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ABSTRACT

In this thesis, we have done extraction and study of π±, K± and p(p̄) from STAR

and AMPT data for Au-3He collisions at
√
sNN = 200 GeV. We started with event

and track QA selection followed by centrality determination for the 200 GeV Au-3He

events. Then we proceed to extracting raw yeilds using dE/dx method in STAR-

TPC and m2 fitting in TOF detector. Observables like average transverse momentum

(〈pT 〉), particle yields (dN/dy) and kinetic freeze-out properties are extracted from

AMPT-SM data. Kinetic freezeout properties are extracted using hydrodynamics-

motivated blast-wave model fits to the data .

In the appendices, we have discussed the theoretical description of the 3He nucleus

using Green’s Function Monte Carlo (GFMC) Method. We have compared AMPT

simulations, with and without modified 3He distribution. We see that the Pearson

correlator and eccentricities are lower when we use modified 3He nuclear profile.

Future plans are also discussed.
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Chapter 1

Introduction
1.1 The Standard Model

The Standard model(SM) is the theory of fundamental constituents of matter and how

they interact[1]. The model consists of three types of fundamental particles, Quarks,

Leptons and Gauge bosons. Quarks and Leptons are fermions, and any interaction

between them is mediated through the Gauge Bosons. There are a total of six different

gauge bosons, photons (γ), gluons (g), W±, Z0 and the Higgs boson (H). The standard

model bosons describe three out of four fundamental forces, the electromagnetic, weak

and strong forces. There are three generations of leptons in the SM : The electron(e)

and electron neutrino(νe), the muon(µ) and muon neutrino(νµ), and the tau(τ) and

tau neutrino(ντ ). The leptons can interact only via the electromagnetic and the weak

interaction. SM also has six quarks which are again divided into three generations:

The up (u) and down (d) quarks, the charm (c) and strange (s) quarks, and the top (t)

and bottom (b) quarks. The standard model particles get their mass by interacting

with the Higgs boson.

1



1 Introduction

Figure 1.1: A chart showing various SM particles[2].

1.2 Quantum Chromodynamics

The theory of strong interactions is called Quantum Chromodynamics (QCD). The

basic fundamental particles involved are quarks, which are fermions with spin 1/2,

and the gluons which are bosons with spin 1. We denote the quark field by qf , with f

being the flavor. The quark flavors are qf : u, d, s, c, b, t corresponds to nomenclature

up, down, strange, charm, bottom, and top quarks. The quarks can also have three

color states. The strong interaction field or the gluon field is given by Aaµ with the

index a denoting the 8 possible color states of gluons. The interaction of quarks with

gluons can be hence written as,

Vqg =
∑
f

qfγ
µgsAµqf

Aµ =
∑
1

Aaµλ
a/2 (1.1)

2



1 Introduction

where the quanta of Aµ are gluons, γµ are the Dirac matrices and gs is the strong

interaction coupling constant. The λa are the SU(3) color matrices, with

λaλb − λbλa = i2
8∑
c=1

fabcλc (1.2)

with fabc the SU(3) structure constants.

The two important consequences of strong interaction are confinement and asymp-

totic freedom. These phenomena can be understood by looking at the expression of

coupling strength (αs) of the strong interaction,

αs(Q
2) =

12π

(11n− 2f) ln(|Q2|/Λ2) .
(1.3)

Where, Q2 is the momentum transfer or the energy scale, n is the number of colors

and f is the number of flavors. The Λ vakue lies in the range 100MeV < Λ < 500MeV.

Figure 1.2: Various measurements on the strong coupling constant, αs as function of
energy scale Q.[3]

For small momentum transfer (energy scales) or at larger distance scales, the

value of αs is high and increases as the distance between the quarks increases. This

property is known as confinement[4] and is responsible for binding of quarks inside the

3



1 Introduction

hadrons. On the other hand, when momentum transfers or energy scales are large i.e.,

distance between the quarks are very small, the coupling between quarks becomes very

small and quarks behaves like free particles. This is known as Asymptotic freedom[4].

Confinement and Asymptotic freedom lead to the formation of a state with deconfined

quarks and gluons called Quark-Gluon Plasma (QGP). The details of this exotic state

of matter will be discussed in subsequent sections.

1.3 Quark-Gluon Plasma

At low density, a particular quark is confined to a hadron and has a “hadronic iden-

tity”. However, at high enough density, when the hadrons starts to interpenetrate

each other, a particular quark will not able to identify which other quark belonged to

the same hadron. Hence the quarks lose their hadronic identity. Similar phenomena

can happen at high temperature. As we increase the temperature of nuclear matter,

more matter (hadrons) is produced and this leads to an increase in density. Thus, at

high temperature and high density, the relevant degree of freedom would change from

hadrons to quarks and gluons (partons). As discussed in the previous section (1.2),

at short enough distances, or at large enough energy scales, quarks and gluons be-

come free and such dense nuclear matter of free quarks is known as the Quark-Gluon

Plasma (QGP)[5]. Formally, we define QGP as a thermalised, or near to thermalised

state of quarks and gluons, where quarks and gluons are free to move over a nuclear

volume rather than a nucleonic volume[6].

Since quarks are confined within the hadrons at low density or low temperature

and are deconfined at high density or at high temperature, we can think about a

confinement-deconfinement phase transition. Lattice QCD calculations also theorize

the presence of two phases in the high temperature QCD, which are identified with

4



1 Introduction

the hadronic and partonic phase, respectively.

Figure 1.3: Schematic QCD phase diagram for nuclear matter[8]. The solid lines show
the phase boundaries for the indicated phases. The solid circle depicts the critical
point[9].

At a critical temperature Tc ≈ 155−175 MeV (at chemical potential µB ≈ 0 ), we

find a sharp increase in energy density. This indicates sudden change in the degrees

of freedom of the system i.e. de-confinement of hadrons into partons. A state of

de-confined quarks and gluons is expected to be present at very high T and low µB ,

while quarks and gluons are known to be confined inside hadrons at low T and low

µB. QCD calculations suggest a colour super-conducting phase[7] at low T and high

µB quarks.

1.4 Relativistic Heavy Ion Collisions

To study QGP, we first need to create it. Colliding two heavy nuclei (Heavy atoms

with all their electrons stripped off) like, Au, Pb, U, Cu, etc. at relativistic speeds

5



1 Introduction

(also called Relativistic Heavy Ion Collisions) using large machines called Ion/Hadron

colliders is a convenient way to create QGP and study it in a controlled laboratory

setting. The Relativistic Heavy Ion Collider (RHIC) in BNL, US and the Large

Hadron Collider (LHC) in CERN, Geneva have acomplished the creation of QGP.

The next two sections will be discussing the space-time evolution and kinematics of

Heavy Ion Collisions.

1.4.1 Space-time evolution

As the two colliding nuclei travel towards each at relativistic speeds, they undergo

Lorentz contraction along the beam direction and appear as two flat pancakes to

an observer at rest at their center of mass (center of mass frame). At time t = 0,

the two nuclei hit each other, the partons in the overlapped region start interacting

inelastically. These inelastic interactions lead to the loss of kinetic energy. The lost

kinetic energy creates matter (particles) in the vicinity of the collision which is often

called as the fireball. If the fireball is hot enough, the QGP is formed. As the fireball

expands and cools to a critical temperature Tc, quarks and gluons will coalesce to form

a hadron gas. As the hadron gas expands, inelastic interactions will eventually stop

at the chemical freeze-out, with a temperature Tch. The chemical composition will

not change further. After further expansion, elastic interactions will stop at kinetic

freeze-out, with an associated temperature Tfo or Tkin.

6



1 Introduction

Figure 1.4: The space-time evolution of a heavy-ion collision [11].

1.4.2 Kinematics

At most collider experiments like RHIC or LHC, the coordinate system used is chosen

such that the z-axis is parallel to the collision or beam axis. The interaction point

(IP) is expected to be at (0, 0, 0). The beams are focused such that collisions take

place around this point. However, collisions do not always happen exactly at the IP.

Thus the collision point also has to be reconstructed, this is called the primary vertex.

Below, we describe some of the important kinematic variables which will be used

throughout this report[10].

Transverse Momentum

The total momentum is split into two components, one parallel to the collision axis

called the transverse momentum (pT ), and one parallel, called longitudinal momentum

(pz). Transverse momentum is defined as:

pT =
√
p2x + p2y (1.4)

7



1 Introduction

where px and py are the x and y components of total momentum (p). The transverse

momentum is Lorentz invariant.

