, the energy loss

curves for charged pions and kaons can be easily identified. To quantitatively describe

the particle identification, the variable Nσ for pions and kaons is defined as follows :

Nσπ,σK =
1

R
log

(dE/dx)measured
〈dE/dx〉π,K

(4.7)

where, (dE/dx)measured is the measured energy loss for a track,〈dE/dx〉π,K is the ex-

pected mean energy loss for charged pions or kaons tracks obtained by parameterizing

modified Bethe Bloch function. ’R’ is the dE/dx resolution, which varies between 6%

and 10% from p+p to central Au+Au events and depends on the characteristics of

each track, such as the number of dE/dx hits for a track measured in the TPC, the

pseudorapidity of a track, etc. To select charged kaon and pion candidates Nσpi < 2

and NσK < 2 cuts were used.

Even after using the Nsigma cuts there is still some ambiguity in the selected tracks.

In the dE/dx plot (Fig. 4.11) we can see that as the momentum increases the bands

of pion and kaon comes closer and closer and finally merges. So, for high momentum,

its difficult to distinguish kaons from pions on the basis of Nsigma alone. To resolve

this ambiguity we use the TOF detector. TOF detector measures the time of flight

and pathlength from which we can get velocity and hence β given by :

β =
v

c
(4.8)

Using β the mass of the particle is found :

M2 =
p2

β2 − 1
(4.9)
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Table 4.3: PID cuts for K∗0 invariant mass analysis

Cut name Cut value
Nσpi range -2 < Nσpi < 2
NσK range -2 < NσK < 2
M2

π range 0.01038 < M2
π < 0.029 GeV 2/c4

M2
K range 0.2104 < M2

K < 0.2796 GeV 2/c4

From the data the distribution of the square of mass (M2) of the charged particles

(c = ±1) is obtained. In the plot three peaks corresponding to pion, kaon and proton

are observed. The distribution is fitted with gaussian functions to obtain the mean

(µM2) and variance(σ2
M2) for pion and kaon M2. To identify kaons and pions along

with the Nσ cut an additional M2 cut is used. Tracks with M2 lying between ±2σπM2

are selected as pion tracks and M2 lying between ±2σKM2 are selected as kaon tracks.

The fitting of the M2 distribution for pions and kaons is shown in Fig. 4.13.
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Figure 4.13: M2 distribution

The particle selection cuts are tabulated in Table 4.3.
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4.5 Invariant Mass Reconstruction

4.5.1 Unlike Sign Distribution
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Figure 4.14: Unlike Sign distribution in UU data

In a relativistic heavy ion collision, it is difficult to build the K∗0 signal by selecting

accurately the corresponding pion and kaon daughters, as they are indistinguishable

from the other primary tracks in an event. The two decay channels for K∗0 resonance

are as follows :-

K∗0 −→ K+π− and K∗0 −→ K−π+ (4.10)

We reconstruct the invariant mass of K∗0 by taking the opposite signed pion and

53



4 K∗0 Resonance production in U-U collision at STAR

kaon pairs from the same event as defined by the equation below :

MK∗0 =
√

[EK+ + Eπ− ]2 − [~pK+ + ~pπ− ]2 (4.11)

MK∗0 =
√

[EK− + Eπ+ ]2 − [~pK− + ~pπ+ ]2 (4.12)

where, Eπ =
√
m2
π + p2

π and Eπ =
√
m2
K + p2

K . Histogram of invariant mass of K∗0

obtained using these equations is called Unlike sign distribution as the sign of kaons

and pions are opposite. The plot of the unlike sign invariant mass distribution is

shown in Fig. 4.14.

However such a event wise construct also includes the background combinations

of πK pairs not originating from K∗0 as we are taking all possible combinations of

available opposite sign pions and kaons. So, we dont get a signal peaking at K∗0

mass in this distribution and expect that there is some background which we need to

remove to get a clear signal.

4.5.2 Like Sign Distribution

Due to huge uncorrelated background the signal is not visible in the Unlike sign

distribution. To observe the signal we need to subtract the combinatorial background

from the same event πK pairs distribution. To find the combinatorial background

we used a method called Like Sign method. In this technique, the combinatorial

background is constructed through the invariant mass of pions and kaons of same

charge from same event given by :

M =
√

[EK+ + Eπ+ ]2 − [~pK+ + ~pπ+ ]2 (4.13)

M =
√

[EK− + Eπ− ]2 − [~pK− + ~pπ− ]2 (4.14)

Since the number of positive and negative particles produced in relativistic heavy ion

collisions are not same, the combinatorial background or the Like Sign distribution
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is constructed by taking the geometric mean of number of like sign pairs as shown in

equation below :

NLike = 2×
√
Nπ+K+ ×Nπ−K− (4.15)

The plot of the Like sign distribution is shown in Fig. 4.15
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Figure 4.15: Like Sign distribution in UU data

4.5.3 K∗0 Signal Distribution

The Like sign distribution is scaled with respect to the Unlike sign distribution by

finding the scaling factor which is the ratio of the integral of the Unlike sign distri-

bution to the Like sign distribution in the region of invariant mass away from the

K∗0 mass. This scaled Like sign distribution is then subtracted from the Unlike sign

distribution to obtain the K∗0 signal distribution as shown in Fig. 4.16. The signal

is fitted with a combination of Breit-Wigner function and a second order polynomial
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background to get the Mass, Width and Yield of K∗0. The fitted plot is shown in

Fig. 4.16. The complete code is given in APPENDIX-III - Invariant Mass of K∗0.
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Figure 4.16: K∗0 Signal distribution in UU data

The fit parameters are tabulated in Table 4.4.

Table 4.4: Fit parameters of K∗0 invariant mass analysis

Parameter Value
Yield 1.82× 106 ± 1.578× 105

Mass 0.8886± 0.0010 GeV/c2

Width 0.05327± 0.00412 GeV/c2
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Chapter 5

Elliptic Flow of K∗0

This chapter presents the study on elliptic flow of K∗0 resonance. First we will try to

understand the basics of anisotropic flow in heavy ion collisions and the origin of the

flow harmonics. The second order flow harmonic v2 is called elliptic flow coefficient.

Next we will discuss about event planes and the derivation of v2 from event planes.

Finally we will discuss the analysis method to obtain event planes and calculate v2 of

K∗0 in U-U data of STAR at
√
sNN = 193GeV .

5.1 Introduction

In heavy ion collisions, ”flow” means the collective motion of the particles produced

in the process due to high pressure arising from compression and heating of nuclear

matter. Collective motion of the particles can be divided into two groups - Longitu-

dinal flow and Transverse flow. Logitudinal flow is the expansion of particles along

the beam direction. Transverse flow is the collective expansion of the particles in the

transverse plane. Transverse flow can further be divided into two groups - Radial

flow and Anisotropic flow. Radial flow is the isotropic expansion driven by pressure

gradients. Anisotropic flow as the name suggests is the anisotropic expansion arising

due to anisotropy in pressure. We are interested in studying the anisotropic flow of

K∗0.
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Figure 5.1: Collision of two heavy ions

Heavy-ions are extended objects and the system created in a head-on collision is

different from that in a peripheral collision. To study the properties of the created

system, collisions are therefore categorized by their centrality which is defined later

in the report. Fig. 5.1 shows the colllision of two heavy ions and the production of

particles in the overlapped region. The distance between the centres of the two ion

is the impact parameter (b). In central collision the overlap region is larger and the

particles production and interaction is also more than the peripheral collision. But

in peripheral collsions the anisotropy of the overlapped region is more [9].

In non-central heavy ion collisions, the overlap area of two nuclei is not spatially

isotropic as shown in Fig. 5.2. The initial spatial anisotropy with respect to the

x-z plane (reaction plane) translates into a momentum anisotropy of the produced

particles (anisotropic flow) because of the pressure gradient developed among the

constituents. The experimental study of these anisotropies is done using flow har-

monics vn. We are interested in one of the flow harmonic called the elliptic flow

coefficient (v2), which gives the measure of the anisotropy in momentum space. The

v2 of charged particles and identified hadrons have been measured at RHIC and LHC.
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Figure 5.2: Spatial anisotropy in overlapped region of heavy ion collision

It is observed that the v2 at low transverse momentum at RHIC and LHC is similar

which is consistent with the predictions from hydrodynamic models. In particular,

the measurement of v2 of K∗0 is important because of its small lifetime which is

comparable to that of the medium formed in heavy ion collisions. Thus the decay

products of K∗0 can undergo in-medium effects like re-scattering and regeneration in

the hadronic phase and the v2 of K∗0 may be modified.

5.2 Elliptic flow

In non-central heavy-ion collisions the initial volume of the interacting system is

anisotropic in coordinate space. Due to multiple interactions this anisotropy is trans-

ferred to momentum space, and is then quantified via so-called flow harmonics vn.

In essence, anisotropic flow analysis is the measurement of flow harmonics vn, which

will be formally defined next.

The azimuthal distribution r(ϕ) of the physical quantity of interest (for instance

the azimuthal distribution of total transverse momentum of particles produced in a

heavy-ion collision) is a periodic quantity and it is natural to expand it in a Fourier
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series[10] :

r(ϕ) =
x0

2π

1

π

∞∑
n=1

[xncos(nϕ) + ynsin(nϕ)] (5.1)

where,

xn =

∫ 2π

0

r(ϕ)cos(nϕ)dϕ (5.2)

yn =

∫ 2π

0

r(ϕ)sin(nϕ)dϕ (5.3)

For each pair of Fourier coefficients, xn and yn, the corresponding flow harmonics vn

is defined in the following way

vn ≡
√
x2
n + y2

n (5.4)

Harmonics vn can be related explicitly to the starting distribution r(ϕ) in the following

way:

〈cos(nϕ)〉 =

∫ 2π

0
r(ϕ)cos(nϕ)dϕ∫ 2π

0
r(ϕ)dϕ

=
1
π
vn
∫ 2π

0
cos2(nϕ)dϕ

v0

=
vn
v0

(5.5)

From the first to second line in the equation above we have used the orthogonality

relationship of the sine and cosine functions∫ π

−π
sin(mx)sin(nx)dx = πδmn,∫ π

−π
cos(mx)cos(nx)dx = πδmn,∫ π

−π
sin(mx)cos(nx)dx = 0,

(5.6)

By using a normalized distribution r(ϕ), for which v0 =
∫ 2π

0
r(ϕ)dϕ = 1, it follows

immediately :

vn = 〈cos(nϕ)〉 (5.7)
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The harmonic v1 is called directed flow, the harmonic v2 elliptic flow, the harmonic v3

triangular flow, etc. When flow harmonics are considered as a function of transverse

momentum and rapidity, vn(pT , y), we refer to them as differential flow.

5.3 Analysis Method

The experimental measurement of anisotropies is done using the flow harmonics vn.

The invariant yield of particles produced in heavy ion collisions can be expanded in

the form of Fourier series [11]:

E
d3N

dp3
=

1

2π

d3N

pTdpTdy
(1 +

∞∑
n=1

vn(pT , y)cos[n(ϕ−ΨR)]) (5.8)

where E is the energy of the particle, p the momentum, pT the transverse momentum,ϕ

the azimuthal angle, y the rapidity and ΨR is the reaction plane angle. The reaction

plane is defined as the plane described by the vector between the centres of the col-

liding nuclei and the direction of the beam axis. The nth order Fourier coefficient vn

is given by [11]:

vn = 〈cos[n(ϕ−ΨR)]〉 (5.9)

where the average is taken over all particles in all events.

Together, the first two Fourier coefficients, v1 and v2 are known as the anisotropic

flow. Separately, the first Fourier cofficient v1 is called directed flow and the second

coefficient v2 is called elliptic flow because in polar coordinates, for small values of v2,

the azimuthal distribution with non-zero second harmonic describes an ellipse.. This

analysis focuses only on the measurement of v2 given by :

v2 = 〈cos[2(ϕ−ΨR)]〉 (5.10)

Elliptic flow is defined as a correlation between the azimuth of an outgoing particle, ϕ

(in our analysis its K∗0) and the reaction plane, ΨR which is nothing but the azimuth
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of impact parameter. For the estimation of v2 of K∗0 we have used the Event Plane

method which is discussed below.

5.3.1 Event Plane Estimation

In real heavy ion experiment it is not possible measure the impact parameter between

the two nuclei and hence the reaction plane is unknown. The reaction plane has to

be estimated on an event-by-event basis by using the anisotropy flow itself. Such

an estimated reaction plane is called an event plane. The event plane angle can be

calculated in terms of the event flow vector Qn [11]whose components are defined as

:

Xn = Qncos(nΨn) =
N∑
i=1

Wicos(nϕi) (5.11)

Yn = Qnsin(nΨn) =
N∑
i=1

Wisin(nϕi) (5.12)

where Wi is the weight and N is the total number of produced particles in a given

acceptance used for flow vector calculation in an event. For this analysis the weight

factor are taken as the pT of the particle. The nth harmonic event plane is given by :

Ψn =
1

n
tan−1

(∑N
i=1Wisin(nϕi)∑N
i=1 Wicos(nϕi)

)
=

1

n
tan−1

(
Yn
Xn

)
(5.13)

The event plane angle Ψn determined from the nth harmonic is in the range

0 ≤ Ψn < 2π/n.

5.3.2 Event Plane Acceptance Correction

There are biases due to the finite acceptance of the detector which cause the particles

to be azimuthally anisotropic in the laboratory system. Due to the non uniform

acceptance of the detectors the distribution of the azimuthal angle is not flat. They

can be removed by making the distribution of event planes isotropic in the laboratory.
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There are several different methods to remove the effects of anisotropy. We are using

two methods called ”Recenter” and ”Shift Correction” which are discussed below.

Recenter Correction

The simplest one is to recenter the distributions (Xn, Yn) by subtracting the (Xn

,Yn) values with their averaged values over all events. The main disadvantage of this

method is that it does not remove higher harmonics from the resulting distribution

of Ψn.

Shift Correction

To remove the higher harmonics additional flattening of the event plane distribution is

required. For this Shift Correction method is used. It fits the unweighted laboratory

distribution of the event planes, summed over all events, to a Fourier expansion and

devises an event-by-event shifting of the planes sneeded to make the final distribution

isotropic.

5.3.3 Event Plane Resolution Correction

The finite number of particles in an event, which are available for calculating the event

plane, leads to a limited resolution in the measured event plane angle. Therefore, to

find the actual v2 with respect to the real reaction plane, the measured v2 is divided

by a resolution correction factor (R)[11].

v2 =
vobs2

R
=

vobs2

〈cos2(Ψ2 −ΨR)〉
(5.14)

where Ψ2 is the event plane angle and ΨR is the true reaction plane angle. The term

〈cos2(Ψ2 −ΨR)〉 can be written as,

〈cos2(Ψ2 −ΨR)〉 =

√
π

2
√

2
χ2exp(−χ2

2/4)[I0(χ2
2/4) + I1(χ2

2/4)] (5.15)
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where, Ix is the modified Bessel function of order x, and

χ2 =
v2

σ
and σ2 =

1

2N

< w2 >

< w >2
(5.16)

where, N is the number of particles and w are the weights used to calculate the flow

vector Qn.