Rapidity

Since in relativistic limit, pz is not additive, we use another variable called rapidity,

given by,

y =
1

2
ln

(
E + pz
E − pz

)
(1.5)

Pseudo-rapidity

Sometimes, measuring both energy and momentum may not be straightforward or

possible. This mainly happens in case of unidentified particles. So experimentalists

often use the pseudo-rapidity (η) variable for such cases:

η = − ln[tan(θ/2)] (1.6)

Where, θ = tan−1(pT/pz).

In terms of rapidity,

η =
1

2
ln

√
m2
T cosh2 y −m2 +mT sinh y√

m2
T cosh2 y −m2 −mT sinh y

. (1.7)

Azimuthal angle

Angle made by transverse momentum vector with x-axis.

φ = tan−1
py
px

(1.8)

These variables are calculated first in a track loop and used in analysis.
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1 Introduction

Multiplicity

The number of particles that are produced in an event (one collision) is called multi-

plicity. Generally, we only count the charged particles while calculating multiplicity.

Therefore, charged particle multiplicity would be a more accurate name of this vari-

able.

Invariant distribution

The quantity E d3σ
dp3

is called invariant cross section as the quantity d3p
E

is invariant un-

der Lorentz transformations. In experiments, we measure the invariant cross section

by using the equivalent expression,

E
d3σ

dp3
=

1

Lint
E
d3N

dp3
=

1

Lint2π

d2N

pTdpTdy
(1.9)

where σ is the cross section of the collision, E is the energy of the particle and Lint

is the integrated luminosity. Luminosity is the number of particles per unit area per

unit time times the opacity of the target. Often, the total number of events (Nevts)

is taken as a proxy instead of Lint.

9



1 Introduction

Collision Centrality

Figure 1.5: A schematic diagram of a HI collision event.

The component of the distance between the centre of one nucleus and that of the

other perpendicular to the collision axis, is called the impact parameter (b). It is a

measure of overlap of the two colliding nuclei. The nucleons inside the overlap region

are called participant nucleons. The central collisions are the ones having a small

impact parameter and a large number of participating nucleons, peripheral collisions

are defined as having a large impact parameter and a small number of participat-

ing nucleons. As the impact parameter cannot be directly measured experimentally,

the produced charged particle multiplicity is often used to characterize centrality.

This can be done by assuming that multiplicity is a monotonic function of the im-

pact parameter. This would lead to higher values of multiplicity corresponding to

central collisions and lower values to peripheral collisions. The details of centrality

determination technique will be discussed in chapter 3.
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1.5 Motivation

In a heavy-ion collision experiments to study QGP and the QCD phase diagram,

after the collision happens, a QGP fireball is formed and as it expands and cools, it

transitions into a hadron gas and after it undergoes chemical and then kinetic freeze-

out, only π±, K± and p(p̄) manage to survive long enough to reach the detector. The

higher resonances decay into one of these hadrons. As these hadrons move through

the detector medium, they ionize the medium in a particular way, and produce signals

characteristic to their charge and mass. By analyzing these signals, we can identify

these particles. Hence, π±, K± and p(p̄) are known as identified charged hadrons.

The motivation of this thesis is to study the transverse momentum distribution of

these identified hadrons and make some estimations of some bulk properties of the

QGP fireball.

The thesis is organized as follows. After the introduction (chapter 1), we have

discussed about the Solenoid Tracker at RHIC (STAR) experiment in chapeter 2. In

chapter 3, we present event selection and centrality determination of the events in

STAR Au-3He collisions at 200GeV. In chapter 4, we discuss particle identification

from the Time Projection Chamber (TPC) and Time of Flight (TOF) detectors. We

also do extraction of raw π, K, p spectra. In chapter 5, we get π, K, p spectra from

data generated from A Multi Phase Transport (AMPT) model and extract some

bulk properties like mean pT (〈pT 〉), particle yeild (dN/dy) and kinetic freezeout

parameters fitting the AMPT spectra to the hydrodynamics motivated Blast-wave

model. We have also discussed summary and outlook at the end of each chapter.

11



Chapter 2

Solenoid Tracker At RHIC (STAR)
STAR is an experiment at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven

National Laboratory, United States. STAR’s major physics goal is to study the for-

mation and characteristics of the quark-gluon plasma (QGP) state. Detecting and

understanding the QGP state would give us valueable insights into the Universe mo-

ments after the Big Bang, where the symmetries (and lack thereof) of our surroundings

were put into action.

Due to the complexity of the system formed in the high-energy heavy ion collisions

and the relatively unexplored landscape of physics at high energy scales, to make solid

inferences about the QGP, STAR makes use of a variety of simultaneous analyses.

Theresfore, STAR takes help from many types of detectors, each of which specialize

in detection and tracking of certain types of particles. These detectors work together

in an advanced data acquisition and subsequent physics analysis that allows one to

arrive at some conclusions about the collision.

STAR is composed of 67 institutions from 13 countries, with a total of 692 col-

laborators.
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2 Solenoid Tracker At RHIC (STAR)

Figure 2.1: Schematic representation of STAR experimental setup [12].

2.1 Time projection chamber (TPC)

The TPC is the primary tracking device of STAR. It helps identify charged particles

from their ionization energy loss (dE/dx) as they travel through the gas volume of

the TPC. It has full azimuthal coverage and a pseudorapidity acceptance of |η| < 1.8.

It is 4.2m long, 4m in diameter, filled with P10 gas (10% Ar and 10% CH4) and

divided into two drift chambers by central membrane, with a uniform electric field of

135 V/m. A uniform magnetic field surrounds it in the z direction. Depending on

their charge and mass, the trajectory of the particles traversing the TPC will curve

one way or the other in xy plane due to interactions with the magnetic field, and

leave a trail ioinized atoms in the active detector volume.

13



2 Solenoid Tracker At RHIC (STAR)

Figure 2.2: A schematic diagram of TPC [12].

2.2 Time of flight (TOF)

The STAR Time-of-Flight (TOF)[13] system extends the experiment’s particle iden-

tification capabilities to high pT region. It has a highly segmented cylindrical detector

which immediately surrounds the TPC and is arranged in 120 trays. Each individual

tray has the dimensions 2.4m× 21.3cm××8.5cm. Each tray has an azimuthal cover-

age of 6 degrees around the TPC. In each tray, there are 32 Multigap Resistive Plate

Chamber (MRPC)[15] modules which are placed along the beam (z) direction. The

MRPC is a stack of parallely arranged resistive plates. create A series of gas gaps is

created by the intermediate plates. The outer surfaces of the two outer plates have

electrodes attached. Applying a high voltage across these external electrodes gener-

ates a strong electric field in each subgap. A charged particle generates avalanches

in the gas gaps as it goes through the chamber. The plates are transparent to signal

induced by avalanches as they are resistive, thus a signal induced in the pickup pad

is the sum of signals from all the gas gaps. TOF system consists of TOF trays and

14



2 Solenoid Tracker At RHIC (STAR)

Vertex Position Detectors (VPDs)[14]. The stop time of every track is provided by

TOF trays. Start time of the event is provided by VPD. The difference between these

two times is called the time of flight (τ) of the track. TOF has a time resolution of

≈ 80 to 100 ps. Time of flight of each track relates to the mass of that track using

the expressions,
β = L/cτ

γ = 1/
√

1− β2

m = p/γβc
(2.1)

where L is the length of the path travelled by the particle (path-length), c is the

speed of light, m is the mass of the particle and p is the momentum measured by the

TPC. Using information from TOF we can separate π/K and p/K upto p ≈ 1.6 and

3.0 GeV/c, respectively.

2.3 Trigger detectors

The four major trigger detectors in STAR are the Zero Degree Calorimeters (ZDCs),

Beam Beam Counters (BBCs), the Vertex Position Detectors (VPDs)[14], and the

Electromagnetic Calorimeter (EMC). The purpose of the STAR trigger is to instruct

the slower detector subsystems which have different readout speeds, on when to record

data.

The two ZDCs are positioned at ±18.25 metres along the collision axis. The ZDCs

are hadronic calorimeters which measure the energy from the remaining neutrons from

the heavy-ion collisions after the event in a very small (nearly zero) solid angle(θ < 2

mrad). The energy deposited by the neutrons can be related to the multiplicity. For

a minimal bias trigger, we need a coincidence of the signal between the two ZDCs

with a summed signal greater than ≈ 40% of a single neutron signal.