5.3.4 v2 vs Invariant Mass Method

For analyising v2 of K∗0 we have used v2 vs Invariant Mass Method [11]. This is a

standard method for calculating the v2 of resonances or particles which are identified

through their decay products. The v2 calculted using the event planes is for ”Signal +

Background” distribution, our aim is to find v2 for ”Signal Only” distribution which

is achieved using this method. The steps involved in this method are as follows :

1. First vsig+bkg2 is calculated as a function of πK invariant mass (MπK), using

vsig+bkg2 = 〈cos2(ϕ−Ψ2)〉 (5.17)

2. It is then divided by resolution factor (R) to get the resolution corrected vsig+bkg2 .

vsig+bkg2 =
vobs2

R
=

vobs2

〈cos2(Ψ2 −ΨR)〉
(5.18)

3. A 2-D histogram of vsig+bkg2 vs MπK distribution is obtained.

4. Then vsig+bkg2 is decomposed as :

vsig+bkg2 = vsig2 ×
(

Nsig

Nsig +Nbkg

)
+ vbkg2 ×

(
Nbkg

Nsig +Nbkg

)
(5.19)

where, Nsig and Nbkg are the signal and background yields. vsig2 , vbkg2 and vsig+bkg2

are the elliptic flow coefficient for signal, background and total particles. Defin-

ing :

α =
Nsig

Nsig +Nbkg

and (1− α) =
Nbkg

Nsig +Nbkg

(5.20)

64



5 Elliptic Flow of K∗0

which are the ratios of yields as a function of πK invariant mass. The term vbkg2

is parameterized by a second order polynomial function of invariant mass.

5. Finally the vsig+bkg2 vs MπK distribution is fitted with Eq. (5.20) to get vsig2 as

one of the fit parameters.

6. For different pT intervals vsig2 (pT ) is calculated and the plot of vsig2 vs (pT ) is

obtained.
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Chapter 6

Elliptic Flow of K∗0 Analysis and
Results

In this chapter we present the complete analysis for the elliptic flow of K∗0 in U+U

data of STAR with
√
sNN = 193GeV . The analysis is done for 9.98 million events.

The analysis is done majorly in two parts. First is the Event Plane estimation and

correction part and second is the elliptic flow calculation part. Both have different

cuts. First we will analyse and discuss Event Planes with the results and plots. And

then we will analyse and discuss Elliptic flow with the results and plots.

6.1 Event Planes

6.1.1 Event and Track cuts

Table 6.1: Event cuts for K∗0 event planes analysis

Cut name Cut value
VZ range -30 < VZ <30 cm
Vr range -2 < Vr <2 cm

We have applied two event cuts on the event variables. Vz is selected to be between

±30 cm from the interaction point to ensure uniform detector acceptance in the η

range studied, because events with Vz far from the interaction point will cause a loss
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6 Elliptic Flow of K∗0 Analysis and Results

in the acceptance. Similarly Vr is selected to lie between ±2. The applied event cuts

are tabulated in Table 6.1.

Next are the track cuts which are a bit different from those used for the invariant

mass analysis. Track candidates whose distance of closest approach (DCA) to the

primary interaction vertex was less than 2 cm were selected. Tracks fit points was set

to have a minimum number of 15 fit points. For all the track candidates, the ratio

between the number of TPC track fit points over the maximum possible points was

required to be greater than 0.55 to avoid selecting split tracks. A very strict cut was

applied on pT to reject the high momentum tracks. Only tracks with pT larger than

0.2 GeV/c and below 2 GeV/c were selected. A slightly loose cut on η, |η| < 1 was

used. The applied track cuts are tabulated in Table 6.2.

Table 6.2: Track cuts for K∗0 event planes analysis

Cut name Cut value
DCA range -2 < DCA <2 cm
pT range 0.2 < pT < 2 GeV/c

TPC Hit Points NHitsFit>15
η range -1 < η < 1

6.1.2 Event Plane Estimation

The event and track cuts mentioned above are applied on the 9.98 million events and

using Eq. (5.13), the event planes are estimated to obtain a distribution of Ψ2. The

nth harmonic event plane Ψn lies in the range 0 ≤ Ψn < 2π/n. So, Ψ2 lies in the

range 0 ≤ Ψ2 < π. The plot of the Ψ2 distribution is shown in Fig. 6.1.
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Figure 6.1: Event plane (Ψ2) distribution
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Figure 6.2: Recenter corrected Ψ2 distri-
bution

6.1.3 Event Plane Flattening

It is expected that the event plane distribution should be uniform between 0 to π.

But the plot of the event plane shows that it is not flat or isotropic. For finding v2,

event planes are corrected to make the distribution flat. For this two methods namely

- Recenter and Shift corrections as discussed in the Analysis Method part. Now the

corrected distribution is fitted with the following funtion.

f = p0[1 + 2p1cos(2Ψ2) + 2p2sin(2Ψ2)] (6.1)

Very small values of the coefficients p0, p1 and p2 would suggest that the distribution

is flat. The fit parameters are tabulated in Table 6.3. The plot of the Recenter

corrected and Shift corrected event plane distribution are shown in Fig. 6.2 and

Fig. 6.3 respectively.
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Table 6.3: Fit parameters for Recenter and Shift Corrected event plane fitting

Parameter Value
p0 1.9× 105 ± 60.57
p1 3.72× 10−6 ± 2.25× 10−4

p2 −6.59× 10−7 ± 2.24× 10−4

hPsi2_corr
Entries  9988699

 / ndf 2χ  13.55 / 49
    0P  6.057e+01± 1.908e+05 
    1P 04− 2.254e±06 − 3.724e
    2P 04− 2.239e±07 −6.594e− 
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Figure 6.3: Recenter and Shift corrected Ψ2 distribution

6.1.4 Event Plane Resolution Correction

Due to the finite number of particle produced in a heavy ion collision, there is a

finite resolution of the estimated event plane angle. Thus the estimated v2 has to be

corrected for such event plane resolution (R). The plot of the resolution as a function

of centrality is shown in Fig. 6.4.
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Figure 6.4: Resolution correction factor vs Centrality

6.1.5 Flow Vector

The event planes are obtained from the flow vector (Q) as given in Eq. (5.13):

Ψn =
1

n
tan−1

(∑N
i=1Wisin(nϕi)∑N
i=1 Wicos(nϕi)

)
=

1

n
tan−1

(
Yn
Xn

)
where,

Xn = Qncos(nΨn) =
N∑
i=1

Wicos(nϕi)

Yn = Qnsin(nΨn) =
N∑
i=1

Wisin(nϕi)

We are interested in finding the elliptic flow v2, so we do the analysis for second

harmonic n=2. The plot of the components of the flow vector (Q) - (X2, Y2) or
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Figure 6.5: QX vs QY distribution

(QX , QY ) is shown in Fig. 6.5. It is observed that the plot of QX vs QY distributions

are elliptic in nature with QX as the major axis and QY as the minor axis. This

justifies the name of the flow coefficient for the harmonic n=2 to be elliptic flow.

The complete code is given in APPENDIX-III - Event Planes.
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6.2 Elliptic Flow

6.2.1 Event and Track cuts

Two event cuts on the event variables are applied. Vz is selected to be between

±30 cm from the interaction point to ensure uniform detector acceptance in the η

range studied. Similarly Vr is selected to lie between ±2. The applied event cuts are

tabulated in Table 6.4. Next are the track cuts which are a bit different from those

Table 6.4: Event cuts for K∗0 elliptic flow analysis

Cut name Cut value
VZ range -30 < VZ <30 cm
Vr range -2 < Vr <2 cm

used for the event planes. Track candidates whose distance of closest approach (DCA)

to the primary interaction vertex was less than 3 cm were selected. Tracks fit points

was set to have a minimum number of 15 fit points. For all the track candidates, the

ratio between the number of TPC track fit points over the maximum possible points

was required to be greater than 0.55 to avoid selecting split tracks. Tracks with pT

larger than 0.2 GeV/c and below 10 GeV/c were selected. A slightly loose cut on η,

|η| < 1 was used. The applied track cuts are tabulated in Table 6.5. The drawback

Table 6.5: Track cuts for K∗0 elliptic flow analysis

Cut name Cut value
DCA range -3 < DCA <3 cm
pT range 0.2 < pT < 10 GeV/c

TPC Hit Points NHitsFit>15
η range -1 < η < 1

of full event plane method is that the same set of tracks are used for the estimation

of event plane and v2. This may bias the measurement of v2. To remove this auto-
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correlation effect, the tracks used for the calculation of event planes are rejected for

the calculation of vsig+bkg2 using the eventplanes.

6.2.2 Particle Selection

The decay products of K∗0, pions and kaons, are identified using the combination of

Time Projection Chamber (TPC) and Time of Flight (TOF) detectors. In addition to

momentum information, the TPC provides particle identification for charged particles

by measuring their ionization energy loss (dE/dx). The plot of DE/dx is shown in Fig.

Different bands seen represent Bethe-Bloch distributions folded with the experimental

resolutions and correspond to different particle species. In the plot, the energy loss

curves for charged pions and kaons can be easily identified. To quantitatively describe

the particle identification, the variable Nσ for pions and kaons is defined as follows :

Nσπ,σK =
1

R
log

(dE/dx)measured
〈dE/dx〉π,K

(6.2)

where, (dE/dx)measured is the measured energy loss for a track,〈dE/dx〉π,K is the ex-

pected mean energy loss for charged pions or kaons tracks obtained by parameterizing

modified Bethe Bloch function. ’R’ is the dE/dx resolution, which varies between 6%

and 10% from p+p to central Au+Au events and depends on the characteristics of

each track, such as the number of dE/dx hits for a track measured in the TPC, the

pseudorapidity of a track, etc. To select charged kaon and pion candidates Nσpi < 2

and NσK < 2 cuts were used.

Even after using the Nsigma cuts there is still some ambiguity in the selected tracks.

In the dE/dx plot (Fig. 4.11) we can see that as the momentum increases the bands

of pion and kaon comes closer and closer and finally merges. So, for high momentum,

its difficult to distinguish kaons from pions on the basis of Nsigma alone. To resolve

this ambiguity we use the TOF detector. TOF detector measures the time of flight
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and pathlength from which we can get velocity and hence β given by :

β =
v

c
(6.3)

Using β the mass of the particle is found :

M2 =
p2

β2 − 1
(6.4)

From the data the distribution of the square of mass (M2) of the charged particles

(c = ±1) is obtained. In the plot three peaks corresponding to pion, kaon and proton

are observed. The distribution is fitted with gaussian functions to obtain the mean

(µM2) and variance(σ2
M2) for pion and kaon M2. To identify kaons and pions along

with the Nσ cut an additional M2 cut is used. Tracks with M2 lying between ±2σπM2

are selected as pion tracks and M2 lying between ±2σKM2 are selected as kaon tracks.

The fitting of the M2 distribution for pions and kaons is shown in Fig. 4.13. The

particle selection cuts are tabulated in Table 6.6.

Table 6.6: PID cuts for K∗0 elliptic flow analysis

Cut name Cut value
Nσpi range -2 < Nσpi <2
NσK range -2 < NσK <2
M2

π range 0.01038 < M2
π < 0.029 GeV 2/c4

M2
K range 0.2104 < M2

K < 0.2796 GeV 2/c4
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6.2.3 v2 vs Invariant mass

Using the corrected event planes, vsig+bkg2 is calculated as a function of πK invariant

mass (MπK), using

vsig+bkg2 = 〈cos2(ϕ−Ψ2)〉 (6.5)

To find the actual vsig+bkg2 with respect to the real reaction plane, it is divided by the

event plane resolution correction factor (R) obtained above as shown in Fig. 6.4.

vsig+bkg2 =
vobs2

R
=

vobs2

〈cos2(Ψ2 −ΨR)〉
(6.6)

A 2-D histogram of vsig+bkg2 vs MπK distribution is obtained. This distribution is

fitted with the following function :

f = vsig2 ×
(

Nsig

Nsig +Nbkg

)
+ vbkg2 ×

(
Nbkg

Nsig +Nbkg

)
(6.7)

to obtain the fit parameter vSig2 which is the desired elliptic flow coefficient of K∗0.

The fitted plot of the vsig+bkg2 vs MπK distribution for pT bins 0.8 to 1.4 GeV/c and

1.4 to 2.0 are shown in Fig. 6.6 and 6.7 below.
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Figure 6.6: vSig+Bkg2 vs MπK plot

The complete code is given in APPENDIX-III - Elliptic flow.
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Figure 6.7: vSig+Bkg2 vs MπK plot

6.2.4 v2 vs pT
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Figure 6.8: vSig2 vs pT plot

Finally the elliptic flow coefficient of K∗0 is plotted as a function of transverse
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momentum. The plot of vSig2 vs pT is shown in Fig. 6.8. The non-zero values of vSig2

confirms the presence of anisotropy in K∗0 collective flow. vSig2 is pT dependent. Its

low for low pT and increases with pT and finally saturates for high pT .

6.2.5 Comparision with Φ

Φ is meson resonance is quite similar with K∗0 in terms of mass and decay daughters.

MΦ = 1.019GeV/c2 Φ −→ K+K− (6.8)

The v2 of K∗0 obtained is compared with the v2 of Φ obtained from the analysis done

by Mr. Vipul Bairathi. Fig. 6.9 shows the comparision of the two plots. Both these

particles are mesons and their masses are close, so we expect similar v2 distribution

for both. The plot shows that the distribution for K∗0 and Φ are very similar and

this suggests that our analysis gives expected results.
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Figure 6.9: Plot for vSig2 of K∗0 and Φ

77



6 Elliptic Flow of K∗0 Analysis and Results

6.2.6 Centrality dependence

v2 vs pT distribution for different centralities is obtained and the comparision plot is

shown in Fig. 6.10. It shows the centrality dependence of v2.
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Figure 6.10: Plot for vSig2 vs pT for different centralities

The plot shows that vSig2 increases with increase in centrality. The reason is -

for central collisions (low centrality 0 − 20%) there is less spatial anisotropy, so the

momentum anisotropy v2 is also low and for peripheral collisions (high centrality

60 − 80%) there is high spatial anisotropy, so the momentum anisotropy v2 is also

high. Also it is observed that the difference in v2 is more for central(0 − 20%) and

mid-central(20 − 40%) collisions but for higher centralities the difference decreases.

v2 for mid-central(40− 60%) and peripheral(60− 80%) collisions are very close. The
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reason is, for peripheral collisions, though the initial spatial anisotropy is very high,

but the yield of K∗0 is very small compared to the central collisions. So, the increase

in anisotropy is compensated by decrease in yield.
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Chapter 7

Summary and Conclusions

In this project we have investigated the resonance production and properties in heavy

ion collision experiments using simulations and experimental data analysis . Specifi-

cally we have studied the production of K∗0 resonance in these collisions. Resonances

are particles with very short lifetime which decay into their daughter particles and

cannot be detected directly in the detectors. Their detection is possible indirectly

by the invariant mass reconstruction of their daughter particles. The short-lived res-

onances are a very useful tool in high energy collisions to study the dynamics and

properties of the strongly interacting medium. We are interested in K∗0 resonance,

having short lifetime ∼ 4 fm/c which is comparable to the time interval between the

two frezze-outs – also called the lifetime of the hadron gas or the hadronic cascade

time (∼ 10 fm/c). It means K∗0 can decay within the hadron gas which is the phase

between the chemical freeze-out (when inelastic collision ceases) and the kinetic freeze

out (when elastic collision ceases). The daughter particles - K and π can interact

with the medium particles which can affect the K∗0 yield. These are called in-medium

effects classified into two categories - Rescattering and Regeneration. Owing to short

lifetime, the characteristic properties such as mass, width, yield and transverse mo-

mentum spectra of K∗0 is very sensitive to the dynamics and in-medium effects. In

rescattering the daughter particles can undergo elastic scattering with other hadrons
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present in the medium and loose its energy or momentum. We cannot reconstruct

back the resonance which leads to signal loss. On the other hand, in regeneration the

pions and kaons in the medium can re-generate K∗0 via pseudo-elastic interactions

(Kπ → K∗0 → Kπ). This regeneration process leads to gain in K∗0 signal. We have

tried to model these in-medium effects in a Mathematica code to obtain K∗0 as a

function of hadronic cascade time, τHC .

First we have studied the properties of some of the important resonances in heavy

ion collision like their lifetimes, mass, decay channels and branching ratios. We de-

rived the expression for invariant mass of the resonance for a two-body decay. Then

we derived the cross-section expression of the resonance. We solved the Quantum

Scattering Theory problem of the resonance scattering using Partial Wave Analy-

sis method and Phase shift method to obtain the Breit-Wigner distribution for the

resonance cross-section. The invariant mass distribution which corresponds to cross-

section distribution will also follow the Breit-Wigner distribution.

To carry out the simulations of the heavy ion collision we studied and used A

Multi-Phase Transport (AMPT) model. We carried out the study of K∗0 production

using AMPT model. The invariant mass distribution of the K∗0 was obtained and

fitted with a sum of Breit-Wigner and a linear background function to obtain the mass,

width and yield of K∗0. In the AMPT model one can vary the termination time of

hadronic cascade using a paramater - ”NTMAX”. Larger the hadronic cascade time,

more is the re-scattering among the decay daughters (πK) of the K∗0 meson. We

observed that reconstructed K∗0 signal is lost with the increase in hadronic cascade

time. The reason for this decrease in signal can be found be studying the systematics

of the in-medium effects.

We derived the kinetics and rate equations for Rescattering and Regeneration for
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the general resonance decay R → A + B. The solution of the rate equations are

calculated. We derived the time dependence of the reaction rates. The rate equation

solutions and the time dependent reaction rates were then used to develop a model

using Mathematica coding to demonstrate the effects of rescattering and regeneration

on the time evolution of the K∗0 yield. The plot obtained from the code shows the

decrease in K∗0 ratio with τ (time elapsed after Chemical Freeze-out). This model

explains our observation of the decrease in reconstructed K∗0 signal as a function of

τHC in the AMPT analysis and confirms the effect of rescattering and regeneration

on the resonance yield. This model is very significant because using this model we

can calculate the hadron gas lifetime in experiments. From the experimental data

K∗0 number ratios at different collision energies can be obtained and compared with

our model plot to get the corresponding τHC .

After studying K∗0 resonance using simulations, next we want to analyse K∗0

resonance production and properties is experimental data using the model and algo-

rithm used in simulation. So, the second part involves experimental data analysis of

U-U collision data of STAR at center of mass energy of 193 GeV (
√
sNN = 193GeV ).

The analysis was done to get the invariant mass distribution of K∗0 from experiment

and fitted with Breit-Wigner function to obtain different parameters like the mass,

yield and width of the resonance to verify the results obtained from simulation. The

results obtained were close to the PDG values, so the analysis is quite efficient. Fi-

nally we studied ”Elliptic flow” (v2)of K∗0, which is a very important property of

the resonance. Elliptic flow gives the experimental measurement of the momentum

anisotropies produced in the collective flow of the particle. The plot of v2 as a func-

tion of pT for minimum-bias was obtained. v2 low for low pT and increases with pT

and finally saturates for high pT . The non-zero value of v2 confirms the presence of
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anisotropy in collective flow of K∗0. The elliptic flow of K∗0 was then compared with

that of Φ which is also a meson resonance like K∗0 with mass close to K∗0. The plot

shows that v2 of both the particles are quite similar as expected which confirms the

efficiency of the analysis. To show the centrality dependance, v2 vs pT is plotted for

different centralities. Comparision of the plots shows that v2 increases with increase in

centrality. This confirms the presence of different degree of anisotropies for different

centralities. For central collisions, initial spatial anisotropy is less, so the momentum

anisotropy v2 is less. And for peripheral collisions, initial spatial anisotropy is more,

so the momentum anisotropy v2 is more. It was also observed that the difference in

v2 is more for central and mid-central collisions but v2 for mid-central and peripheral

collisions is very close. The reason is, for peripheral collisions, though the initial

spatial anisotropy is very high, but the yield of K∗0 is very small. So, the increase in

anisotropy is compensated by decrease in yield.
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Appendix A

A.1 APPENDIX - I

A.1.1 Macro - 1

Shell script for AMPT event generation in batch mode for 50000 events for Au-Au

collision at
√
sNN = 200 GeV. The output of this code are text files containing the

following information of all the produced particles - particle identification, mass,

position coordinates, momentum coordinates.

#!/bin/bash

random=2000

while [ "$random" -lt 2005 ]; do

cd /home/arabinda/AMPT/run

cp -r ../test $random

cd $random

make

sh exec &

sleep 5

echo $random’ complete!’

# random = $random + 1
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let "random+=1"

done

A.1.2 Macro - 2

Root Macro for analyising the produced particle information from the text files and

generating a root file having all the information organised in a tree structure.

#include<TTree.h>

#include<TRandom.h>

#include<iostream.h>

#include<math.h>

#include<stdio.h>

#include<fstream.h>

#include<map.h>

#include"TH2F.h"

#include"TCanvas.h"

#include"TLorentzVector.h"

#include"TROOT.h"

int makeAmptroot_50000()

{

//input file variables:

Int_t evn,tn,nov,npp,npt,nesp,ninesp,nest,ninest,pid,counter=0;

// for ampt.dat

Float_t px,py,pz,mass,X,Y,Z,t,b;

//for ampt.dat
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Int_t evn2, it, na, nb, nab, sr, stat, tpp;

Float_t nx, ny, zz, theta_p , phi_p , theta_t , phi_t , imp, psi;

//Booked variables in tree:

const Int_t mul = 90000;

const Int_t nucl = 600;

Int_t Event=0, Na, Nb ,Nab, Mult, Npartp, Npartt, Nesp,

Ninesp, Nest, Ninest;

Float_t Imp, Theta_p , Phi_p , Theta_t , Phi_t, Psi;

// event variables

Int_t Stat[nucl], PID[mul]; //particle variables

Float_t Nx[nucl], Ny[nucl], Nz[nucl], Px[mul], Py[mul], Pz[mul];

Float_t XX[mul], YY[mul], ZZ[mul], TT[mul], Mass[mul];

//particle variables

Char_t outfile[100];

//define a root file:----------------------------------------------

//sprintf(outfile,"AuAu_200_SM_10mb_folder%d.root",folder);

TFile *fampt = new TFile("AuAu_200_SM_for_50000_events.root",

"recreate");

TTree *tr = new TTree("tr","Reconst ntuple");

//Define event branches:-------------------------------------------

tr->Branch("Event", &Event,"Event/I");

tr->Branch("Mult", &Mult, "Mult/I");

// multiplicity = tracks

tr->Branch("Npartp",&Npartp,"Npartp/I");

tr->Branch("Npartt",&Npartt,"Npartt/I");

tr->Branch("Nesp", &Nesp, "Nesp/I");
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tr->Branch("Ninesp",&Ninesp, "Ninesp/I");

tr->Branch("Nest", &Nest, "Nest/I");

tr->Branch("Ninest",&Ninest, "Ninest/I");

tr->Branch("Imp",&Imp, "Imp/F");

tr->Branch("Na", &Na, "Na/I"); //Na = Projectile mass no.

tr->Branch("Nb", &Nb, "Nb/I"); //Nb = Target mass no.

tr->Branch("Nab",&Nab, "Nab/I");

tr->Branch("Psi",&Psi, "Psi/F");

//particle branches:

tr->Branch("Nx", &Nx, "Nx[Nab]/F"); // Nab = na+nb;

tr->Branch("Ny", &Ny, "Ny[Nab]/F");

tr->Branch("Nz", &Nz, "Nz[Nab]/F");

tr->Branch("Stat",&Stat,"Stat[Nab]/I");

tr->Branch("PID", &PID, "PID[Mult]/I");

tr->Branch("Px", &Px, "Px[Mult]/F");

tr->Branch("Py", &Py, "Py[Mult]/F");

tr->Branch("Pz", &Pz, "Pz[Mult]/F");

tr->Branch("Mass",&Mass,"Mass[Mult]/F");

tr->Branch("XX", &XX, "XX[Mult]/F");

tr->Branch("YY", &YY, "YY[Mult]/F");

tr->Branch("ZZ", &ZZ, "ZZ[Mult]/F");

tr->Branch("TT", &TT, "TT[Mult]/F");

//**************************************************************************************

cout<<"making .root file from .dat file..."<<endl;

ifstream infile[3000];

ifstream infile2[3000];
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// infile2 = npart-xy.dat

char *fname = new char[100];

char *fname2 = new char[100];

for(int fid=2000; fid<2015; fid++) //Loop on folder;

usually one root file for each folder

{//1 folder loop

sprintf(fname,"%d/ana/ampt.dat",fid);

sprintf(fname2,"%d/ana/npart-xy.dat",fid);

infile[fid].open(fname);

infile2[fid].open(fname2);

while(infile2[fid])

{//2 event loop

//infile[fid]>>evn>>tn>>nov>>b>>npp>>npt>>nesp>>

ninesp>>nest>>ninest>>psi;

infile[fid]>>evn>>tn>>nov>>b>>npp>>npt>>nesp>>ninesp

>>nest>>ninest; // for AMPT without psi

infile2[fid]>>evn2>>it>>na>>nb>>imp;

//infile2[fid]>>evn2>>it>>na>>theta_p>>phi_p>>nb>>theta_t

>>phi_t>>imp;

if(infile2[fid].eof()) break;

if(infile[fid].eof()) break;

//cout<<"No of particles in "<<evn<<" event = "<<nov<<endl;

Event = Event+1;

Mult = nov;

Imp = imp;
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Npartp = npp;

Npartt = npt; tpp = npp+npt;

Nesp = nesp;

Ninesp = ninesp;

Nest = nest;

Ninest = ninest ;

Na = na;

Nb = nb; nab = na+nb;

Nab = nab;

Psi = psi;

//for U+U only:

Theta_p = theta_p;

Phi_p = phi_p;

Theta_t = theta_t;

Phi_t = phi_t;

//****************************ampt.dat particle loop**************

for(int j=0;j<nov;j++) //particle loop

{

infile[fid]>>pid>>px>>py>>pz>>mass>>X>>Y>>Z>>t;

Px[j] = px;

Py[j] = py;

Pz[j] = pz;

Mass[j] = mass;

PID[j] = pid;

XX[j] = X;
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YY[j] = Y;

ZZ[j] = Z;

TT[j] = t;

}

//***************************ampt.dat particle loop ends**************

//~~~~~~~~~~~ npart-xy.dat loop ~~~~~~~~~~~~~~~~~~~

for(int k=0;k<nab;k++)

{

infile2[fid]>>nx>>ny>>sr>>stat>>zz>>theta_p>>phi_p;

Nx[k] = nx;

Ny[k] = ny;

Nz[k] = zz;

Stat[k] = stat;

}

//~~~~~~~~~~~npart-xy.dat loop ends~~~~~~~~~~~~~~~~~~~~~

if(evn!=evn2) {

cout<<"..Error.Event mismatch... evn= "<<evn<<"\txy-ev= "

<<evn2<<" f_id= "<<fid<<endl;

break;

}

tr->Fill();

if(Event%100==0)

{

cout<<"am= "<<evn<<" xy-ev= "<<evn2<<" f_id= "<<fid<<" Mul= "
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<<Mult<<"\tnpart="<<tpp<<endl;

}

}//2 event loop end

}//1 folder loop end

fampt->cd();

tr->Write();

fampt->Close();

cout<<" Tree written succesfully "<<endl;

return 0;

}//main end

A.1.3 Macro - 3

Root Macro for calculating the invariant mass and generating for unlike sign and like

sign distributions.

#define my_analysis_50000_cxx

#include "my_analysis_50000.h"

#include <TH1.h>

#include <TH2.h>

#include <TH3.h>

#include <TStyle.h>

#include <TCanvas.h>

void my_analysis_50000::Loop()
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{

if (fChain == 0) return;

Long64_t nentries = fChain->GetEntriesFast();

Long64_t nevn = fChain->GetEntries();

Long64_t nbytes = 0, nb = 0;

TVector3 aTrack2;

TVector3 aTrack1;

TVector3 aTrack;

TVector3 aTrack21;

TVector3 aTrack22;

TVector3 aTrack23;

TVector3 aTrack24;

Float_t pi=3.14159;

TH1F *hKStarMInv_pp = new TH1F("hKStarMInv_pp","Inv mass

dist K+ Pi+",900,0.6,1.5);

TH1F *hKStar_pt_pp = new TH1F("hKStar_pt_pp","Transverse

momentum dist K+ Pi+",100,0,10);

TH1F *hKStar_phi_pp = new TH1F("hKStar_phi_pp","Phi dist K+

Pi+",800,-7,7);

TH1F *hKStarMInv_mm = new TH1F("hKStarMInv_mm","Inv mass

dist K- Pi-",900,0.6,1.5);

TH1F *hKStar_pt_mm = new TH1F("hKStar_pt_mm","Transverse

momentum dist K- Pi-",100,0,10);

TH1F *hKStar_phi_mm = new TH1F("hKStar_phi_mm","Phi dist

dist K- Pi-",800,-7,7);

TH1F *hKStarMInv_pm1 = new TH1F("hKStarMInv_pm1","Inv mass
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dist K+ Pi-",900,0.6,1.5);

TH1F *hKStar_pt_pm1 = new TH1F("hKStar_pt_pp","Transverse

momentum dist K+ Pi-",100,0,10);

TH1F *hKStar_phi_pm1 = new TH1F("hKStar_phi_pp","Phi dist

dist K+ Pi-",800,-7,7);

TH1F *hKStarMInv_pm2 = new TH1F("hKStarMInv_pm2","Inv mass

dist K- Pi+",900,0.6,1.5);

TH1F *hKStar_pt_pm2 = new TH1F("hKStar_pt_pm2","Transverse

momentum dist K- Pi+",100,0,10);

TH1F *hKStar_phi_pm2 = new TH1F("hKStar_phi_pm2","Phi dist

dist K- Pi+",800,-7,7);

TH1F *himp = new TH1F("himp", "imp param",2000, 0., 20.);

// These variables are re-defined

Float_t b =0.0;

Int_t mul=0;

Int_t evn=0; //rihan

Int_t countevent = 0;

Int_t a=0;

Int_t countentry = 0;

Int_t count1=0,count2=0,count3=0;

// float v2sine = 0;

cout<<" Ampt_phiv2 program Starts for "<<nevn<<" Events.."<<endl;

// Event Loop starts----------------------------------------

for (Long64_t jentry=0; jentry<nentries;jentry++)

// for (Long64_t jentry=0; jentry<10000 ;jentry++)

{//event loop
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Long64_t ientry = LoadTree(jentry);

if (ientry < 0) break;

nb = fChain->GetEntry(jentry); nbytes += nb;

evn++; //rihan

// if(evn==1001) continue;

b = Imp; //Impact;