The BBC has a hexagonal scintillator array structure, located on each side of the

collision point. It has full azimuthal coverage and an η coverage of 2.1 < |η| < 5.0. It
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2 Solenoid Tracker At RHIC (STAR)

is placed around the beam pipe at a distance of 3.7 m from the collision point. For a

minimal bias trigger, we need a coincidence of the signal between the two BBC. The

time difference between the two counters gives us information on the primary vertex

position. BBC coincidences are also used to reject beam gas events. In addition, the

small tiles of BBC are also used to reconstruct the first order event plane for flow

analysis.

Figure 2.3: A schematic figure of a nucleus-nucleus collision and STAR trigger systems
[11].

Each VPD comprises of 19 lead converters and plastic scintillators with photomul-

tiplier tube readout that are placed very close to the beam pipe on each side of the

STAR detector setup. Each VPD is around 5.7 m from the collision point and has a

pseudo-rapidity coverage of 4.24 < |η| < 5.1. For a minimal-bias (MB) trigger using

VPD, we need a coincidence of the signals between the east and west VPD detectors.

The VPD can also provide the details about the z component of the vertex. The

timing resolution of VPD is superior to that of BBC.

The Electromagnetic Calorimeters (EMC) are used to select events with rare

probes such as high energy γ and π0 particles, or electrons from J/ψ decays.
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Chapter 3

Centrality Determination of Au-3He
collisions
Collisions or events are classified into centrality classes where, the most central class

consists of events with the lowest impact parameters, which leads to highest multiplic-

ities. Thus, experimentally, when the total integral of the multiplicity distribution is

known, we define the centrality classes by binning the multiplicity distribution based

upon the percentile of the total integral.

In this analysis, we have used the event variable called RefMult or Reference

multiplicity, which is the number of charged particles in an event with |η| < 1.

3.1 Data set and Event selection

The data analyzed in this work were recorded by the STAR experiment at the Rela-

tivistic Heavy Ion Collider (RHIC) during the year 2014, at the center of mass energy

√
sNN = 200 GeV for Au+3He collisions. The trigger taken for this analysis is ZDCE

(Id: 460001)

3.1.1 Event selection

We select the minimum bias triggered events with a primary collision vertex position

along the longitudinal beam direction (Vz ) obeying Vz < 30cm. In addition to this,

a radial vertex cut for the transverse position of the primary vertex (Vr < 2 cm)

from the center of the interaction point is applied for selecting good events. Also,

another cut was applied on |∆Vz| = |Vz−V V PD
z |, it is the absolute difference between
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3 Centrality Determination of Au-3He collisions

the z-components of the collision veritices as measured by TPC and VPD. |∆Vz| was

restricted to 3cm. This criteria is set to remove pile-up events.

3.1.2 Bad runs removal

Run numbers (events taken during a time period) for which an observable shows too

much fluctuation is designated as a ”bad run”. We look for bad runs by studying the

variation of average values of various observables with run number. After that, we

check, for which run numbers the average of the observable in that run number bin

deviates by more than 3σ from the total average of the observable, sigma being the

standard deviation of the observables over the run numbers. Those are the bad-runs

which are rejected.

We have used 5 observables for this purpose, RefMult, DCA, transverse momen-

tum (pT), pseudorapidity and Azimuthal angle (φ).
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Figure 3.1: Average values of the observables plotted against their run number. The
green lines denote the 3σ limit.
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3 Centrality Determination of Au-3He collisions

To summarise,

• TriggerID: 460001

• Trigger label: ZDCE

• Total events for the trigger ID: 300 million

• |Vz| < 30 cm

• |Vr| =
√
V 2
x + V 2

y < 2 cm

• |∆Vz| = |Vz − V V PD
z | < 3 cm

• Total events after cuts, badrun rejections: 52 million

3.1.3 Luminosity correction

We need to correct for dependence of refmult on beam luminosity. Therefore, we

remove the dependence of RefMult on ZDC coincidence rate (used to calculate lumi-

nosity), by fitting a Refmult vs ZDC coincidence rate profile histogram with a linear

function. Then we remove the dependence by multiplying Refmult by an appropriate

factor in each event. If the fit function used of p0 + p1x, then in every event, Refmult

will be scaled by a factor ζ,

ζ =
p0

p0 + p1 × ZDCCoincidenceRate
(3.1)
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3 Centrality Determination of Au-3He collisions

Figure 3.2: The linear fitting done in different Vz windows.

Figure 3.3: Comparision between the refmult distributions before(blue) and after(red)
luminosity correction.
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3 Centrality Determination of Au-3He collisions

3.2 Glauber Monte Carlo Model

Glauber models are useful in calculating the quantities related to the initial state

geometries of heavy ion collisions, like impact parameter(b), number of participating

nucleons(Npart) and initial eccentricity(ε).

There are two main types of Glauber models. In the optical Glauber calcula-

tions, a smooth, spherically symmetric matter density is assumed, with the matter

distribution in the radial direction being described by a Fermi distribution. In the

Monte Carlo (MC) based models, individual nucleons are stochastically generated

event-by-event and collision properties are multiple event averages.

For the purposes of this project, we have used the MC Glauber calculation imple-

mented by PHOBOS.[22][23]

3.2.1 Inputs to the model

Nuclear density profile

The probability distributions of the nuclei are taken to be spherically symmetric. The

radial distribution function is modeled after nuclear charge densities extracted from

low-energy electron scattering experiments. The nuclear charge density is usually

given by a three parameter Fermi distribution[22].

ρ(r) = ρ0
1 + w(r/R)2

1 + exp( r−R
a

)
(3.2)

Where, ρ0 is the nucleon density, R is the nuclear radius, a is the skin depth and

w corresponds to small deviations from a spherical shape. This is the case for Au

nucleus.

However, other modified distributions are used for deformed nuclei like U, Cu,
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3 Centrality Determination of Au-3He collisions

etc. These are of the form,

ρ(x, y, z) = ρ0
1

1 + exp (r−R(1+β2Y20+β4Y00))
a

(3.3)

Where, Y40 = 3
16
√
π

(35 cos4(θ)− 30 cos2(θ) + 3), Y20 =
√

5
16π

(3 cos2(θ)− 1). β1,2 are

the deformation parameters.

For 3H and 3He, the configurations of the three nucleons were computed and stored

in a data file from Greens function MC (GFMC) calculations using the AV18 + UIX

model interactions, which accurately sample the position of the three nucleons[23][18].

We will be discussing about this in the appendix.

Inelastic nucleon-nucleon cross-section

The next step is to simulate a nucleus-nucleus collision. The impact parameter b

is randomly sampled from a geometrical distribution dP/db vs b up to a maximum

bmax u 20fm, which is large enough to simulate collisions until the interaction prob-

ability becomes negligible. The nucleus-nucleus collisions are seen as a bunch of in-

dependent nucleon-nucleon collisions, where the nucleons travel in a straight line and

the same inelastic nucleon-nucleon cross section is used for all successive collisions

(inelastic interactions between two colliding nuclei is independent of the preceding

collisions). If the perpendicular distance between centers of the two nucleons coming

from opposite directions (d) is less than the distance corresponding to the inelastic

nucleon-nucleon cross section (σinel
NN), (d <

√
σinel
NN/π) then, the two nucleons from

different nuclei are taken to be colliding.

The value of the cross-section σinel
NN is typically estimated by interpolation of pp

data at different center of mass energies and from cosmic rays, and subtracting the

elastic scattering cross section from the total cross section. [17] [22]

In an event, the number of collisions Ncoll is the number of binary nucleon collisions
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3 Centrality Determination of Au-3He collisions

√
sNN (GeV/c) σinel

NN(mb)
27 31.94
39 30.98
62.4 31.55
200 42
2760 64
5500 72

Table 3.1: Experimental values of σinel
NN for given center of mass energies[17] [22].

and the number of participants Npart is the number of nucleons that experience at

least one collision.