//Int_t npart = Event_NpartP + Event_NpartT;

Int_t npart = Npartp+ Npartt; // Npart;

if(evn%1000==0)

cout << "---- Processing event # " <<evn<<"\tmult = "<<mul

<<"\tnpart = "<<npart<<endl;

//select centrality

mul = Mult; //refmult;

//TVector3 aTrack;

Double_t EK_pipl[10000]={0.},EK_kmn[10000]={0.};

// declearation for K* mass

Double_t EK_pimn[10000]={0.},EK_kpl[10000]={0.};

// declearation for K* mass

Int_t g=0,h=0;

Int_t i=0,j=0;

Double_t px_pipl[10000],py_pipl[10000],pz_pipl[10000];

Double_t px_pimn[10000],py_pimn[10000],pz_pimn[10000];

Double_t px_kpl[10000],py_kpl[10000],pz_kpl[10000];

Double_t px_kmn[10000],py_kmn[10000],pz_kmn[10000];

himp->Fill(b);

//TVector3 aTrack1;
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//2nd particle loop starts

for(Int_t tr=0; tr<mul; tr++)

{

aTrack1.SetXYZ(Px[tr],Py[tr],Pz[tr]);

count1++;

Float_t pt = aTrack1.Perp();

if(pt==0.0) continue;

count2++;

Float_t eta2 = aTrack1.Eta();

if(TMath::Abs(eta2) > 1.0) continue;

count3++;

if(PID[tr] == 211)

{

EK_pipl[g] = pow((Px[tr]*Px[tr]+Py[tr]*Py[tr]+Pz[tr]*Pz[tr]

+ Mass[tr]*Mass[tr]),0.5);

px_pipl[g]=Px[tr];

py_pipl[g]=Py[tr];

pz_pipl[g]=Pz[tr];

g++;

}//pion plus selection ends

//pion minus selection

//TVector3 aTrackpimn;

if(PID[tr] == -211)

{

EK_pimn[h] = pow((Px[tr]*Px[tr]+Py[tr]*Py[tr]+Pz[tr]*Pz[tr]

+ Mass[tr]*Mass[tr]),0.5);
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px_pimn[h]=Px[tr];

py_pimn[h]=Py[tr];

pz_pimn[h]=Pz[tr];

h++;

//cout <<"pi- selctd" << Px[tr] << " "<<Py[tr]<< " "<<Pz[tr]

<<" " <<Mass[tr]<<endl;

}//pion minus selection ends

//kaon plus selection

//TVector3 aTrackkpl;

if(PID[tr] == 321)

{

EK_kpl[i] = pow((Px[tr]*Px[tr]+Py[tr]*Py[tr]+Pz[tr]*Pz[tr]

+ Mass[tr]*Mass[tr]),0.5);

px_kpl[i]=Px[tr];

py_kpl[i]=Py[tr];

pz_kpl[i]=Pz[tr];

i++;

}//kaon plus selection ends

//kaon minus selection

//TVector3 aTrackpimn;

if(PID[tr] == -321)

{

//aTrackkmn.SetXYZ(Px[tr],Py[tr],Pz[tr]);

//Float_t ptkmn = aTrackkmn.Pt();

//Float_t phikmn = aTrackkmn.Phi();

//Float_t etakmn = aTrackkmn.Eta();
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EK_kmn[j] = pow((Px[tr]*Px[tr]+Py[tr]*Py[tr]+Pz[tr]*Pz[tr]

+ Mass[tr]*Mass[tr]),0.5);

px_kmn[j]=Px[tr];

py_kmn[j]=Py[tr];

pz_kmn[j]=Pz[tr];

j++;

//cout <<"K- selctd " << Px[tr] << " "<<Py[tr]<< " "

<<Pz[tr]<<" " <<Mass[tr]<<endl;

}//kaon minus selection ends

}//2nd particle loop ends

//TVector3 aTrack2;

//same event calculation K+ Pi-

for(Int_t m=0; m<h; m++)

{

for(Int_t l=0; l<i; l++)

{

aTrack21.SetXYZ((px_pimn[m]+px_kpl[l]),(py_pimn[m]+

py_kpl[l]),(pz_pimn[m]+pz_kpl[l]));

Double_t phi_pm1 = aTrack21.Phi();

Double_t pt_pm1 = aTrack21.Pt();

Double_t eta_pm1 =aTrack21.Eta();

Double_t KStarInvM_pm1 = pow((pow((EK_pimn[m]+

EK_kpl[l]),2) - (pow((px_pimn[m]+px_kpl[l]),2)+pow

((py_pimn[m]+py_kpl[l]),2) +pow((pz_pimn[m]+pz_kpl[l]),

2))),0.5);

//hKStarMInv_pm1->Fill(KStarInvM_pm1,pt_pm1,phi_pm1);
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hKStarMInv_pm1->Fill(KStarInvM_pm1);

hKStar_pt_pm1->Fill(pt_pm1);

hKStar_phi_pm1->Fill(phi_pm1);

//cout <<"K+ Pi- selctd" <<endl;

}//l loop

}//m loop same event loop ends K+ Pi-

//same event calculation K- Pi+

for(Int_t m=0; m<g; m++)

{

for(Int_t l=0; l<j; l++)

{

aTrack22.SetXYZ((px_pipl[m]+px_kmn[l]),(py_pipl[m]

+py_kmn[l]),(pz_pipl[m]+pz_kmn[l]));

Double_t phi_pm2 = aTrack22.Phi();

Double_t pt_pm2 = aTrack22.Pt();

Double_t eta_pm2 =aTrack22.Eta();

Double_t KStarInvM_pm2 = pow((pow((EK_pipl[m]

+EK_kmn[l]),2) - (pow((px_pipl[m]+px_kmn[l]),2)+

pow((py_pipl[m]+py_kmn[l]),2) +pow((pz_pipl[m]+

pz_kmn[l]),2))),0.5);

//hKStarMInv_pm2->Fill(KStarInvM_pm2,pt_pm2,phi_pm2);

hKStarMInv_pm2->Fill(KStarInvM_pm2);

hKStar_pt_pm2->Fill(pt_pm2);

hKStar_phi_pm2->Fill(phi_pm2);

//cout <<"K- Pi+ selctd" <<endl;
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}//l loop

}//m loop same event loop ends K- Pi+

//for plus plus invariant mass

//same event calculation K+ Pi+

for(Int_t m=0; m<g; m++)

{

for(Int_t l=0; l<i; l++)

{

aTrack23.SetXYZ((px_pipl[m]+px_kpl[l]),(py_pipl[m]+py_kpl[l]),

(pz_pipl[m]+pz_kpl[l]));

Double_t phi_pp = aTrack23.Phi();

Double_t pt_pp = aTrack23.Pt();

Double_t eta_pp =aTrack23.Eta();

Double_t KStarInvM_pp = pow((pow((EK_pipl[m]+EK_kpl[l])

,2) - (pow((px_pipl[m]+px_kpl[l]),2)+pow((py_pipl[m]

+py_kpl[l]),2) +pow((pz_pipl[m]+pz_kpl[l]),2))),0.5);

hKStarMInv_pp->Fill(KStarInvM_pp);

hKStar_pt_pp->Fill(pt_pp);

hKStar_phi_pp->Fill(phi_pp);

//cout <<"K+ Pi+ selctd" <<endl;

}//l loop

}//m loop same event loop ends K+ Pi+

//for minus minus invariant mass

//same event calculation K- Pi-

for(Int_t m=0; m<h; m++)

{
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for(Int_t l=0; l<j; l++)

{

aTrack24.SetXYZ((px_pimn[m]+px_kmn[l]),(py_pimn[m]

+py_kmn[l]),(pz_pimn[m]+pz_kmn[l]));

Double_t phi_mm = aTrack24.Phi();

Double_t pt_mm = aTrack24.Pt();

Double_t eta_mm =aTrack24.Eta();

Double_t KStarInvM_mm = pow((pow((EK_pimn[m]+

EK_kmn[l]),2) - (pow((px_pimn[m]+px_kmn[l]),2)+

pow((py_pimn[m]+py_kmn[l]),2) +pow((pz_pimn[m]+

pz_kmn[l]),2))),0.5) ;

hKStarMInv_mm->Fill(KStarInvM_mm);

hKStar_pt_mm->Fill(pt_mm);

hKStar_phi_mm->Fill(phi_mm);

}//l loop

}//m loop same event loop ends K- Pi-

} // Event loop ends

cout<<" Total Entries = "<<count1<<endl;

cout<<" Entries without pt=0, = "<<count2<<endl;

cout<<" Entries without pt=0 and eta<1 = "<<count3<<endl;

TFile *f = new TFile("Ampt_phi_v2_50000.root","RECREATE");

f->cd();

hKStarMInv_pp->Write();

hKStarMInv_mm->Write();

hKStarMInv_pm1->Write();

hKStarMInv_pm2->Write();
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himp->Write();

f->Close();

cout<<" Program End... EXIT...\n";

}

A.1.4 Macro - 4

Root Macro for calculating the signal distribution, plotting it and fitting with a Breit-

Wigner distribution function.

#include <iostream>

#include <TObject.h>

#include <TTree.h>

#include <TFile.h>

#include <TCanvas.h>

#include <TH1F.h>

#include <TH2F.h>

#include <TPaveText.h>

#include <TStyle.h>

#include <TPaletteAxis.h>

#include <TColor.h>

#include <TF1.h>

#include <TMath.h>

void plot()

{
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gStyle->SetOptFit(1);

gStyle->SetOptStat("e");

//put the fit range here

Float_t FitMin = 0.7;

Float_t FitMax = 1.15;

TFile *f=new TFile("Ampt_phi_v2_50000.root","READ");

TH1F *hist_pp=(TH1F*)f->Get("hKStarMInv_pp");

TH1F *hist_mm=(TH1F*)f->Get("hKStarMInv_mm");

TH1F *hist_pm1=(TH1F*)f->Get("hKStarMInv_pm1");

TH1F *hist_pm2=(TH1F*)f->Get("hKStarMInv_pm2");

hist_pp->Sumw2();

hist_mm->Sumw2();

hist_pm1->Sumw2();

hist_pm2->Sumw2();

TCanvas *Can1=new TCanvas("Can1","Unlike sign Histograms"

,100,100,1000,500);

TCanvas *Can2=new TCanvas("Can2","Like Sign Histograms",

100,100,1000,500);

TH1F *hist_Sig=(TH1F*)hist_pm1->Clone(); //Cloning

hist_Sig->SetName("hist_Sig");

hist_Sig->Add(hist_pm2,1);

hist_pp->Add(hist_mm,1);

Can1->cd();

hist_Sig->SetTitle("Invariant mass of K^{+} #pi^{-} and
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K^{-} #pi^{+}");

hist_Sig->GetXaxis()->SetTitle("Invariant mass

(in GeV/c^{2})");

hist_Sig->GetXaxis()->CenterTitle();

hist_Sig->GetYaxis()->SetTitle("Events");

hist_Sig->GetYaxis()->CenterTitle();

hist_Sig->SetMarkerStyle(3);

hist_Sig->Draw("L");

Can2->cd();

hist_pp->SetTitle("Invariant mass of K^{+} #pi^{+}

and K^{-} #pi^{-}");

hist_pp->GetXaxis()->SetTitle("Invariant mass

(in GeV/c^{2})");

hist_pp->GetXaxis()->CenterTitle();

hist_pp->GetYaxis()->SetTitle("Events");

hist_pp->GetYaxis()->CenterTitle();

hist_pp->SetMarkerStyle(3);

hist_pp->Draw("L");

TH1F *hist_Sig2=(TH1F*)hist_Sig->Clone(); //Cloning

hist_Sig2->SetName("hist_Sig2");

hist_Sig2->Add(hist_pp,-1);

TCanvas *Can3=new TCanvas("Can3","Histogram for Signal",

100,100,1000,500);

Can3->cd();
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hist_Sig2->SetTitle("K* Signal Distribution for NTMAX = 3");

hist_Sig2->Rebin(10);

hist_Sig2->GetXaxis()->SetRangeUser(0.6,1.2);

hist_Sig2->GetXaxis()->SetTitle("Invariant mass

(in GeV/c^{2})");

hist_Sig2->GetXaxis()->CenterTitle();

hist_Sig2->GetYaxis()->SetTitle("Events");

hist_Sig2->GetYaxis()->CenterTitle();

hist_Sig2->Draw();

hist_Sig2->SetMarkerStyle(24);

//Function is Breit Wigner + linear residual background

(see "SBW" below)

TF1 *funFit;

funFit = new TF1("funFit",SBW, FitMin, FitMax, 5);

funFit->SetParNames("Yield","Mass","Width","Slope","Const");

funFit->SetParameters(4000,0.890,0.05,-5000,6000);

funFit->SetParLimits(0,1.0e+0,1.0e+10);

funFit->SetParLimits(1,0.88,0.91);

funFit->SetParLimits(2,0.047,0.055);

//funFit->FixParameter(1,0.896);

//funFit->FixParameter(2,0.05);

hist_Sig2->Fit(funFit,"ERI");

cout << "Chi2/NDF "<<funFit->GetChisquare()

/funFit->GetNDF()<<endl;

//this is to draw the limear backgroud
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TF1 *background;

background = new TF1("background",Poly1, FitMin,

FitMax, 2);

background->SetParameters(funFit->GetParameter(4),

funFit->GetParameter(3));

background->SetLineColor(kBlue);

background->SetLineStyle(2);

background->Draw("same l");

cout<<"Fitted Parameters : \n\n"<<endl;

cout<<"Yield = "<<funFit->GetParameter(0)<<" +-

"<<funFit->GetParError(0)<<endl;

cout<<"Mass = "<<funFit->GetParameter(1)<<" +-

"<<funFit->GetParError(1)<<endl;

cout<<"WIdth = "<<funFit->GetParameter(2)<<" +-

"<<funFit->GetParError(2)<<endl;

cout<<"Linear Bkg Slope = "<<funFit->GetParameter(3)<<"

+- "<<funFit->GetParError(3)<<endl;

cout<<"Linear Bkg Intercept = "<<funFit->GetParameter(4)

<<" +- "<<funFit->GetParError(4)<<endl;

}

Double_t SBW(Double_t *x, Double_t *par)

{

//(BreitWigner + (A + B*M)

return par[0]*par[2]*0.001*10/(2*3.14159)/((x[0]-par[1])

**2+par[2]**2/4.) + par[4]+par[3]*x[0];
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}

Double_t Poly1(Double_t *x, Double_t *par)

{

return par[0]+par[1]*x[0];

}

A.1.5 Macro - 5

Root Macro for plotting the yield dependence on τHC .

#include <iostream>

#include <TObject.h>

#include <TTree.h>

#include <TFile.h>

#include <TCanvas.h>

#include <TH1F.h>

#include <TH2F.h>

#include <TPaveText.h>

#include <TStyle.h>

#include <TPaletteAxis.h>

#include <TColor.h>

#include <TF1.h>

#include <TMath.h>

void compare_plot()

{
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gStyle->SetOptStat("");

//put the fit range here

Float_t FitMin = 0.7;

Float_t FitMax = 1.15;

TFile *f=new TFile("compare_plot.root","READ");

TF1 *fit_5=(TF1*)f->Get("signal_Ntmax5");

TF1 *fit_10=(TF1*)f->Get("signal_Ntmax10");

TF1 *fit_20=(TF1*)f->Get("signal_Ntmax20");

TF1 *fit_30=(TF1*)f->Get("signal_Ntmax30");

TF1 *fit_40=(TF1*)f->Get("signal_Ntmax40");

TF1 *fit_150=(TF1*)f->Get("signal_Ntmax150");

TCanvas *Can2=new TCanvas("Can2","Histograms for K* Signal

at different #tau"

,100,100,1000,500);

Can2->cd();

fit_5->SetTitle("Effect of Fireball Lifetime on Yield");

fit_5->GetXaxis()->SetRangeUser(0.75,1.05);

fit_5->GetXaxis()->SetTitle("Invariant mass (in GeV/c^{2})");

fit_5->GetYaxis()->SetTitle("Events");

fit_5->GetXaxis()->CenterTitle();

fit_5->GetYaxis()->CenterTitle();

fit_5->Draw();

fit_10->Draw("same");
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fit_20->Draw("same");

fit_30->Draw("same");

fit_40->Draw("same");

fit_5->SetLineColor(2);

fit_10->SetLineColor(3);

fit_20->SetLineColor(4);

fit_30->SetLineColor(6);

fit_40->SetLineColor(7);

TLegend *leg=new TLegend(0.65,0.5,0.89,0.8);

leg->AddEntry(fit_5,"for #tau = 1 fm/c","L");

leg->AddEntry(fit_10,"for #tau = 2 fm/c","L");

leg->AddEntry(fit_20,"for #tau = 4 fm/c","L");

leg->AddEntry(fit_30,"for #tau = 6 fm/c","L");

leg->AddEntry(fit_40,"for #tau = 8 fm/c","L");

leg->Draw("same");

}

A.2 APPENDIX - II

A.2.1 Mathematica Code - 1

Mathematica code for modeling of rescattering and regeneration.

(* rescatter estimates the change in the number of resonance R

due to rescattering and regeneration effect as R moves through

hot hadronic medium at the LHC energies where muB=0. The medium
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is assumed to be made of pi K and N*)

(* All quantities in the entire code if not mentioned are in MeV *)

(* Setting some numbers *)

(* 25*10^(-7) is the conversion from mb to MeV^(-2)*)

x=20 25 10^(-7);

y=40 25 10^(-7);

(* Cross sections: for eg. sigmapipi

= cross section between pi pi *)

sigmapipi=x;

sigmapiK=x;

sigmapiN=y;

sigmaKpi=sigmapiK;

sigmaKK=x;

sigmaKN=y;

(* some functions *)

mat={};

(* number density *)

Density[g_,mass_,T_]:=g/(2 Pi^2) mass^2 T N[BesselK[2,mass/T]];

(* Rate of scattering = crossection*(no. of scatterers)

*velocity *)

RateAKFO[sigmaApi_,sigmaAkaon_,sigmaAnucleon_,densitypion_

,densitykaon_,

densitynucleon_,R_,v_,vA_,t1_,t2_]:=(sigmaApi densitypion
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+sigmaAkaon

densitykaon+sigmaAnucleon densitynucleon)

(R/(R+v (t2+t1)/2))^3 vA;

(* Main function *)

(* only decay (100% opaque fireball, thus K* number depends

directly

on number of decays that take place) *)

rescatteronlydecay[Rdecay_,NR0_,t_]:=NR0 Exp[-Rdecay t];

(* realistic decay, rescatter, regeneration *)

rescatter[Rmass_, Amass_,Bmass_,Rdecay_,esigmaApi_,esigmaAkaon_

,esigmaAnucleon_,esigmaBpi_,

esigmaBkaon_,esigmaBnucleon_,inesigmaApi_,inesigmaAkaon_,

inesigmaAnucleon_,

inesigmaBpi_,inesigmaBkaon_,inesigmaBnucleon_,NR0_,VolumeCFO_

,TCFO_,t_,tint_]

:=Module[{pstar,vflow,vA,vB,Radius,densitypion,densitykaon

,densitynucleon,eRateA,

eRateB,ineRateA,ineRateB,NRt1,NRt2,NAt1,NAt2,NBt1,NBt2,NA1

,NA2,NB1,NB2,t1,t2,k1,

k2,k3,k4,k5,kA,kB,nrt},

pstar=1/(2 Rmass)Sqrt[(Rmass^2-(Amass+Bmass)^2)

(Rmass^2-(Amass-Bmass)^2)];

vflow=0.5;

vA=pstar/Amass;
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vB=pstar/Bmass;

Radius=(VolumeCFO/(4/3 Pi))^(1/3);

densitypion=Density[9,140,TCFO];

densitykaon=Density[8,495,TCFO];

densitynucleon=Density[40,1000,TCFO];

eRateA[ta_,tb_]:=RateAKFO[esigmaApi,esigmaAkaon,

esigmaAnucleon,

densitypion,densitykaon,densitynucleon,Radius

,vflow,vA,ta,tb];

eRateB[ta_,tb_]:=RateAKFO[esigmaBpi,

esigmaBkaon,esigmaBnucleon,

densitypion,densitykaon,densitynucleon,

Radius,vflow,vB,ta,tb];

(*check inelastic exprsn*)

ineRateA[ta_,tb_]:=RateAKFO[inesigmaApi,

inesigmaAkaon,inesigmaAnucleon

,densitypion,densitykaon,densitynucleon

,Radius,vflow,vA,ta,tb];

ineRateB[ta_,tb_]:=RateAKFO[inesigmaBpi,

inesigmaBkaon,inesigmaBnucleon,

densitypion,densitykaon,densitynucleon,

Radius,vflow,vB,ta,tb];

t1=0;

t2=tint;

NRt1=NR0;
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NAt1=0;

NBt1=0;

nrt={};

Do[

k1=Rdecay;

k2=eRateA[t1,t2];

k3=ineRateA[t1,t2];

k4=eRateB[t1,t2];

k5=ineRateB[t1,t2];

kA=k2+k3-k1;

kB=k4+k5-k1;

NA1=(NAt1/NRt1-k1/kA) Exp[kA t1];

NA2=k1/kA;

NB1=(NBt1/NRt1-k1/kB) Exp[kB t1];

NB2=k1/kB;

NRt2=NRt1 Exp[(-k1+k3 NA2+k5 NB2)

(t2-t1)-k3/kA NA1

(Exp[-kA t2]-Exp[-kA t1])-k5/kB NB1

(Exp[-kB t2]-Exp[-kB t1])];

NAt2=NRt2 ((NAt1/NRt1-k1/kA) Exp[-kA

(t2-t1)]+k1/kA);

NBt2=NRt2 ((NBt1/NRt1-k1/kB) Exp[-kB

(t2-t1)]+k1/kB);
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t1=t2;

t2=t2+tint;

NRt1=NRt2;

NAt1=NAt2;

NBt1=NBt2;

nrt=Join[nrt,{{200 t1,NRt1,NAt1,NBt1}}];

mat=Join[mat,{{200 t1,NRt1,NAt1,NBt1}}];

,{i,t/tint}];

{t1,NRt1,NAt1,NBt1,nrt}

];

kstarbyk1=rescatter[892, 140,496,50,sigmapipi

,sigmapiK,sigmapiN,sigmaKpi,

sigmaKK,sigmaKN,0,sigmapiK,0,sigmaKpi,0,0,1,

5 10^(-4),155,10/200,0.01/200];

(* Plotting *)

kstarbyk0pl=Plot[rescatteronlydecay[50,1,x/200]

,{x,0,10},PlotStyle->

{Black,Dashed}];

kstarbyk1pl=ListPlot[{Table[{kstarbyk1[[5,i,1]],

kstarbyk1[[5,i,2]]},{i,Length[kstarbyk1[[5]]]}],

Table[{kstarbyk1[[5,i,1]],kstarbyk1[[5,i,3]]},

{i,Length[kstarbyk1[[5]]]}],Table

[{kstarbyk1[[5,i,1]],

kstarbyk1[[5,i,4]]},{i,Length[kstarbyk1[[5]]]}],

Table[{kstarbyk1[[5,i,1]],kstarbyk1[[5,i,2]]
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+kstarbyk1[[5,i,3]]},{i,Length[kstarbyk1[[5]]]}]},

Joined->True,Frame->True,

FrameLabel->{"Time (in fm/c)","Ratio"},Axes->False,

PlotStyle->{Blue,Red,Green,Brown},PlotRange->{{0,10},

{0,1.5}}];

m1l=Graphics[{Red,Line[{{0,1},{0.2,1}}]}];

m2l=Graphics[{Blue,Line[{{0,1},{0.2,1}}]}];

m3l=Graphics[{Green,Line[{{0,1},{0.2,1}}]}];

m4l=Graphics[{Brown,Line[{{0,1},{0.2,1}}]}];

m5l=Graphics[{Black,Dashed,Line[{{0,1},{0.2,1}}]}];

(* Plot of normalised (with respect to Initial K* yield)

K*

and daughter pion and kaon with time elapsed since

chemical

freezeout *)

kstarratioplot=Show[kstarbyk1pl,kstarbyk0pl,Epilog->

{Inset[ "K^*+

Daughter \[Pi]",{6.5,1.35}],Inset[ m4l,{9,1.35}]

,Inset["K^*",

{7,1.25}],Inset[m2l,{9,1.25}],Inset["K^*

(100% opaque fireball)",

{6,1.15}],Inset[m5l,{9,1.15}],

Inset[ "Daughter K",{7,1.05}],Inset[m3l,{9,1.05}],

Inset[ "Daughter \[Pi]",{7,0.95}],Inset[m1l,{9,0.95}]}]
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Export["kstarratioplot.eps",kstarratioplot];

Export["F:\proj\Thesis project\Rescattering and regeneration

\out.txt",mat,"Table"]

A.2.2 Macro - 1

Root Macro for plotting results of Mathematica code and generate yield ratio vs τ

plot.

#include <iostream>

#include <TObject.h>

#include <TTree.h>

#include <TFile.h>

#include <TCanvas.h>

#include <TH1F.h>

#include <TH2F.h>

#include <TPaveText.h>

#include <TStyle.h>

#include <TPaletteAxis.h>

#include <TColor.h>

#include <TF1.h>

#include <TMath.h>

void plot_rescatter()

{

Int_t i=0;
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Double_t t[2000],NR[2000],NA[2000],NB[2000];

ifstream fin;

char *fname = new char[100];

sprintf(fname,"/home/arabinda/prog/out.txt");

fin.open(fname);

cout<<fname<<endl;

while(fin)

{

fin>>t[i]>>NR[i]>>NA[i]>>NB[i];

i++;

if(fin.eof()) break;

}

fin.close();

cout<<"Total data points = "<<i<<endl;

cout<<NA[i];

TGraph *graph1=new TGraph(i,t,NR);

graph1->SetTitle("Modeling of Rescattering and Regeneration");

graph1->GetYaxis()->SetRangeUser(0,1);

graph1->GetYaxis()->SetTitle("Ratio");

graph1->GetYaxis()->CenterTitle();

graph1->GetXaxis()->SetRangeUser(0,10);

graph1->GetXaxis()->SetTitle("Time (in fm/c)");

graph1->GetXaxis()->CenterTitle();

TGraph *graph2=new TGraph(i,t,NB);

TGraph *graph3=new TGraph(i,t,NA);

graph1->SetMarkerStyle(5);
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graph2->SetMarkerStyle(3);

graph3->SetMarkerStyle(3);

graph1->SetLineColor(kRed);

graph1->SetLineWidth(4);

graph2->SetLineColor(kBlue);

graph2->SetLineWidth(4);

graph3->SetLineColor(kGreen);

graph3->SetLineWidth(4);

TCanvas *Can1=new TCanvas("Can1","Histograms",100,100,1000,600);

Can1->cd();

graph1->Draw("AC");

graph2->Draw("same");

graph3->Draw("same");

TLegend *leg=new TLegend(0.7,0.8,0.89,0.6);

leg->AddEntry(graph1,"K^{*0}","L");

leg->AddEntry(graph2,"Daughter K","L");

leg->AddEntry(graph3,"Daughter #pi","L");

leg->Draw("same");

}

A.3 APPENDIX-III

A.3.1 Invariant Mass of K∗0

#define star_uu_193_new_cxx
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#include "star_uu_193_new.h"

#include <TH2.h>

#include <TStyle.h>

#include <TCanvas.h>

//Don’t change:

Int_t runID,Refmult,BBC_cons,ZDC_cons,centrality,ntrack;

Double_t vertexX,vertexY,vertexZ,VPD_vertexZ;

//Don’t change:

Int_t track_charge,track_nHitsFit,track_nHitsdEdx,track_ToFflag;

Double_t nsigma_pi,nsigma_k,nsigma_p,nsigma_e;

Double_t track_px,track_py,track_pz,track_dca,track_dEdx,track_beta;

Long64_t nEvent_total = 0;

Double_t m2,p,p2,fitratio,pt,eta1,m_k=0.493, m_pi=0.139;

TVector3 aTrack;

//Pion and kaon energy matrices

Double_t EK_pipl[50000]={0.},EK_pimn[50000]={0.};

Double_t EK_kmn[50000]={0.},EK_kpl[50000]={0.};

//Pion and kaon momentum matrices

Double_t px_pipl[50000],py_pipl[50000],pz_pipl[50000];

Double_t px_pimn[50000],py_pimn[50000],pz_pimn[50000];

Int_t charge_pipl[50000], charge_pimn[50000];

Double_t px_kpl[50000],py_kpl[50000],pz_kpl[50000];

Double_t px_kmn[50000],py_kmn[50000],pz_kmn[50000];

Int_t charge_kpl[50000], charge_kmn[50000];

void star_uu_193_new::Loop()

{
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TH1F *hRefMult=new TH1F("hRefMult","Reference Multiplicity",

1000,0.,1000);

TH1D *hKStarMInv_pp=new TH1D("hKStarMInv_pp","Inv mass dist

for K+ Pi+",900,0.6,1.5);

TH1D *hKStarMInv_pm=new TH1D("hKStarMInv_pm","Inv mass dist

for K+ Pi-",900,0.6,1.5);

TH1D *hKStarMInv_mp=new TH1D("hKStarMInv_mp","Inv mass dist

for K- Pi+",900,0.6,1.5);

TH1D *hKStarMInv_mm=new TH1D("hKStarMInv_mm","Inv mass dist

for K- Pi-",900,0.6,1.5);

TH1D *hNsigmapipl=new TH1D("hNsigmapipl","NSigma for pi+",

120,-3,3);

TH1D *hNsigmapimn=new TH1D("hNsigmapimn","NSigma for pi-",

120,-3,3);

TH1D *hcharge_pipl=new TH1D("hcharge_pipl","Charge for pi+",

10,-5,5);

TH1D *hcharge_pimn=new TH1D("hcharge_pimn","Charge for pi-"

,10,-5,5);

TH1D *hPt_kstar_unlike=new TH1D("hPt_kstar_unlike","K* Pt

distribution",100,0.0,10.0);

TH1D *hPt_kstar_like=new TH1D("hPt_kstar_like","K* Pt

distribution",100,0.0,10.0);

if (fChain == 0) return;

Long64_t nentries = fChain->GetEntriesFast();

Long64_t nbytes = 0, nb = 0;
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TStopwatch sw1,sw2;

sw1.Start(1);

sw2.Start(1);

//Event loop :

for (Long64_t jentry=0; jentry<nentries;jentry++)