3.2.2 The NBD-Glauber fit to the multiplicity distribution

To reproduce the experimental multiplicity distribution, the Glauber Monte Carlo is

coupled to a particle production model, based on a Negative Binomial Distribution

(NBD). NBD is used in this way because it accurately describes the charged parti-

cle multiplicity in minimum bias pp collisions at high energy over a wide rapidity

range.[25][26]

To apply this model to any collision with a given Npart and Ncoll value we define a

source, which independently emmits particles. The number of sources Nsource is given

by a two-component model, which decomposes the nucleus-nucleus collisions into soft

interactions which produce particles with an average multiplicity proportional to Npart

and hard interactions, where the soft interactions , probability of whose occurence is

proportional to Ncoll.[27]

The steps taken from here on are given below[24]:

• The number of independently emitting source particles are given by the Two

component model:

Nsource =
(1− x)

2
Npart + xNcoll (3.4)
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3 Centrality Determination of Au-3He collisions

Where, x is the hard interaction fraction.

• We obtain the number of particles produced from each interaction using the

Negative Binomial Distribution (NBD):

P (µ;npp, k) =
Γ(µ+ k)

Γ(µ+ 1)Γ(k)

(npp

k

)µ(
1 +

npp

k

)−(µ+k)
(3.5)

Where, P is the probabitity of measuring µ particles per source particle. npp is

the mean and k is the width of the NBD.

• For every Glauber MC event, the NBD is sampled Nsource times and summed

over to get the multiplicity for the Glauber MC event.

• Histograms are drawn of the Glauber MC events and compared with data

• The best fit is chosen by using χ2 minimisation.

Here, the free parameters are x (from the two component model) and npp and

k from NBD. We take many cases of (npp, k, x) and for each triplet we generate a

glauber multiplicity distribution. Then we calculate the χ2/NDF by comparing the

glauber distribution with our data Refmult histogram. The minimization of χ2/NDF

is shown in Fig. 3.4.

Best fit was obtained for npp = 4.34, k = 2.98, x = 0.13. .
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3 Centrality Determination of Au-3He collisions

Figure 3.4: Plot showing variation of χ2/NDF in neighbourhood of the obtained
minima.

Figure 3.5: (Left) The best fit of Glauber-NBD histogram(red) with data multiplicity
distribution (blue). (Right) The ratio of MC and data events in each Refmult bin.
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The refmult ranges obtained for the 9 centrality classes are given below:

Centrality (%) Refmult range
0 - 5 ≥ 59
5 - 10 < 59 and ≥ 50
10 - 20 < 50 and ≥ 40
20 - 30 < 40 and ≥ 31
30 - 40 < 31 and ≥ 25
40 - 50 < 25 and ≥ 18
50 - 60 < 18 and ≥ 13
60 - 70 < 13 and ≥ 9
70 - 80 < 9 and ≥ 6

Table 3.2: Cuts for selecting different centrality classes.
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Chapter 4

Particle production in Au-3He colli-
sions
4.1 Introduction and Data set

Exploring the QCD phase diagram and subsequently searching for the QCD critical

point is one of the major tasks of relativistic heavy-ion collision (HIC) experiments.

Studying the bulk properties of the fireball formed in high-energy HICs gives us useful

insight on evolution of the system and on the particle production mechanism. As

the fireball formed in high-energy HIC experiments evolves with time, two sequential

freeze-out scenarios are observed, those are chemical freeze-out and kinetic freeze-out.

At chemical freeze-out, the inelastic interactions among the particles cease fixing the

particle yields. This surface is defined by the chemical freeze-out temperature Tch.

Whereas at kinetic freeze-out defined by the temperature Tkin, elastic interactions

among the particles cease fixing the particles momenta.

We use the transverse momentum (pT) spectra of identified particles in HICs

to study the above-mentioned bulk properties. We can also extract the freeze-

out parameters, Tch and Tkin by fitting the data to thermal equilibrium model and

hydrodynamics-motivated blast-wave model respectively.

4.1.1 Event Selection

Please find the event selection described in section 3.1 of the chapter on Centrality

determination (previous chapter).
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4 Particle production in Au-3He collisions

4.1.2 Track Selection

For optimal particle identification, we select the good tracks through the application

of cuts. To study the identified particle spectra, the distance of closest approach

(DCA) of the tracks from the event vertex are taken to be less than 3 cm. A rapidity

cut of |y| < 0.1 is used. The cut on the number of fit points (nFitPts) should be 25 to

avoid split tracks (one track counted as two). The tracks travelling through the TPC

volume can have maximum 45 possible hits. The fraction of points used in the fit is

required to be greater than 0.52 of the maximum fit points (nFitPoss) to prevent over

counting of split tracks. In order to ensure tracks have good 〈dE/dx〉, a cut is applied

on the number of hits used to calculate 〈dE/dx〉 of the track i.e., nHitsdEdx > 15.

To summarize,

• −0.1 < y < 0.1

• DCA < 3 cm

• nHitsFit > 25

• nHitsFit
nHitsPoss

> 0.52

• nHitsdEdx > 15

4.2 Particle Identification

For particle identification, we use the energy loss (dE/dx) information from TPC. The

below shows dE/dx as function of the ratio of momentum and charge for Au+3He

collisions at
√
sNN = 200GeV.
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4 Particle production in Au-3He collisions

Figure 4.1: The dE/dx distribution of charged particles with |y| < 0.1 as a function
of (momentum/charge) in Au-3He collisions at

√
sNN = 200GeV. The left part shows

negatively charged particles and the right part shoes positively charged particles.

However, as the 〈dE/dx〉 distribution for a particle is not Gaussian, for ease of

particle identification (via multi-Gaussian fitting), we define a new variable for a

particular particle i as,

Zi = ln

[
(dE
dx

)experiment

(dE
dx

)theory

]
(4.1)

(dE
dx

)theory was calculated using the Bischel function (an approximation of Bethe bloch

energy loss formula) as,(
dE

dx

)
theory

= q2 exp

(
B

(
log10

(
p|q|
Mpart

)))
(4.2)

Where, q = charge, p = momentum, Mpart = Mπ or MK or Mproton. B is the Bischel

function. [16]

For a given particle, Zi distributions are made in different pT bins within rapidity

|y| < 0.1. To extract the raw yeild of a particular particle in a given pT bin, we
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Figure 4.2: The Z variable distributions for π+ (left) and π− (right) with |y| < 0.1 in
Au-3He collisions at

√
sNN = 200GeV.

perform a multi-Gaussian fit to the Zi distribution. The multi-Gaussian is given by:

f(z) =
b.w.√

2π

( 4∑
j=1

Nj

σj
exp

[z −Mj

zσ2
j

])
(4.3)

Here, b.w. is the bin width and Ni are the required yeilds.

After the yeild is obtained in each pT bins, we plot the yeild vs. pT to get the

transverse momentum spectra.
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Figure 4.3: The Zπ distribution of π+ for different pT bins in Au+3He collisions
at
√
sNN = 200 GeV. The curves are Gaussian fits representing contributions from

pions (dotted- blue), electrons (dotted-green), kaons (dotted-magenta), and protons
(dotted-orange).
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Figure 4.4: The Zπ distribution of π− for different pT bins in Au+3He collisions
at
√
sNN = 200 GeV. The curves are Gaussian fits representing contributions from

pions (dotted- blue), electrons (dotted-green), kaons (dotted-magenta), and protons
(dotted-orange).
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Figure 4.5: Mean positions of diferent particles in zπ distribution as a function of pT .
The left figure shows the means of zπ distribution of π+ and the right figure shows
the means of zπ distribution of π−. The plots are made for particles with |y| < 0.1 in
Au-3He collisions at

√
sNN = 200GeV.
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Figure 4.6: Width of the pion gaussian as a function of pT . The left figure is for zπ
distribution of π+ and the right figure is for zπ distribution of π−.

We see that the means of the gaussians in a pT bin plotted with pT traces the

peaks of the 2-D Zπ vs pT distribution in Fig. 4.2, which is expected. The width of

the π± gaussians dont vary much with pT and stays flat.

We normalize the yeilds in every pT bin with the total number of events and plot

it with pT, this plot is called the minimun bias pT spectra. In figure 4.7, we see a clear

dependence of normalized yeilds with pT for both π+ and π−. The yeilds decrease

monotonically with increasing pT.
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Figure 4.7: Normalized minimum bias π+ (left) and π−(right) yeilds as functions
of pT . The plots are made for particles with |y| < 0.1 in Au-3He collisions at√
sNN = 200GeV.

Similar procedures of plotting pT spectra was done in different centralities and for

all particles (π, K, p). The below graph is made for π+. We see that the shape of π+

spectra remains same in different centralities.
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Figure 4.8: pT spectra of π+ in different centralities. The graphs were scaled by some
factors relative to the 70-80% plot to increase visibility.
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Figure 4.9: pT spectra of π+ in different centralities. The graphs were scaled by
some factors relative to the 70-80% plot to increase visibility. The plots are made for
particles with |y| < 0.1 in Au-3He collisions at

√
sNN = 200GeV.
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Figure 4.10: pT spectra of π+ in different centralities. The graphs were scaled by
some factors relative to the 70-80% plot to increase visibility. The plots are made for
particles with |y| < 0.1 in Au-3He collisions at

√
sNN = 200GeV.

4.2.1 Particle identification and spectra from TOF

As we can see in the Figs. 4.2, 4.3 and 4.4, after 0.7-0.8 GeV, the particle tracks of

pion, kaon, electron and protons start merging together. Hence, particle identification

from TPC in higher pT bins becomes more difficult and less reliable. So, we use the

time of flight information from the TOF detector for pushing the particle identification

to higher pT .

From TOF, we find the spectra using m2 distribution in different pT bins. m2 is
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calculated as,

m2 = p2
(
c2T 2

l2
− 1

)
(4.4)

Here, T = time of flight, l = pathlength, p = momentum, c = speed of light. However,

finding the yeilds in each pT bins is not as straight forward as in the case of TPC,

as the m2 distribution for a given particle is not gaussian. So, Instead of doing a

multi-gaussian fit, we fit out m2 distribution with a sum of predicted m2 distribution

for each particle under consideration[34][35].

First we calculate an expected time of flight, Texpected for a particular hadron using

the PDG value of the mass of the hadron.

T hadexp =
l

c

(m2
had

p2
+ 1
)1/2

(4.5)

Where, had = π, K or p

Then we calculate ∆thad = T − T hadexp and fill it into a histogram for each pT bin.

The histograms for each hadron (π, K, p) are filled subject to a cut, nσhad < 2.0

(PID selection).

In another event loop, we calculate T hadpredicted = T hadexp + ∆thadrandom where, ∆thadrandom

is randomly sampled from the ∆thad distribution for each pT bin. Using T hadpred, we

calculate m2
pred,had as,

m2
pred,had = p2

(
c2(T hadpred)

2

l2
− 1

)
(4.6)

Thus, after obtaining m2
π, m2

K and m2
p in a particular pT bin, we add these his-

tograms and fit it to the total m2 distribution in that pT bin, with the scaling factors

of the histograms as free parameters.

The yeilds in each pT bin is obtained by integrating the scaled histograms.
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Figure 4.11: The predicted m2 fitting for positively charged identified hadrons is
shown here for all pT bins at 0-5% centrality in Au-3He collisions at

√
sNN = 200GeV.

The plots are made for particles with |y| < 0.1 in Au-3He collisions at
√
sNN =

200GeV.
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Figure 4.12: The predicted m2 fitting for negatively charged identified hadrons is
shown here for all pT bins at 0-5% centrality in Au-3He collisions at

√
sNN = 200GeV.

The plots are made for particles with |y| < 0.1 in Au-3He collisions at
√
sNN =

200GeV.
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Figure 4.13: (Left) The π+ spectra from TOF in different centralities. (Right) The
π− spectra in different centralities. The spectras in other centralities are scaled by
powers of 2 w.r.t 0− 5% for visibility. The plots are made for particles with |y| < 0.1
in Au-3He collisions at

√
sNN = 200GeV.
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Figure 4.14: (Left) The K+ spectra from TOF in different centralities. (Right) The
K− spectra in different centralities. The spectras in other centralities are scaled by
powers of 2 w.r.t 0− 5% for visibility. The plots are made for particles with |y| < 0.1
in Au-3He collisions at

√
sNN = 200GeV.

From the plots, we see that, the shape of pion raw spectra remains mostly identical

in all centralities. Whereas, On the other hand, the slope of kaon and proton spectra

shows a gradual flattening as one goes from peripheral to central collisions. This

is an indication of stronger radial flow effects for heavier particles with increasing

centrality.
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Figure 4.15: (Left) The p spectra from TOF in different centralities. (Right) The
p̄ spectra in different centralities. The spectras in other centralities are scaled by
powers of 2 w.r.t 0− 5% for visibility. The plots are made for particles with |y| < 0.1
in Au-3He collisions at

√
sNN = 200GeV.
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Figure 4.16: π−/π+ in different pT bins, in 0 − 5% (Left), 30 − 40% (Middle) and
50 − 60% (Right) centralities. The plots are made for particles with |y| < 0.1 in
Au-3He collisions at

√
sNN = 200GeV.
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Figure 4.17: K−/K+ in different pT bins, in 0 − 5% (Left), 30 − 40% (Middle) and
50 − 60% (Right) centralities. The plots are made for particles with |y| < 0.1 in
Au-3He collisions at

√
sNN = 200GeV.
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Figure 4.18: p̄/p in different pT bins, in 0 − 5% (Left), 30 − 40% (Middle) and
50 − 60% (Right) centralities. The plots are made for particles with |y| < 0.1 in
Au-3He collisions at

√
sNN = 200GeV.

4.3 Correction factors

The raw spectra extracted in the earlier sections are not the true spectra, as they are

associated with detector inefficiency as well as contamination from various sources.

Corrections need to be performed on the raw pT spectra to extract any meaningful

physics from it. The first step in performing these corrections is a process embedding

technique, which is a monte carlo simulation [28][29][30].
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4.3.1 Monte-Carlo Embedding Technique

Simulated events are generated from a flat pT and η distribution using Heavy Ion Jet

Interaction Generator (HIJING)[31] to ensure equal statistics in each pT bin. These

generated tracks are called embedded tracks with initial momentum pMC
T . It is then

mixed with the real events at 5% level and is allowed to pass through the GSTAR[32]

(the software package to run STAR detector simulation using GEANT[33]) and TRS

(the TPC response simulator). The data is reconstructed as that of the real data

taking into consideration all the detector effects. Then a association mapping is per-

formed between the reconstructed tracks and the input MC tracks. For each MC track

in GEANT, a search for reconstructed track is performed within a window of ±0.6cm

in x, y and z [29]. If the track is found, then the reconstructed track is marked as

matched track. If more than 10 hits of the MC track match with a single reconstructed

track in the embedded event, then the track is called a reconstructed track with a

momentum assigned pRECT . After this a quality assurance of the embedding sample is

done to make sure that the MC simulation sample reproduces the characteristics of

real data. For this, we compare distributions such as DCA, nFitpoints, nHits dEdx

and φ between real data.

Using information from the embedding data, we correct the raw pT spectra bin

by bin. Unfortunately, the embedding simulation could not be completed in time for

the submission of this report, so, as of now, no correction to the data could be done.

4.4 Summary and Outlook

• We have implemented the methods for finding raw pT spectra of π±, K±, p(p̄)

in all centralities from TPC and TOF.

• Efficiency, acceptance, and other corrections will be performed once the embed-
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4 Particle production in Au-3He collisions

ding data is ready.

• The corrected spectra will be fitted to various appropriate distribution function

to extract 〈pT 〉 and dN/dy dependence.

• The corrected spectra will be fitted to Blast-wave function to extract freezeout

parameters.
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Chapter 5

A Multi-Phase Transport (AMPT)
model
A Multi-Phase Transport(AMPT) Model is a Monte-Carlo transport model for heavy

ion collision at high energies or relativistic velocities [46]. Being a transport model, it

treats the non-equilibrium dynamics explicitly and includes both partonic interactions

that occurs initially and the subsequent hadronic interactions. The model has been

coded using Fortan 77. The current version used in the project is v1.26. The AMPT

model has two different variations representing different physics, the default AMPT

model and the AMPT model with string melting.

The AMPT model consists of the following components:

• Heavy Ion Jet Interaction Generator (HIJING): The initial conditions

of the collision are obtained using the HIJING model. It is a two component

model consisting of soft strings and hard minijets. The initial consitions consist

of the spatial and momentum distributions of minijet partons and soft string

excitations for a collision.

• Zhangs parton cascade (ZPC): Partonic interactions is modelled using the

ZPC model which models the scatterings among partons. It includes only two-

body scatterings with cross sections obtained from the pQCD with screening

masses. This is an event driven simulation as the observables are calculated at

the point when the next interaction takes place.