{//event loop starts

Long64_t ientry = LoadTree(jentry);

if (ientry < 0) break;

nb = fChain->GetEntry(jentry); nbytes += nb;

runID = RunID;

Refmult = (int) Refm;

BBC = (int) BBC;

ZDC = (int) ZDC;

centrality = (int) Cent;

ntrack = (int) nTrack;

vertexX = (double) Vx;

vertexY = (double) Vy;

vertexZ = (double) Vz;

VPD_vertexZ = (double) VpdVz;

//Event Cuts

// if(centrality==0) continue;

if(TMath::Abs(vertexZ)>=30.) continue;

if(TMath::Abs(sqrt(vertexX*vertexX+vertexY*vertexY))

>=2.) continue;
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hRefMult->Fill(Refmult);

Int_t g=0,h=0,i=0,j=0;

for(int it=0;it<ntrack;it++){

track_px = (double) Px[it];

track_py = (double) Py[it];

track_pz = (double) Pz[it];

track_dca = (double) DCA[it];

track_beta = (double) Beta[it];

nsigma_pi = (double) nSigpi[it];

nsigma_k = (double) nSigk[it];

nsigma_p = (double) nSigp[it];

if(DEdx[it]>=0){

track_dEdx = (double) DEdx[it];

}

else if(DEdx[it]<0){

track_dEdx = (double) DEdx[it] * (-1.0);

}

track_charge = (int) Charge[it];

if(!track_charge) track_charge = -1.0;

track_nHitsFit = (int) nHits[it];

track_nHitsdEdx = (int) ndEdx[it];

track_ToFflag = (int) tofFlg[it];

if(track_nHitsFit<=15) continue;

if(TMath::Abs(track_charge)>1.) continue;

if(track_dca>3) continue;

aTrack.SetXYZ(track_px,track_py,track_pz);
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eta1=aTrack.Eta();

if(TMath::Abs(eta1)>0.5) continue;

pt=aTrack.Perp();

if(pt<=0.2 || pt>=10.0) continue;

p=aTrack.Mag();

p2=p*p;

m2=p2*((1/pow(track_beta,2))-1);

//now fill your hists/ do your thing here:

p2=pow(track_px,2)+pow(track_py,2)+pow(track_pz,2);

m2=p2*((1/pow(track_beta,2))-1);

aTrack.SetXYZ(track_px,track_py,track_pz);

pt=aTrack.Perp();

eta1=aTrack.Eta();

if(pt<=0.2 || pt>=10.0) continue;

if(TMath::Abs(eta1) >= 0.5) continue;

if(TMath::Abs(nsigma_pi)<2.0)

{

if(m2>0.010382 && m2<=0.029218) {

if(track_charge==1)

{// Pion plus selection starts

EK_pipl[g] = pow((p2+0.019321),0.5);

px_pipl[g]=track_px;

py_pipl[g]=track_py;

pz_pipl[g]=track_pz;

g++;

}// Pion plus selection ends
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if(track_charge==-1)

{// Pion minus selection starts

EK_pimn[h] = pow((p2+0.019321),0.5);

px_pimn[h]=track_px;

py_pimn[h]=track_py;

pz_pimn[h]=track_pz;

h++;

}// Pion minus selection ends

}

}//Pion selection ends

//Kaon selection

if(TMath::Abs(nsigma_k)<=2.0)

{

if(m2>=0.2104 && m2<=0.2796)

{

if(track_charge==1)

{// Kaon plus selection starts

EK_kpl[i] = pow((p2+0.243049),0.5);

px_kpl[i]=track_px;

py_kpl[i]=track_py;

pz_kpl[i]=track_pz;

//charge_kpl[i]=track_charge;

i++;

}// Kaon plus selection ends
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if(track_charge==-1)

{// Kaon minus selection starts

EK_kmn[j] = pow((p2+0.243049),0.5);

px_kmn[j]=track_px;

py_kmn[j]=track_py;

pz_kmn[j]=track_pz;

//charge_kmn[j]=track_charge;

j++;

}// Kaon minus selection ends

}

}//Kaon selection ends

}//track loop ends

//cout<<"g = "<<g<<" , h = "<<h<<" , i = "<<i<<" ,

j = "<<j<<endl;

//--------------------------------------------------------------

//K* reconstruction

//---------------------------------------------------------------

TLorentzVector Pion,Kaon,K_star;

//Unlike Sign

//Same event calculation for K+ pi-
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for(Int_t m=0; m<h; m++)

{

Pion.SetXYZM(px_pimn[m],py_pimn[m],pz_pimn[m],

m_pi);

Double_t pieta = Pion.PseudoRapidity();

for(Int_t l=0; l<i; l++)

{

Kaon.SetXYZM(px_kpl[l],py_kpl[l],pz_kpl[l],

m_k);

K_star=Kaon+Pion;

Double_t KStarInvM_pm = K_star.M();

pt=K_star.Pt();

hPt_kstar_unlike->Fill(pt);

eta1=K_star.PseudoRapidity();

hKStarMInv_pm->Fill(KStarInvM_pm);

}//l loop

}//m loop

//Same event calculation for K- pi+

for(Int_t m=0; m<g; m++)

{

Pion.SetXYZM(px_pipl[m],py_pipl[m],pz_pipl[m]

,m_pi);

Double_t pieta = Pion.PseudoRapidity();
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for(Int_t l=0; l<j; l++)

{

Kaon.SetXYZM(px_kmn[l],py_kmn[l],pz_kmn[l]

,m_k);

K_star=Kaon+Pion;

Double_t KStarInvM_mp = K_star.M();

pt=K_star.Pt();

hPt_kstar_unlike->Fill(pt);

eta1=K_star.PseudoRapidity();

hKStarMInv_mp->Fill(KStarInvM_mp);

}//l loop

}//m loop

//Like Sign

//Same event calculation for K+ pi+

for(Int_t m=0; m<g; m++)

{

Pion.SetXYZM(px_pipl[m],py_pipl[m],pz_pipl[m]

,m_pi);

for(Int_t l=0; l<i; l++)

{

//if(charge_pipl[m]+charge_kpl[l]==0)

continue;

Kaon.SetXYZM(px_kpl[l],py_kpl[l],pz_kpl[l
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],m_k);

K_star=Kaon+Pion;

Double_t KStarInvM_pp = K_star.M();

pt=K_star.Pt();

hPt_kstar_like->Fill(pt);

eta1=K_star.PseudoRapidity();

hKStarMInv_pp->Fill(KStarInvM_pp);

}//l loop

}//m loop

//Same event calculation for K- pi-

for(Int_t m=0; m<h; m++)

{

Pion.SetXYZM(px_pimn[m],py_pimn[m],pz_pimn[m],

m_pi);

for(Int_t l=0; l<j; l++)

{

//if(charge_pimn[m]+charge_kmn[l]==0)

continue;

Kaon.SetXYZM(px_kmn[l],py_kmn[l],pz_kmn[l]

,m_k);

K_star=Kaon+Pion;

Double_t KStarInvM_mm = K_star.M();

pt=K_star.Pt();
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hPt_kstar_like->Fill(pt);

eta1=K_star.PseudoRapidity();

hKStarMInv_mm->Fill(KStarInvM_mm);

}//l loop

}//m loop

nEvent_total++;

//screen print:

if(nEvent_total%3000==0)

{

cout<<" Analyzed Event = "<<nEvent_total<<" cent

= "<<centrality<<" ntrack = "<<ntrack<<endl;

sw2.Stop();

sw2.Print();

sw2.Start(1);

}

}//================event loop ends=======================;

// WriteHist();

cout<<" writing files......."<<endl;

f = new TFile(outfile,"recreate");
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f->cd();

hRefMult->Write();

hKStarMInv_pp->Write();

hKStarMInv_pm->Write();

hKStarMInv_mp->Write();

hKStarMInv_mm->Write();

hPt_kstar_unlike->Write();

hPt_kstar_like->Write();

f->Close();

cout<<"\n File written.\n ******** Events = "

<<nEvent_total<<"********\n"<<endl;

sw2.Stop();

sw1.Stop();

sw1.Print();

}//main code ends

A.3.2 Event Planes

#define star_uu_193_new_cxx

#include "star_uu_193_new.h"

#include <TH2.h>

#include <TStyle.h>

#include <TCanvas.h>

#include<TVector.h>
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#include "run.h"

Int_t runID,Refmult,BBC_cons,ZDC_cons,centrality,

ntrack;

Double_t vertexX,vertexY,vertexZ,VPD_vertexZ;

Int_t track_charge,track_nHitsFit,track_nHitsdEdx,

track_ToFflag;

Double_t nsigma_pi,nsigma_k,nsigma_p,nsigma_e;

Double_t track_px,track_py,track_pz,track_dca,track_dEdx

,track_beta;

Long64_t nEvent_total = 0;

Double_t m,m2,p2,x2,y2,qx,qy,qx_east,qy_east,qx_west,

qy_west,Psi2,

Psi2_east,Psi2_west,Phi,fitratio,pt,eta1,eta2;

Float_t pi=3.1416;

Int_t n_flag=783,index;

TVector3 aTrack;

TVector2 aTrack2,aTrack3;

char input_rootfile[250];

void star_uu_193_new::Loop()

{

sprintf(input_rootfile,"/Users/ranbirsingh/arabinda

/flow/output/event_planes/recenter/file_all.root");

cout<<"Input file joint = "<<input_rootfile<<endl;

TFile *f=new TFile(input_rootfile,"READ");

//Fullrange eta

TProfile2D *QX_fw=(TProfile2D*)f->Get("QX_fw");
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TProfile2D *QX_w=(TProfile2D*)f->Get("QX_w");

TProfile2D *QX_fe=(TProfile2D*)f->Get("QX_fe");

TProfile2D *QX_e=(TProfile2D*)f->Get("QX_e");

TProfile2D *QY_fw=(TProfile2D*)f->Get("QY_fw");

TProfile2D *QY_w=(TProfile2D*)f->Get("QY_w");

TProfile2D *QY_fe=(TProfile2D*)f->Get("QY_fe");

TProfile2D *QY_e=(TProfile2D*)f->Get("QY_e");

//Subrange eta

TProfile2D *QXs_fw=(TProfile2D*)f->Get("QXs_fw");

TProfile2D *QXs_w=(TProfile2D*)f->Get("QXs_w");

TProfile2D *QXs_fe=(TProfile2D*)f->Get("QXs_fe");

TProfile2D *QXs_e=(TProfile2D*)f->Get("QXs_e");

TProfile2D *QYs_fw=(TProfile2D*)f->Get("QYs_fw");

TProfile2D *QYs_w=(TProfile2D*)f->Get("QYs_w");

TProfile2D *QYs_fe=(TProfile2D*)f->Get("QYs_fe");

TProfile2D *QYs_e=(TProfile2D*)f->Get("QYs_e");

// define here:

TH1D *hPsi2=new TH1D("hPsi2","Event Plane Angle

#Psi_{2}",200,-1.,5.);

TH1D *hPsi2_east=new TH1D("hPsi2_east","Event Plane

Angle #Psi_{2} for #eta subrange(0.05 to 1.0)",200,-1.,5.);

TH1D *hPsi2_west=new TH1D("hPsi2_west","Event Plane

Angle #Psi_{2}for #eta subrange(-1.0 to-0.05 )",200,-1.0,5.);

TH2D *hQxQy=new TH2D("hQxQy","Histogram of Qx vs Qy

after recenter correction",500,-100.,100.,500,-100.,100.);

TH1F *hRefMult=new TH1F("hRefMult","Reference
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Multiplicity",1000,0.,1000);

//define TProfile for Shift correction factors

TProfile *Sin_corr=new TProfile("Sin_corr",

"Profile Histogram of Sin_corr vs i",25,0,25,-2.,2.);

TProfile *Cos_corr=new TProfile("Cos_corr",

"Profile Histogram of Cos_corr vs i",25,0,25,-2.,2.);

TProfile *Sin_corr_east=new TProfile

("Sin_corr_east","Profile Histogram of

Sin_corr_east vs i",25,0,25,-2.,2.);

TProfile *Cos_corr_east=new TProfile

("Cos_corr_east","Profile Histogram of Cos_corr_east

vs i",25,0,25,-2.,2.);

TProfile *Sin_corr_west=new TProfile("Sin_corr_west",

"Profile Histogram of Sin_corr_west vs i",25,0,25,-2.,2.);

TProfile *Cos_corr_west=new TProfile("Cos_corr_west",

"Profile Histogram of Cos_corr_west vs i",25,0,25,-2.,2.);

if (fChain == 0) return;

Long64_t nentries = fChain->GetEntriesFast();

Long64_t nbytes = 0, nb = 0;

TStopwatch sw1,sw2;

sw1.Start(1);

sw2.Start(1);

for (Long64_t jentry=0; jentry<nentries;jentry++)

{//event loop starts

Long64_t ientry = LoadTree(jentry);

if (ientry < 0) break;
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nb = fChain->GetEntry(jentry); nbytes += nb;

runID = RunID;

Refmult = (int) Refm;

BBC = (int) BBC;

ZDC = (int) ZDC;

centrality = (int) Cent;

ntrack = (int) nTrack;

vertexX = (double) Vx;

vertexY = (double) Vy;

vertexZ = (double) Vz;

VPD_vertexZ = (double) VpdVz;

for(Int_t j=0;j<n_flag;j++)

{

if(numbers[j]==runID)

index=j;

}

if(TMath::Abs(vertexZ)>=30.) continue;

if(TMath::Abs(sqrt(vertexX*vertexX+vertexY*vertexY)

)>=2.) continue;

hRefMult->Fill(Refmult);

hRunid->Fill(index);

qx=0,qy=0,qx_east=0,qy_east=0,qx_west=0,qy_west=0;

for(int it=0;it<ntrack;it++){

track_px = (double) Px[it];

track_py = (double) Py[it];

track_pz = (double) Pz[it];
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track_dca = (double) DCA[it];

track_beta = (double) Beta[it];

nsigma_pi = (double) nSigpi[it];

nsigma_k = (double) nSigk[it];

nsigma_p = (double) nSigp[it];

if(DEdx[it]>=0){

track_dEdx = (double) DEdx[it];

}

else if(DEdx[it]<0){

track_dEdx = (double) DEdx[it] * (-1.0);

}

track_charge = (int) Charge[it];

if(!track_charge) track_charge = -1.0;

track_nHitsFit = (int) nHits[it];

track_nHitsdEdx = (int) ndEdx[it];

track_ToFflag = (int) tofFlg[it];

if(track_nHitsFit<=15) continue;

if(TMath::Abs(track_charge)>1) continue;

if(track_dca>2) continue;

//now fill your hists do your thing here:

aTrack.SetXYZ(track_px,track_py,track_pz);

eta1=aTrack.Eta();

if(TMath::Abs(eta1)>1) continue;

pt=aTrack.Perp();

if(pt<=0.2 || pt>=2.0) continue;
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m=aTrack.Mag();

aTrack2.Set(track_px,track_py);

Phi=aTrack2.Phi();

if(Phi<0.)Phi=Phi+2*pi;

//hPhi->Fill(Phi);

//hEta->Fill(eta1);

Double_t qx_corr,qy_corr,qxs_corr,qys_corr;

if(eta1>=0.)

{

if(vertexZ>=0.)