• Lund string fragmentation model: In the AMPT default model, the con-
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version from the partonic to the hadronic matter is through the recombination

of the par- tons with their parent strings after the parton interactions have ter-

minated. The resulting strings are then converted to hadrons using the Lund

string fragmentation model.

• Quark coalescence model: In the AMPT model with string melting, once the

partons stop interacting, they combine into hadrons using the Quark coalescence

model. The hadrons then interact using the extended ART model.

• Extended A Relativistic Transport (ART) model: The ART model is

used to simulate the subsequent hadronic interactions, and extended to include

additional reaction channels that are significant at high energies. This is time

driven simulation as the coordinates of the particles are calculated at fixed

intervals of time.

Figure 5.1: AMPT model schematic, in default format (left) and with string melting
turned on (right) [46].

Once the hadronic interactions are terminated, the final output is obtained after a

threshold time tcut at which point all interactions are terminated. The observables are
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5 A Multi-Phase Transport (AMPT) model

considered to be stable at that point and it is assumed that no more of the hadronic

interactions would lead to significant change to the observables.

5.1 Spectra analysis from AMPT data

For the rest of the analysis in this chapter, we have used AMPT with String melting

turned on and partonic cross section σp 3mb. A total of 3.5 million 200GeV Au-3He

events were generated. Centrality determination was done by applying cuts on the

RefMult distribution (number of charged particles with |η| < 0.5 in an event). Higher

RefMults correspond to higher centralities. All the analyses below have been done at

mid rapidity (track cut of |y| < 0.1) has been applied.

5.2 Transverse momentum spectra

pT spectra is obtained from AMPT data directly by filling separate pT histograms for

π, K, p in different centralities. The π± spectra have similar shape in all centralities.
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Figure 5.2: (Left) Spectra for π+ in different centralities. (Right) Spectra for π− in
different centralities.
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Figure 5.3: (Left) Spectra for K+ in different centralities. (Right) Spectra for K− in
different centralities.
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Figure 5.4: (Left) Spectra for p in different centralities. (Right) Spectra for p̄ in
different centralities.

The obtained pT spectra are fitted with appropriate distribution functions. The

fit functions are Bose-Einstein for pions, mT - exponential for kaons and double

exponential for (anti) protons. These fit functions are so chosen that, it best describes

the spectral shape of the particle.

for π±

Functional form of the fit function (Bose-Einstien): cBE

[
exp

(
mT

TBE

)
− 1
]−1
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Figure 5.5: (Left) Fitting for π+. (Right) Fitting for π−. Here, p0 = cBE and
p1 = TBE.

for K±

Functional form of the fit function (mT exponential): cmT
exp

[
−(mT−m)

TmT

]
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Figure 5.6: (Left) Fitting for K+. (Right) Fitting for K−. Here, p0 = cmT
and

p1 = TmT
.

for p(p̄)

Functional form of the fit function (Double exponential): c1 exp
(
−p2T
T 2
1

)
+c2 exp

(
−p2T
T 2
2

)
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Figure 5.7: (Left) Fitting for p. (Right) Fitting for p̄. Here, p0 = c1, p1 = T1, p2 = c2
and p3 = T2.

5.3 Average transverse momentum

Average transverse momenta quantitatively characterizes the slope of the measured

pT spectra of the particles and can be studied in terms of collision energy and cen-

trality. i.e., the transverse dynamics of the particles is reflected in terms of 〈pT 〉. It

is calculated as,

〈pT 〉 =

∫
pT2πpTf (pT ) dpT∫
2πpTf (pT ) dpT

(5.1)

where, f(pT ) is the function used to fit the pT spectra of the particles. The integration

is performed in the pT range of 0-10 GeV/c. We see that the 〈pT 〉 stays flat and shows

low dependence on centrality.
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Figure 5.8: 〈pT 〉 vs Centrality plot for π+ (Left) and π− (Right).
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Figure 5.9: 〈pT 〉 vs Centrality plot for K+ (Left) and K− (Right).
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Figure 5.10: 〈pT 〉 vs Centrality plot for p (Left) and p̄ (Right).

50



5 A Multi-Phase Transport (AMPT) model

5.4 Particle yeilds

The total particle abundance is a reflective of the total entropy produced in the

collision. In a particular collision centrality at midrapidity (|y| < 0.1), it is defined

by dN/dy or particle yield. This is obtained by integrating the pT spectra of the

particles over pT . It is calculated as,

dN

dy
=

∫
f (pT ) 2πpTdpT (5.2)

and

Where, f(pT ) are the fitted distributions. We see that, in all cases, except for the

most peripheral centrality bin, the dN/dy decreases with decreasing centrality.
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Figure 5.11: dN/dy vs Centrality plot for π+ (Left) and π− (Right).
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Figure 5.12: dN/dy vs Centrality plot for K+ (Left) and K− (Right).

0 10 20 30 40 50 60 70 80
Centrality (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dN
/d

y

p (AMPT)p (AMPT)

0 10 20 30 40 50 60 70 80
Centrality (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dN
/d

y

 (AMPT)p (AMPT)p

Figure 5.13: dN/dy vs Centrality plot for p (Left) and p̄ (Right).

5.5 Kinetic freezeout

Next, we use the pT spectra ro extract the kinetic freeze-out properties. These prop-

erties characterize the details of the systems at kinetic freeze-out or when the elastic

collisions of the particles stops. During this stage, the key parameters used to char-

acterize the system are the temperature and radial expansion velocity. We obtain the

kinetic freeze-out parameters by fitting the pT spectra to a hydrodynamics-motivated

blast-wave model[36][37]. The model assumes local thermalization of the particles

at the kinetic freeze-out temperature and that the they are moving with a common
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5 A Multi-Phase Transport (AMPT) model

transverse flow velocity field. Assuming a radially boosted thermal source with a

transverse radial flow velocity βT and a kinetic freeze-out temperature Tkin, the pT

spectra of the particles is parametrized as follows:

1

pT

dN

dpT
∝
∫ R

0

rdrmT I0

(
pT sinh ρ

Tkin

)
K1

(
mT cosh ρ

Tkin

)
(5.3)

Where, I0 and K1 are the modified Bessel functions of the first and second kind re-

spectively, mT =
√
p2T +m2 is the transverse mass, r is the transverse radial distance,

R is the radius of the fireball.

ρ is the velocity profile given by,

ρ = tanh−1 βT = tanh−1
(( r

R

)n
βs

)
(5.4)

With βT being the transverse expansion velocity, and βs is the maximum transverse

expansion velocity (at the surface of the fireball).

From these equations, we can also derive the average transverse expansion velocity

〈βT 〉 = n
n+2

βn. We keep the freeze-out temperature Tkin, the average transverse

velocity 〈βT 〉, and the exponent of the velocity profile n as free parameters in our fits.

We simultaneously fit theπ±, K± and p(p̄)particle spectra with the blast-wave model.

The fit was done using TMinuit package in ROOT to acomplish χ2 minimization.

Due to the low multiplicity of the Au-3He events, we have taken wider centrality bins

to compensate for that. In the figure below, we see that the fits for p(p̄) degrades

rapidly at higher pT .
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Figure 5.14: Blast-wave fits for π±, K± and p(p̄) in 0-20% centrality bin.

Centrality (%) Tkin(MeV ) 〈βT 〉 n χ2/NDF
0-20 118± 4 0.463± 0.015 1.784± 0.129 69.14
20-40 120± 5 0.444± 0.019 2.014± 0.18 58.67
40-60 123± 7 0.42± 0.026 2.326± 0.233 37.87
60-100 112± 7 0.472± 0.025 1.98± 0.205 25.33

Table 5.1: Parameters Tkin, 〈βT 〉, n in different centrality bins.
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Figure 5.15: (Left) Kinetic freezeout temperature (Tkin) vs. Centrality, (Right) Av-
erage transverse velocity (〈βT 〉) vs. Centrality.
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Figure 5.16: (Left) Exponent of velocity profile (n) vs. Centrality, (Right) Tkin vs.
〈βT 〉.

5.6 Summary and Outlook

• The transverse momentum spectra of π±, K± and p(p̄) at midrapidity (|y| < 0.1)

are measured for nine centralities.

• Observables like average transverse momentum (〈pT 〉), particle yields (dN/dy)

and kinetic freeze-out properties are extracted

• We need to repeat everything in a higher statistics to improve the fits.
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5 A Multi-Phase Transport (AMPT) model

• One could try to see tha variation of the freeze-out properties by varying σpp.

• Next step would be to do all of the above excercises on efficiency corrected real

data.
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Appendix A

Modified 3He distribution
A.1 The Hamiltonian

We assume the simplest picture of a nucleus, a nonrelativistic system of interacting

nucleons (neutrons and protons), whose Hamiltonian is given by,

∑
i

p2
i

2m
+
∑
i<j

vij +
∑
i<j<k

Vijk + · · · (A.1)

The nucleons can interact via two-, three-, or many-body interactions. The first term

is the kinetic energy term, and the subsequent terms represent the 2 and 3 body

interactions. [19]

A.1.1 Two - nucleons (NN) interactions

The NN interactions are given by Argonne v18(AV18) interactions.[20] The AV18

potential is written as a sum of electromagnetic term, one-pion-exchange term and a

short-range phenomenological part, [18]

vij = vγij + vπij + vRij (A.2)

The electromagnetic terms include one- and two- photon exchange Coulomb interac-

tion, vacuum polarization, Darwin-Foldy, and magnetic moment terms, with appro-

priate proton and neutron form factors:

vγ(pp) = VC1(pp) + VC2 + Vvp + VDF + VMM(pp)
vγ(np) = VC1(np) + VMM(np)
vγ(nn) = VMM(nn)

(A.3)
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A Modified 3He distribution

The long-range component of the NN interaction is due to one-pion exchange

(OPE). Ignoring the isospin-breaking terms, it can be written at long distances as,

vπij =
f2πNN
4π

mπ
3

[Yπ (rij)σi · σj + Tπ (rij)Sij] τ i · τ j
Yπ (rij) = e−µrij

µrij

Tπ (rij) =
[
1 + 3

µrij
+ 3

(µrij)
2

]
e−µrij

µrij

(A.4)

Where, the mass mπ is the mass of the exchanged pion, σi and τ i are spin and isospin

operators and Sij ≡ 3σi · r̂ijσj · r̂ij − σi · σj

The one-pion-exchange and the remaining phenomenological part of the potential

is written as a sum of 18 operators,

vπij + vRij =
∑
p=1,18

vp (rij)O
p
ij (A.5)

The first 14 are charge independent and the last 4 break the charge independence.

Op=1,14
ij =

[
1, (σi · σj) , Sij, (L · S),L2,L2 (σi · σj) , (L · S)2

]
⊗ [1, (τi · τj)] (A.6)

Op=15,18
ij = [1, (σi · σj) , Sij]⊗ Tij, (τzi + τzj) (A.7)

The coefficients are obtained by fitting the potential to nucleon-nucleon scattering

data

A.1.2 Three nucleon (NNN) interactions

The Urbana series of three-nucleon potentials can be written as sum of a two-pion-

exchange term and a short-range phenomenological term, [18]

Vijk = V 2π
ijk + V R

ijk (A.8)

The two pion exchange potential and the phenomenological potential are given by:

V 2π
ijk =A2π[{Xij, Xik}{τi · τj, τi · τk}+

1

4
[Xij, Xik][τi · τj, τi · τk]] (A.9)
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A Modified 3He distribution

Where, Xij = Yπ (rij)σi · σj + Tπ (rij)Sij

V R
ijk = U0

∑
cyc

T 2
π (rij)T

2
π (rik) (A.10)

The parameters for model IX are A2π = 0.0293 MeV and U0 = 0.0048 MeV [19].

They have been determined by fitting the density of nuclear matter and the binding

energy of 3H in conjunction with the AV18 interaction.

A.2 The trial wave-function

A.2.1 Variational Monte Carlo

Variational Monte Carlo (VMC) explicitly writes a trial wave function, with 20-30

variational parameters. Optimization of the parameters is done by minimizing the

expectation value of energy. Spatial integrals are evaluated using the Metropolis

algorithm.

The trial wave functions used in VMC calculations typically have a simple form

[19]:

|ΨT 〉 =

[
S
∏
i<j<k

Fijk

][
S
∏
i<j

Fij

]
|ΨJ〉 (A.11)

Here , the Jastrow state |ΨJ〉 carries the quantum number information. The Jastrow

wave function |ΨJ〉 is given by,

|ΨJ〉 = A

[ ∏
i<j∈s

f css (rij)
∏

i∈s,j∈p

f csp (rij)
∏

i∈p,j∈p

f cpp (rij) |Φ(JMTTz)〉

]
(A.12)

f c’s are the central-pair correlation functions dependent the pair distance only. At

long distances, the behavior may be different for nucleons in different shells, and

hence label the f c’s by the single-particle orbits of the two nucleons.

The two-body spin-isospin correlation operators Fij in the equation for |ΨT 〉 carry
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A Modified 3He distribution

the short- and intermediate-range physics. They are parametrized as

Fij =

[
1 +

∑
m=2,8

um (rij; R)Om
ij

]
(A.13)

and contain operators Om
ij that are a subset of those employed in the interaction:

Om
ij = [1,σi · σj, Sij, (L · S)ij]⊗ [1, τ i · τ j] (A.14)

The dependence upon the pair distance rij is obtained as a solution of Schrdinger like

equations in the various two-body channels. Schematically, they are written as,

−(1/m)∇2[f(r)φ(r)]JST + [vij + λ(r)] [f(r)φ(r)]JST = 0 (A.15)

We solve the equation for the various channels of J, S, T and the correlations are

rewritten in operator form. The functions φ(r) contain the appropriate spheri-

cal harmonics for the given J, S, T . For the spin-triplet channels the combination

[f(r)φ(r)]JST satisfies two coupled equations with L = J − 1 and L = J + 1 . The

variational parameters are included in the functional form of λ(r). For s-shell nuclei,

the form is adjusted so that

[f css(r)]
A−1 → exp(−γr)/r (A.16)

where γ is related to the separation energy of the last nucleon.

The structure of the three-nucleon correlations Fijk is derived frim NNN interac-

tion Vijk

Fijk = 1− βVijk (A.17)

where β is again a variational parameter.

Typically, one uses the Metropolis method to obtain points distributed pro- por-

tional to a probability density W (R), often choosing W (R) = |〈ΨT (R)|ΨT (R)〉|,
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A Modified 3He distribution

where the angle brackets indicate sums over the internal degrees of freedom, the spins

and isospins. Hence expectation value can be estimated as,

〈O〉 =

∫
dR 〈ΨT (R)|O|ΨT (R)〉∫
dR 〈ΨT (R)|ΨT (R)〉

≈
∑

i 〈ΨT (Ri) |O|ΨT (Ri)〉 /W (Ri)∑
i 〈ΨT (Ri) ΨT (Ri)〉 /W (Ri)

(A.18)

Replacing O with R, we can calculate an upper bound to the exact ground-state

energy,

E =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

> E0 (A.19)

A.3 Green’s function Monte Carlo

The basis of this technique is using Green’s function as an propagator:

|Ψ0〉 = lim
τ→∞

exp [− (H − E0) τ ] |ΨT 〉 (A.20)

For a short period of imaginary time,

|Ψ(τ + ∆τ)〉 = exp [− (H − E0) ∆τ ] |Ψ(τ)〉 (A.21)

matrix elements of the short-time propagator:

〈R′, χ′| exp(−H∆τ)|R, χ〉

=G (R′,R; ∆τ) ≈

[ ∏
i=1,A

G0,i (|ri − r′i|)

]

×
∑
χ1,χ2

〈
χ′

∣∣∣∣∣
[

1− ∆τ

2

∑
i≤j<k

Vijk (R′)

]∣∣∣∣∣χ1

〉

×

〈
χ1

∣∣∣∣∣S∏
i<j

[
gij
(
r′ij, rij

)(
g0ij

(
r′ij, rij

) ]∣∣∣∣∣ |X2〉 〈χ2|

×

[
1− ∆τ

2

∑
i<j<k

Vijk(R)

]
|χ〉

(A.22)

Here, g0ij and G0 are the free one and two body propagators.

A very general scheme of GFMC is given here:
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A Modified 3He distribution

• The trial wavefunction (ΨT ) is obtained by using variation of parameters, and

a set of coordinates is sampled from the distribution |Ψ2
T |.