{

qx_corr=QX_fe->GetBinContent(index+1,centrality+1);

qy_corr=QY_fe->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qx_corr=QX_e->GetBinContent(index+1,centrality+1);

qy_corr=QY_e->GetBinContent(index+1,centrality+1);

}

qx=qx+(pt*cos(2*Phi)-qx_corr);

qy=qy+(pt*sin(2*Phi)-qy_corr);

}

if(eta1<0.)

{

if(vertexZ>=0.)

{
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qx_corr=QX_w->GetBinContent(index+1,centrality+1);

qy_corr=QY_w->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qx_corr=QX_fw->GetBinContent(index+1,centrality+1);

qy_corr=QY_fw->GetBinContent(index+1,centrality+1);

}

qx=qx+(pt*cos(2*Phi)-qx_corr);

qy=qy+(pt*sin(2*Phi)-qy_corr);

}

//For subrange eta

if(eta1>0.05)

{

if(vertexZ>=0.)

{

qxs_corr=QXs_fe->GetBinContent(index+1,centrality+1);

qys_corr=QYs_fe->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qxs_corr=QXs_e->GetBinContent(index+1,centrality+1);

qys_corr=QYs_e->GetBinContent(index+1,centrality+1);

}

qx_east=qx_east+(pt*cos(2*Phi)-qxs_corr);

qy_east=qy_east+(pt*sin(2*Phi)-qys_corr);
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}

if(eta1<-0.05)

{

if(vertexZ>=0.)

{

qxs_corr=QXs_w->GetBinContent(index+1,centrality+1);

qys_corr=QYs_w->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qxs_corr=QXs_fw->GetBinContent(index+1,centrality+1);

qys_corr=QYs_fw->GetBinContent(index+1,centrality+1);

}

//qx_west=qx_west+(pt*cos(2*Phi));

//qy_west=qy_west+(pt*sin(2*Phi));

qx_west=qx_west+(pt*cos(2*Phi)-qxs_corr);

qy_west=qy_west+(pt*sin(2*Phi)-qys_corr);

}

}//track loop ends

aTrack3.Set(qx,qy);

Psi2=0.5*aTrack3.Phi();

aTrack3.Set(qx_east,qy_east);

Psi2_east=0.5*aTrack3.Phi();

aTrack3.Set(qx_west,qy_west);
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Psi2_west=0.5*aTrack3.Phi();

if(Psi2<0.)Psi2=Psi2+pi;

if(Psi2_east<0.)Psi2_east=Psi2_east+pi;

if(Psi2_west<0.)Psi2_west=Psi2_west+pi;

//Fill Histograms

hPsi2->Fill(Psi2);

hPsi2_east->Fill(Psi2_east);

hPsi2_west->Fill(Psi2_west);

hQxQy->Fill(qx,qy);

//Find Shift correction factors :

Int_t i;

for(i=1;i<21;i++)

{

// For fullrange eta

Sin_corr->Fill(i,sin(i*2*Psi2));

Cos_corr->Fill(i,cos(i*2*Psi2));

// For subrange eta

Sin_corr_east->Fill(i,sin(i*2*Psi2_east));

Cos_corr_east->Fill(i,cos(i*2*Psi2_east));

Sin_corr_west->Fill(i,sin(i*2*Psi2_west));

Cos_corr_west->Fill(i,cos(i*2*Psi2_west));

}
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nEvent_total++;

if(nEvent_total%20000==0)

{

cout<<" Analyzed Event = "<<nEvent_total<<"

cent = "<<centrality<<" ntrack = "<<ntrack<<

" runid = "<<index<<endl;

sw2.Stop();

sw2.Print();

sw2.Start(1);

}

}//================event loop ends=======================;

cout<<" writing files......."<<endl;

f = new TFile(outfile,"recreate");

f->cd();

hPsi2->Write();

hPsi2_west->Write();

hPsi2_east->Write();

Sin_corr->Write();

Cos_corr->Write();

Sin_corr_west->Write();

Cos_corr_west->Write();

Sin_corr_east->Write();

Cos_corr_east->Write();

hRefMult->Write();

hQxQy->Write();

f->Close();
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cout<<"\n File written.\n ******** Events = "

<<nEvent_total<<"********\n"<<endl;

sw2.Stop();

sw1.Stop();

sw1.Print();

}//main code ends

A.3.3 Elliptic flow

#define star_uu_193_new_cxx

#include "star_uu_193_new.h"

#include <TH2.h>

#include <TStyle.h>

#include <TCanvas.h>

#include<TVector.h>

#include<TVector2.h>

#include "run.h"

Int_t runID,Refmult,BBC_cons,ZDC_cons,

centrality,ntrack;

Double_t vertexX,vertexY,vertexZ,VPD_vertexZ;

Int_t track_charge,track_nHitsFit,track_

nHitsdEdx,track_ToFflag;

Double_t nsigma_pi,nsigma_k,nsigma_p,nsigma_e;

Double_t track_px,track_py,track_pz,track_dca,

track_dEdx,track_beta;

Long64_t nEvent_total = 0;

Double_t m,m2,p2,x2,y2,qx,qy,qx_east,qy_east,qx_west,
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qy_west,Psi2,Psi2_east,Psi2_west,Phi,fitratio,pt,eta1,eta2;

Float_t pi=3.1416;

Int_t n_flag=783,index;

TVector3 aTrack;

TVector2 aTrack2,aTrack3;

//Pion and kaon momentum matrices

Double_t px_pipl[5000],py_pipl[5000],pz_pipl[5000]

,qx_pipl[5000],qy_pipl[5000];

Double_t px_pimn[5000],py_pimn[5000],pz_pimn[5000]

,qx_pimn[5000],qy_pimn[5000];

Int_t flowid_pimn[5000], flowid_pipl[5000];

Double_t px_kpl[5000],py_kpl[5000],pz_kpl[5000],

qx_kpl[5000],qy_kpl[5000];

Double_t px_kmn[5000],py_kmn[5000],pz_kmn[5000],

qx_kmn[5000],qy_kmn[5000];

Int_t flowid_kmn[5000], flowid_kpl[5000];

//Resolution factors

Double_t Resfactors[9] =

{0.0478008,

0.109947,

0.22172,

0.356743,

0.464873,

0.511486,

0.470687,

0.362439,
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0.273237};

void star_uu_193_new::Loop()

{

// Histogram must be declared in header file:

char input_rootfile1[250];

char input_rootfile2[250];

char name1[250];

char name2[250];

char name3[250];

char name4[250];

char name5[250];

char title[250];

//Input Files

sprintf(input_rootfile1,"/Users/ranbirsingh/arabinda/

flow/output/event_planes/recenter/file_all.root");

sprintf(input_rootfile2,"/Users/ranbirsingh/arabinda/

flow/output/event_planes/shift/file_all.root");

cout<<"Input file joint for Recenter = "

<<input_rootfile1<<endl;

cout<<"Input file joint for Shift = "

<<input_rootfile2<<endl;

TFile *f=new TFile(input_rootfile1,"READ");

TProfile2D *QX_fw=(TProfile2D*)f->Get("QX_fw");

TProfile2D *QX_w=(TProfile2D*)f->Get("QX_w");

TProfile2D *QX_fe=(TProfile2D*)f->Get("QX_fe");

TProfile2D *QX_e=(TProfile2D*)f->Get("QX_e");
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TProfile2D *QY_fw=(TProfile2D*)f->Get("QY_fw");

TProfile2D *QY_w=(TProfile2D*)f->Get("QY_w");

TProfile2D *QY_fe=(TProfile2D*)f->Get("QY_fe");

TProfile2D *QY_e=(TProfile2D*)f->Get("QY_e");

TProfile2D *QXs_fw=(TProfile2D*)f->Get("QXs_fw");

TProfile2D *QXs_w=(TProfile2D*)f->Get("QXs_w");

TProfile2D *QXs_fe=(TProfile2D*)f->Get("QXs_fe");

TProfile2D *QXs_e=(TProfile2D*)f->Get("QXs_e");

TProfile2D *QYs_fw=(TProfile2D*)f->Get("QYs_fw");

TProfile2D *QYs_w=(TProfile2D*)f->Get("QYs_w");

TProfile2D *QYs_fe=(TProfile2D*)f->Get("QYs_fe");

TProfile2D *QYs_e=(TProfile2D*)f->Get("QYs_e");

TFile *f2=new TFile(input_rootfile2,"READ");

TProfile *Sin_corr=(TProfile*)f2->Get("Sin_corr");

TProfile *Cos_corr=(TProfile*)f2->Get("Cos_corr");

TProfile *Sin_corr_west=(TProfile*)f2->Get("Sin_corr_west");

TProfile *Cos_corr_west=(TProfile*)f2->Get("Cos_corr_west");

TProfile *Sin_corr_east=(TProfile*)f2->Get("Sin_corr_east");

TProfile *Cos_corr_east=(TProfile*)f2->Get("Cos_corr_east");

TH1F *hRefMult=new TH1F("hRefMult","Reference Multiplicity"

,1000,0.,1000);

TH1F *hPt=new TH1F("hPt","Pt distribution",100,0.0,10.0);

TH1F *hPt_kstar=new TH1F("hPt_kstar","K* Pt distribution",

100,0.0,10.0);

TH1D *hPsi2=new TH1D("hPsi2","Event Plane Angle #Psi_{2}"

,200,-1.,5.);
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TH1D *hPsi2_east=new TH1D("hPsi2_east","Event Plane Angle

#Psi_{2} for #eta subrange(0.05 to 1.0)",200,-1.,5.);

TH1D *hPsi2_west=new TH1D("hPsi2_west","Event Plane Angle

#Psi_{2}for #eta subrange(-1.0 to-0.05 )",200,-1.0,5.);

TH1D *hPsi2_corr=new TH1D("hPsi2_corr","Event Plane Angle

#Psi_{2}",200,-1.,5.);

TH1D *hPsi2_east_corr=new TH1D("hPsi2_east_corr","Event

Plane Angle #Psi_{2} for #eta subrange(0.05 to 1.0)",200,-1.,5.);

TH1D *hPsi2_west_corr=new TH1D("hPsi2_west_corr","Event

Plane Angle #Psi_{2}for #eta subrange(-1.0 to-0.05 )",200,-1.0,5.);

TH2D *hQxQy_rcorr=new TH2D("hQxQy_rcorr","Histogram of

Qx vs Qy after recenter correction",500,-100.,100.,500,-100.,100.);

TH2D *hQxQy_scorr=new TH2D("hQxQy_scorr","Histogram of

Qx vs Qy after Shift correction",500,-100.,100.,500,-100.,100.);

TProfile *Res_factor=new TProfile("Res_factor","Profile

Histogram of Resolution factor vs Centrality",10,0,10,-2.,2.);

TH2D *hLike[9];

TH2D *hLike_spectra[9];

TH2D *hUnlike[9];

TH2D *hUnlike_spectra[9];

TH3D *hUnlike_3D[9];

for(Int_t cent_id=0;cent_id<9;cent_id++)

{

sprintf(name1,"hLike_%d",cent_id);

sprintf(name2,"hUnlike_%d",cent_id);
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sprintf(name3,"hUnlike_3D_%d",cent_id);

sprintf(name4,"hLike_spectra_%d",cent_id);

sprintf(name5,"hUnlike_spectra_%d",cent_id);

hLike[cent_id]=new TH2D(name1,name1,100,0.,10.,

900,0.6,1.5);

hLike_spectra[cent_id]=new TH2D(name4,name4,100

,0.,10.,900,0.6,1.5);

hUnlike[cent_id]=new TH2D(name2,name2,100,0.,10.

,900,0.6,1.5);

hUnlike_spectra[cent_id]=new TH2D(name5,name5,100,

0.,10.,900,0.6,1.5);

hUnlike_3D[cent_id]=new TH3D(name3,name3,100,0.,10.,

900,0.6,1.5,200,-5.,5.);

}

if (fChain == 0) return;

Long64_t nentries = fChain->GetEntriesFast();

Long64_t nbytes = 0, nb = 0;

TStopwatch sw1,sw2;

sw1.Start(1);

sw2.Start(1);

for (Long64_t jentry=0; jentry<nentries;jentry++)

{//event loop starts

Long64_t ientry = LoadTree(jentry);

if (ientry < 0) break;

nb = fChain->GetEntry(jentry); nbytes += nb;

runID = RunID;
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Refmult = (int) Refm;

BBC = (int) BBC;

ZDC = (int) ZDC;

centrality = (int) Cent;

ntrack = (int) nTrack;

vertexX = (double) Vx;

vertexY = (double) Vy;

vertexZ = (double) Vz;

VPD_vertexZ = (double) VpdVz;

for(Int_t j=0;j<n_flag;j++)

{

if(numbers[j]==runID)

index=j;

}

if(TMath::Abs(vertexZ)>=30.) continue;

if(TMath::Abs(sqrt(vertexX*vertexX+vertexY*vertexY))>=2.)

continue;

hRefMult->Fill(Refmult);

qx=0,qy=0,qx_east=0,qy_east=0,qx_west=0,qy_west=0;

Double_t s,c,dPsi2=0,dPsi2_east=0,dPsi2_west=0;

Int_t i;

for(int it=0;it<ntrack;it++){

track_px = (double) Px[it];

track_py = (double) Py[it];

track_pz = (double) Pz[it];

track_dca = (double) DCA[it];
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track_beta = (double) Beta[it];

nsigma_pi = (double) nSigpi[it];

nsigma_k = (double) nSigk[it];

nsigma_p = (double) nSigp[it];

if(DEdx[it]>=0){

track_dEdx = (double) DEdx[it];

}

else if(DEdx[it]<0){

track_dEdx = (double) DEdx[it] * (-1.0);

}

track_charge = (int) Charge[it];

if(!track_charge) track_charge = -1.0;

track_nHitsFit = (int) nHits[it];

track_nHitsdEdx = (int) ndEdx[it];

track_ToFflag = (int) tofFlg[it];

if(track_nHitsFit<=15) continue;

if(TMath::Abs(track_charge)>1) continue;

if(track_dca>2) continue;

aTrack.SetXYZ(track_px,track_py,track_pz);

eta1=aTrack.Eta();

if(TMath::Abs(eta1)>1) continue;

pt=aTrack.Perp();

if(pt<=0.2 || pt>=2.0) continue;

m=aTrack.Mag();

aTrack2.Set(track_px,track_py);

Phi=aTrack2.Phi();
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if(Phi<0.)Phi=Phi+2*pi;

Double_t qx_corr,qy_corr,qxs_corr,qys_corr;

if(eta1>=0.)

{

if(vertexZ>=0.)

{

qx_corr=QX_fe->GetBinContent(index+1,centrality+1);

qy_corr=QY_fe->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qx_corr=QX_e->GetBinContent(index+1,centrality+1);

qy_corr=QY_e->GetBinContent(index+1,centrality+1);

}

qx=qx+(pt*cos(2*Phi)-qx_corr);

qy=qy+(pt*sin(2*Phi)-qy_corr);

}

if(eta1<0.)

{

if(vertexZ>=0.)

{

qx_corr=QX_w->GetBinContent(index+1,centrality+1);

qy_corr=QY_w->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{
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qx_corr=QX_fw->GetBinContent(index+1,centrality+1);

qy_corr=QY_fw->GetBinContent(index+1,centrality+1);

}

qx=qx+(pt*cos(2*Phi)-qx_corr);

qy=qy+(pt*sin(2*Phi)-qy_corr);

}

if(eta1>0.05)

{

if(vertexZ>=0.)