• For each configuration, the subsequent configurations Ri , at τ = i∆τ , are ob-

tained sequentially from Ri−1, by iterating with the importance-sampled Greens

function GI ,

I (Ri) Ψ (Ri) =

∫
GI (Ri,Ri−1) I (Ri−1) Ψ (Ri−1) dRi−1 (A.23)

Where,

GI (Ri,Ri−1) =

[
I (Ri)G (Ri,Ri−1)

1

I (Ri−1)

]
(A.24)

and,

I(R) = |ΨT (R)| (A.25)

• Each configuration is iterated until it converges to ground state.
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Appendix B

Comparision of Modified and Un-

modified 3He nuclear profile
We need to compare the 3He nuclear profiles from the GFMC calculations (Modified)

and the default nuclear profile in AMPT (Unmodified). To that end, we generated

two implementations of AMPT with String melting turned on and σpp = 3mb for the

two 3He configurations. The two 3He implementations have also been compared with

Au-Au collisions from AMPT and STAR data.

To compare the two nuclear profiles, we need to use bulk observables which are

dependent on initial conditions, i.e., anisotropic flow, eccentricity, pearson correlation,

symmetric cumulants, etc.

B.1 Pearson correlation coefficient

Pearson’s correlation coefficient is the covariance of the two variables divided by the

product of their standard deviations. The form of the definition involves a ”product

moment”, that is, the mean (the first moment about the origin) of the product of the

mean-adjusted random variables[38].

ρX,Y =
E [(X − µX) (Y − µY )]

σXσY
(B.1)

Here, σi is the standard deviation of variable i, µi is the mean of the variable i,the

operator E is the expectation.

Expanding the numerator and denominator of the above eqaution, we get the

expression of ρ in terms of the uncentered moments.
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B Comparision of Modified and Unmodified 3He nuclear profile

ρX,Y =
E[XY ]− E[X]E[Y ]√

E [X2]− [E[X]]2
√

E [Y 2]− [E[Y ]]2
(B.2)

We have plotted the pearson correlation between the two protons in 3He vs. impact

parameter(b) for the two 3He configurations.
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Figure B.1: ρ(xp1, xp2) vs. b plot. We can see that ρ(xp1, xp2) is nearly zero for
unmodified profile, whereas the modified profile shows some negative correlation.
(This plot was made by Dr. Rihan Haque)

B.2 Eccentricity

Mathematically, the participant eccentricity is given as [39],

ε2 =

√(
σ2
y − σ2

x

)2
+ 4 (σxy)

2

σ2
y + σ2

x

(B.3)

Where, for an event, σ2
X , σ2

Y are the variances and σXY is the covariance of the par-

ticipating nucleon distribution in the transverse direction.If we shift the coordinates

so that 〈X〉 and 〈Y 〉 are equal to zero. we can show that,

ε2 =

√
〈r2 cos (2φpart)〉2 + 〈r2 sin (2φpart)〉2

〈r2〉
(B.4)
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Where, (r ,φpart) are polar coordinate positions of participant nucleons.

Similarly, we can find triangularity ε3 as,

ε3 ≡

√
〈r2 cos (3φpat)〉2 + 〈r2 sin (3φpart)〉2

〈r2〉
(B.5)

We have plotted the ε2 and ε3 as a function of number of charged particles in an

event(Nch) and number of participants (Npart) for both the 3He configurations.

From the figures 7.2 to 7.5, we can see that the eccentricities and triangularities

calculated from modified and unmodified 3He nuclear profiles are different. From the

ratio plots of ε2,3, we conclude that the unmodified case shows higher ε2,3 than the

modified case in almost all Nch and Npart bins.
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Figure B.2: (Left) Plot of ε2 vs. Nch for Modified(red) and Unmodified(blue) cases.
(Right) Ratio of ε2 in modified and unmodified cases. We see that ε2 in unmodified
case is a little higher than the modified case.
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Figure B.3: (Left) Plot of ε2 vs. Npart for Modified(red) and Unmodified(blue) cases.
(Right) Ratio of ε2 in modified and unmodified cases.
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Figure B.4: (Left) Plot of ε3 vs. Nch for Modified(red) and Unmodified(blue) cases.
(Right) Ratio of ε3 in modified and unmodified cases. We see that ε3 in unmodified
case is a little higher than the modified case.
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Figure B.5: (Left) Plot of ε3 vs. Npart for Modified(red) and Unmodified(blue) cases.
(Right) Ratio of ε3 in modified and unmodified cases.

For both ε2 and ε3 we see that the Nch dependence shows more change with change

in nuclear profile than the Npart dependence.

B.3 Anisotropic flow

The anisotropic flow parameters vn are good tools for studying initial conditions in

QGP . They describe the momentum anisotropy of particle emission from non-central

heavy-ion collisions. They are obtained from the harmonic coefficients of the Fourier

expansion of the azimuthal distribution w.r.t event plane angle (Ψr) and can be

written as [40]

E
d3N

d3p
=

1

2π

d2N

ptdptdy

(
1 +

∞∑
n=1

2vn cos (n (φ−Ψp))

)
(B.6)

and the nth fourier coefficient is given by, 〈cos(n(φ− Ψp))〉. 〈〉 denotes average over

all particles in all events.

Event plane is the plane containing the beam and the impact parameter. We
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can estimate nth order event plane from the polar coordinates of the participating

nucleons as, [39]

ψn =
atan 2 (〈r2 sin (nφpat)〉 , 〈r2 cos (nφpart)〉) + π

n
(B.7)

So, anisotropic flow, vn is defined as,

vn = 〈cos (n (φ− ψn))〉 (B.8)

B.3.1 Flow from 2-particle correlators

For a particular event,

〈2〉 ≡
〈
ein(φ1−φ2)

〉
≡ 1

PM,2

Σ′i,je
in(φi−φ3) =

|Qn|2 −M
M(M − 1)

(B.9)

Where,Qn ≡
∑M

i=1 e
inφi , M is the number of particles considered and Pn,m = n!/(n−

m)! and the prime in the sum Σ′ means that all indices in the sum must be taken

different. The second step involves averaging over all events.

〈〈2〉〉 ≡
〈〈
ein(φ1−φ2〉

〉〉
≡
∑

events

(
W〈2〉

)
i
〈2〉i∑

events

(
W〈2〉

)
i

(B.10)

Where, W〈2〉 ≡M(M − 1). The 2-particle correlator can be written as:

cn{2} = 〈〈2〉〉 (B.11)

and, the vn can be obtained directly as [44][45]:

vn{2} =
√
cn{2} (B.12)
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B.4 Results

B.4.1 v2, v3 vs Centrality
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Figure B.6: (Left) v2 vs centrality (Right) v3 vs centrality. Open markers represent
AMPT calculations, closed marker represents Au+Au 200 GeV STAR data.

Modified and Unmodified 3He cases donot show much difference.

B.4.2 v2, v3 vs pT

We have plotted v2,3 vs pT in three different centrality bins:
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Figure B.7: Modified and Unmodified 3He-Au AMPT show similar v2 vs pT trends.
Our implementation of Au-Au AMPT explains the data till 1 GeV/c in 0-5% and
10-40% after which it underpredicts. 3He-Au and AuAu AMPT show similar trends
in 0-5% centrality. Both 3He-Au AMPT underpredicts the data at 0-5% [43]
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Figure B.8: Modified 3He-Au gives lower v3 than the Unmodified one in 0-5% cen-
tralitiy. Both underpredicts the PHENIX 3He-Au data. [43]

B.4.3 v2, v3 vs η

We have plotted v2,3 vs η in three different centrality bins:
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Figure B.9: Modified, Unmodified 3He-Au AMPT and Au-Au AMPT show similar v2
vs η trends at 0-5% centrality. At higher centralities, Au-Au v2 is higher than both
He3-Au implementations. In 0-5% centrality, both 3He-Au AMPT implementations
underpredict the PHENIX He3-Au data.[42]
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Figure B.10: Modified, Unmodified 3He-Au AMPT show no particular trends and
are lower than Au-Au AMPT in all centralities. Our Au-Au implementation compare
well with data at in 0-5% centrality.
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B.5 Summary and outlook

Pearson coefficient, ε2,3 vs. Nch show some differences between the Modified and Un-

modified 3He nuclear profiles. As next step in this analysis, one can look at higher

order correlators and correlation between different orders of anisotropic flow (Sym-

metric cumulants). Symmetric cumulants are calculated as [41],

sc(n,m) ≡ 〈v
2
nv

2
m〉 − 〈v2n〉 〈v2m〉
〈v2n〉 〈v2m〉

(B.13)
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