{

qxs_corr=QXs_fe->GetBinContent(index+1,centrality+1);

qys_corr=QYs_fe->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qxs_corr=QXs_e->GetBinContent(index+1,centrality+1);

qys_corr=QYs_e->GetBinContent(index+1,centrality+1);

}

qx_east=qx_east+(pt*cos(2*Phi)-qxs_corr);

qy_east=qy_east+(pt*sin(2*Phi)-qys_corr);

}

if(eta1<-0.05)

{

if(vertexZ>=0.)

{

qxs_corr=QXs_w->GetBinContent(index+1,centrality+1);
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qys_corr=QYs_w->GetBinContent(index+1,centrality+1);

}

if(vertexZ<0.)

{

qxs_corr=QXs_fw->GetBinContent(index+1,centrality+1);

qys_corr=QYs_fw->GetBinContent(index+1,centrality+1);

}

qx_west=qx_west+(pt*cos(2*Phi)-qxs_corr);

qy_west=qy_west+(pt*sin(2*Phi)-qys_corr);

}

}//track loop ends

aTrack3.Set(qx,qy);

Psi2=0.5*aTrack3.Phi();

aTrack3.Set(qx_east,qy_east);

Psi2_east=0.5*aTrack3.Phi();

aTrack3.Set(qx_west,qy_west);

Psi2_west=0.5*aTrack3.Phi();

if(Psi2<0.) Psi2=Psi2+pi;

if(Psi2_east<0.) Psi2_east=Psi2_east+pi;

if(Psi2_west<0.) Psi2_west=Psi2_west+pi;

hPsi2->Fill(Psi2);

hPsi2_east->Fill(Psi2_east);

hPsi2_west->Fill(Psi2_west);

Double_t Psi2_corr,Psi2_east_corr,Psi2_west_corr;

Psi2_corr=Psi2+dPsi2;

Psi2_west_corr=Psi2_west+dPsi2_west;
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Psi2_east_corr=Psi2_east+dPsi2_east;

if(Psi2_corr<0.) Psi2_corr=Psi2_corr+pi;

if(Psi2_east_corr<0.) Psi2_east_corr=Psi2_east_corr+pi;

if(Psi2_west_corr<0.) Psi2_west_corr=Psi2_west_corr+pi;

hPsi2_corr->Fill(Psi2_corr);

hPsi2_east_corr->Fill(Psi2_east_corr);

hPsi2_west_corr->Fill(Psi2_west_corr);

Double_t Q_vec,qx_scorr,qy_scorr,qx_east_scorr,

qy_east_scorr,qx_west_scorr, qy_west_scorr;

TVector2 Q2_vec;

Q2_vec.Set(qx,qy);

Q_vec=Q2_vec.Mod();

qx_scorr=Q_vec*cos(2*Psi2_corr);

qy_scorr=Q_vec*sin(2*Psi2_corr);

Q2_vec.Set(qx_east,qy_east);

Q_vec=Q2_vec.Mod();

qx_east_scorr=Q_vec*cos(2*Psi2_east_corr);

qy_east_scorr=Q_vec*sin(2*Psi2_east_corr);

Q2_vec.Set(qx_west,qy_west);

Q_vec=Q2_vec.Mod();

qx_west_scorr=Q_vec*cos(2*Psi2_west_corr);

qy_west_scorr=Q_vec*sin(2*Psi2_west_corr);

hQxQy_rcorr->Fill(qx,qy);

hQxQy_scorr->Fill(qx_scorr,qy_scorr);

Double_t Res;
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Res = cos(2*(Psi2_east_corr-Psi2_west_corr));

Res_factor->Fill(centrality,Res);

Double_t p,m2,qx2,qy2,m_k=0.493, m_pi=0.139;

i=0;

Int_t g=0,h=0,j=0;

//V2 track loop starts

for(int it=0;it<ntrack;it++)

{

track_px = (double) Px[it];

track_py = (double) Py[it];

track_pz = (double) Pz[it];

track_dca = (double) DCA[it];

track_beta = (double) Beta[it];

nsigma_pi = (double) nSigpi[it];

nsigma_k = (double) nSigk[it];

nsigma_p = (double) nSigp[it];

if(DEdx[it]>=0){

track_dEdx = (double) DEdx[it];

}

else if(DEdx[it]<0){

track_dEdx = (double) DEdx[it] * (-1.0);

}

track_charge = (int) Charge[it];

if(!track_charge) track_charge = -1.0;

track_nHitsFit = (int) nHits[it];

track_nHitsdEdx = (int) ndEdx[it];
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track_ToFflag = (int) tofFlg[it];

if(track_nHitsFit<=15) continue;

if(TMath::Abs(track_charge)>1.) continue;

if(track_dca>3) continue;

aTrack.SetXYZ(track_px,track_py,track_pz);

eta1=aTrack.Eta();

if(TMath::Abs(eta1)>1) continue;

pt=aTrack.Perp();

if(pt<=0.15 || pt>=10.0) continue;

p=aTrack.Mag();

p2=p*p;

m2=p2*((1/pow(track_beta,2))-1);

hPt->Fill(pt);

Int_t flow_id=0;

if(pt>0.2 && pt<2. && track_dca<=2. && track_nHitsFit>15

&& TMath::Abs(eta1)<=1.) flow_id=1;

aTrack2.Set(track_px,track_py);

Phi=aTrack2.Phi();

if(Phi<0.) Phi=Phi+2*pi;

qx2=pt*cos(2*Phi);

qy2=pt*sin(2*Phi);

if(TMath::Abs(nsigma_pi)<2.0)

{

if(m2>=0.01038 && m2<=0.029)

{

if(track_charge==1)
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{// Pion plus selection starts

//EK_pipl[g] = pow((p2+0.019321),0.5);

px_pipl[g]=track_px;

py_pipl[g]=track_py;

pz_pipl[g]=track_pz;

qx_pipl[g]=qx2;

qy_pipl[g]=qy2;

flowid_pipl[g]=flow_id;

g++;

}// Pion plus selection ends

if(track_charge==-1)

{// Pion minus selection starts

//EK_pimn[h] = pow((p2+0.019321),0.5);

px_pimn[h]=track_px;

py_pimn[h]=track_py;

pz_pimn[h]=track_pz;

qx_pimn[h]=qx2;

qy_pimn[h]=qy2;

flowid_pimn[h]=flow_id;

//charge_pimn[h]=track_charge;

//hNsigmapimn->Fill(nsigma_pi);

//hcharge_pimn->Fill(track_charge);

h++;

}// Pion minus selection ends

}
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}//Pion selection ends

//Kaon selection

if(TMath::Abs(nsigma_k)<2.0)

{

if(m2>=0.2104 && m2<=0.2796)

{

if(track_charge==1)

{// Kaon plus selection starts

//EK_kpl[i] = pow((p2+0.243049),0.5);

px_kpl[i]=track_px;

py_kpl[i]=track_py;

pz_kpl[i]=track_pz;

qx_kpl[i]=qx2;

qy_kpl[i]=qy2;

flowid_kpl[i]=flow_id;

//charge_kpl[i]=track_charge;

i++;

}// Kaon plus selection ends

if(track_charge==-1)

{// Kaon minus selection starts //EK_kmn[j] = pow((p2+0.243049),0.5);

px_kmn[j]=track_px;

py_kmn[j]=track_py;

pz_kmn[j]=track_pz;

qx_kmn[j]=qx2;
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qy_kmn[j]=qy2;

flowid_kmn[j]=flow_id;

//charge_kmn[j]=track_charge;

j++;

}// Kaon minus selection ends

}

}//Kaon selection ends

} TLorentzVector Pion,Kaon,K_star;

//Same event calculation for K+ pi+

for(Int_t m=0; m<g; m++)

{

Pion.SetXYZM(px_pipl[m],py_pipl[m],pz_pipl[m],m_pi);

for(Int_t l=0; l<i; l++)

{

//if(charge_pipl[m]+charge_kpl[l]==0) continue;

Kaon.SetXYZM(px_kpl[l],py_kpl[l],pz_kpl[l],m_k);

K_star=Kaon+Pion;

Double_t KStarInvM_pp = K_star.M();

pt=K_star.Pt();

hPt_kstar->Fill(pt);

hLike[centrality]->Fill(pt,KStarInvM_pp);

eta1=K_star.PseudoRapidity();

if(TMath::Abs(eta1)<=0.5)
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{

hLike_spectra[centrality]->Fill(pt,KStarInvM_pp);

}

}//l loop

}//m loop

//Same event calculation for K- pi-

for(Int_t m=0; m<h; m++)

{

Pion.SetXYZM(px_pimn[m],py_pimn[m],pz_pimn[m],m_pi);

for(Int_t l=0; l<j; l++)

{

//if(charge_pimn[m]+charge_kmn[l]==0) continue;

Kaon.SetXYZM(px_kmn[l],py_kmn[l],pz_kmn[l],m_k);

K_star=Kaon+Pion;

Double_t KStarInvM_mm = K_star.M();

pt=K_star.Pt();

hPt_kstar->Fill(pt);

hLike[centrality]->Fill(pt,KStarInvM_mm);

eta1=K_star.PseudoRapidity();

if(TMath::Abs(eta1)<=0.5)

{

hLike_spectra[centrality]->Fill(pt,KStarInvM_mm);

}
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}//l loop

}//m loop

TVector2 dQ;

TVector2 Q,Q_i,Q_east,Q_east_i,Q_west,Q_west_i,;

for(Int_t m=0; m<h; m++)

{

Pion.SetXYZM(px_pimn[m],py_pimn[m],pz_pimn[m],m_pi);

Double_t pieta = Pion.PseudoRapidity();

for(Int_t l=0; l<i; l++)

{

Kaon.SetXYZM(px_kpl[l],py_kpl[l],pz_kpl[l],m_k);

Double_t keta = Kaon.PseudoRapidity();

K_star=Kaon+Pion;

Double_t Rapidity=K_star.Rapidity();

if(TMath::Abs(Rapidity)>1.) continue;

Q.Set(qx_scorr,qy_scorr);

Q_i=Q;

Q_east.Set(qx_east_scorr,qy_east_scorr);

Q_west.Set(qx_west_scorr,qy_west_scorr);

Q_east_i=Q_east;

Q_west_i=Q_west;

if(flowid_kpl[l]==1)

{

//TVector2 dQ;

dQ.Set(qx_kpl[l],qy_kpl[l]);
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Q_i=Q_i-dQ;

if(keta < -0.05) Q_west_i=Q_west_i-dQ;

if(keta > 0.05) Q_east_i=Q_east_i-dQ;

}

if(flowid_pimn[m]==1)

{

//TVector2 dQ;

dQ.Set(qx_pimn[m],qy_pimn[m]);

Q_i=Q_i-dQ;

if(pieta < -0.05) Q_west_i=Q_west_i-dQ;

if(pieta > 0.05) Q_east_i=Q_east_i-dQ;

}

Double_t Psi;

Double_t K_star_eta=K_star.PseudoRapidity();

if(K_star_eta<0.) Psi=0.5*Q_east_i.Phi();

if(K_star_eta>=0.) Psi=0.5*Q_west_i.Phi();

Phi=K_star.Phi();

if(Phi<0.) Phi=Phi+2*pi;

Double_t KStarInvM_pm = K_star.M();

pt=K_star.Pt();

hPt_kstar->Fill(pt);

hUnlike[centrality]->Fill(pt,KStarInvM_pm);

Double_t v2_factor=cos(2*(Phi-Psi))/(sqrt(Resfactors

[centrality]));

hUnlike_3D[centrality]->Fill(pt,KStarInvM_pm,v2_factor);

if(TMath::Abs(K_star_eta)<=0.5)

160



A

{

hUnlike_spectra[centrality]->Fill(pt,KStarInvM_pm);

}

}//l loop

}

for(Int_t m=0; m<g; m++)

{

Pion.SetXYZM(px_pipl[m],py_pipl[m],pz_pipl[m],m_pi);

Double_t pieta = Pion.PseudoRapidity();

for(Int_t l=0; l<j; l++)

{

Kaon.SetXYZM(px_kmn[l],py_kmn[l],pz_kmn[l],m_k);

Double_t keta = Kaon.PseudoRapidity();

K_star=Kaon+Pion;

Double_t Rapidity=K_star.Rapidity();

if(TMath::Abs(Rapidity)>1.) continue;

//TVector2 Q,Q_i,Q_east,Q_east_i,Q_west,Q_west_i,;

Q.Set(qx_scorr,qy_scorr);

Q_i=Q;

Q_east.Set(qx_east_scorr,qy_east_scorr);

Q_west.Set(qx_west_scorr,qy_west_scorr);

Q_east_i=Q_east;

Q_west_i=Q_west;

if(flowid_kmn[l]==1)

{
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//TVector2 dQ;

dQ.Set(qx_kmn[l],qy_kmn[l]);

Q_i=Q_i-dQ;

if(keta < -0.05) Q_west_i=Q_west_i-dQ;

if(keta > 0.05) Q_east_i=Q_east_i-dQ;

}

if(flowid_pipl[m]==1)

{

dQ.Set(qx_pipl[m],qy_pipl[m]);

Q_i=Q_i-dQ;

if(pieta < -0.05) Q_west_i=Q_west_i-dQ;

if(pieta > 0.05) Q_east_i=Q_east_i-dQ;

}

Double_t Psi;

Double_t K_star_eta=K_star.PseudoRapidity();

if(K_star_eta<0.) Psi=0.5*Q_east_i.Phi();

if(K_star_eta>=0.) Psi=0.5*Q_west_i.Phi();

Phi=K_star.Phi();

if(Phi<0.) Phi=Phi+2*pi;

Double_t KStarInvM_mp = K_star.M();

pt=K_star.Pt();

hPt_kstar->Fill(pt);

hUnlike[centrality]->Fill(pt,KStarInvM_mp);

Double_t v2_factor=cos(2*(Phi-Psi))/(sqrt(Resfactors

[centrality]));

hUnlike_3D[centrality]->Fill(pt,KStarInvM_mp,
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v2_factor);

if(TMath::Abs(K_star_eta)<=0.5)

{

hUnlike_spectra[centrality]->Fill(pt,KStarInvM_mp);

}

}//l loop

}//m loop same event loop ends K- Pi+

nEvent_total++;

if(nEvent_total%3000==0)

{

cout<<" Analyzed Event = "<<nEvent_total<<" cent =

"<<centrality<<" ntrack = "<<ntrack<<" runid =

"<<index<<endl;

sw2.Stop();

sw2.Print();

sw2.Start(1);

}

}//================event loop ends=======================;

cout<<" writing files......."<<endl;

f = new TFile(outfile,"recreate");

f->cd();

hPsi2->Write();

hPsi2_west->Write();

hPsi2_east->Write();

hPsi2_corr->Write();

hPsi2_west_corr->Write();
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hPsi2_east_corr->Write();

Res_factor->Write();

hQxQy_rcorr->Write();

hQxQy_scorr->Write();

hRefMult->Write();

hPt->Write();

hPt_kstar->Write();

for(Int_t i=0;i<9;i++)

{

hLike[i]->Write();

hLike_spectra[i]->Write();

hUnlike[i]->Write();

hUnlike_spectra[i]->Write();

hUnlike_3D[i]->Write();

}

f->Close();

cout<<"\n File written.\n ******** Events = "

<<nEvent_total<<"********\n"<<endl;

sw2.Stop();

sw1.Stop();

sw1.Print();

}//main code ends
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