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CHAPTER 1

Introduction

Hydrodynamics is concerned with the study of dynamics of fluids(gases and liquids).

Since the phenomena considered in fluid dynamics are macroscopic, a fluid is regarded

as a continuous medium. This means that any small volume element in the fluid is always

supposedly so large that it still contains a very great number of molecules. Accordingly,

when we speak of infinitely small elements of volume, we shall always mean those which

are "physically" infinitely small, i.e. very small compared with the volume of the body under

consideration, but large compared with the distances between the molecules. The expressions

fluid particle and point in a fluid are to be understood in a similar sense. If, for example,

we speak of the displacement of some fluid particle, we mean not the displacement of an

individual molecule, but that of a volume element containing many molecules, though still

regarded as a point.The necessity of allowing for relativistic effects in fluid dynamics may

not be only due to large velocity of the macroscopic flow (comparable with the speed of

light).The equations of fluid dynamics are considerably modified also when this velocity is

large but those of the microscopic motion of the fluid particles are large.

Relativistic Hydrodynamics Equations are used as model to study Relativistic Heavy Ion

Collisions at various Heavy Ion Colliders. The domain upto which relativistic hydrodynamics

is applicable in Heavy Collisions is restricted to only to systems under local equilibrium.

These particles must be interacting with each other to reach equilibrium.Local thermo-

dynamic equilibrium (LTE) means that the intensive parameters(scale invariant

quantities e.g.pressure density) are varying in space and time, but are varying so

1



2 Introduction

slowly that, for any point, one can assume thermodynamic equilibrium in some

neighborhood about that point. Conditions for Thermodynamics equilibrium

• For a completely isolated system,entropy(S) is maximum at thermodynamic equilib-

rium.

• For a system with controlled constant temperature and volume, Helmholtz free energy(A)

is minimum at thermodynamic equilibrium.

• For a system with controlled constant temperature and pressure, Gibbs free energy(G)

is minimum at thermodynamic equilibrium.



CHAPTER 2

Domain in which hydrodynamics is applicable

Relativistic Heavy ion particles and their collisions can be modelled with hydrodynam-

ics only if their interactions are frequent enough for establishing an equilibrium(local).

In order to quantify this frequency of collisions, one way is to choose the mean free path

λ, which is the average distance a particle covers before colliding for the 2nd time, as very

very less than the total size of the system say, L. Thus, by setting λ � L, we can apply

hydrodynamics formulation. Now we derive the expression for mean free path as function

of temperature. In kinetic gas theory atoms are considered as hard spheres, i.e. they only

interact if their distance becomes smaller than the sum of their gas-kinetic radii.1 Therefore

the area around an atom( with radius r1) in which another atom( with radius r2) will be

scattered, defined as the cross section σ, is given by

σ = π(r1 + r2)2 (2.1)

For an ensemble of such atoms, only interacting by collisions, the ideal gas law

P = nkBT (2.2)

holds with n being the particle density where kB is Boltzmann constant and T is temperature.

Now, lets say, in an ensemble of N atoms ,there are dN atoms getting scattered by an distance

dx then
dN

dx
= Nnσ

1The distance from nucleus(considered as point particle) at which the effect of the deformation of the

wavefunctions by Van der Waals interactions is almost negligible.

3



4 Domain in which hydrodynamics is applicable

In a beam of N0 atoms flying through a gas a number

N = N0e
nσx (2.3)

will be scattered along a distance x. By definition and using above equation one finds for

the mean free path

λ = 1
N0

∫ ∞
0

x · |dN
dx
|dx = nσ ·

∫ ∞
0

xe−nσxdx = 1
nσ

(2.4)

Thus, now by applying our limit on mean free path we can approximate any such system by

the relativistic hydrodynamics model.

Now, in our system of relativistic particles, if we have,

• λ > L(Size of System)

Consequence:- The particle leaves the system before interacting with other particles in

the system. Examples are photons inside a system of particles which are interacting

strongly.

• λ ≈ L

Consequence:- The interaction can be modelled using multiple collision model. It

doesn’t reach local thermal equilibrium

• λ� L

Consequence:- In this limit, successive collision model fails and then we need to treat

them as gas of particles and then it can attain local thermal equilibrium and hydrody-

namics scheme can be used.



CHAPTER 3

Relativistic Fluid Dynamics

Now, for studying relativistic hydrodynamics Equation of State(EOS),which a continuous

system, a simplistic classical approach is taken, where we start with a classical model

with particles attached with springs, and taking a infinite number of such particles joined by

springs, then the equilibrium length is made to tend to 0. Thus, we will make a transition

from a discrete system of particles to a continuum system. So lets see how it works out.

3.1 Mass points connected by springs- A discrete system

Figure 3.1: Discrete system:Mass points connected by springs

5



6 Relativistic Fluid Dynamics

Variables in this system

a = equilibrium length of spring.

ηi = displacement of the ith particle from its equilibrium position.

m = mass point,

Starting with the Kinetic Energy expression,

T = 1
2
∑
i

mη̇i
2 (3.1)

The corresponding potential energy is the sum of the potential energies of each spring as the

result of being stretched or compressed from its equilibrium length:

V = 1
2
∑
i

k(ηi+1 − ηi)2 (3.2)

Combining 3.1 and 3.2, the Lagrangian for the system is,

L = T − V = 1
2
∑
i

[mη̇i2 − k(ηi+1 − ηi)2] (3.3)

which can also be written as

L = 1
2
∑
i

a

[
m

a
η̇i

2 − ka
(
ηi+1 − ηi

a

)2
]

=
∑
i

aLi (3.4)

This particular form is chosen for convenience in going to the limit of a continuous rod as a

approaches 0. On taking limit as a→ 0:

• m
a = µ

• ka = Y (Young’s Modulus)1

The above limit is hard to see, unless we consider Hooke’s Law:

F = ka(ηi+1 − ηi
a

) (3.5)

and,

Force(or Pressure)2 = Y ξ (3.6)

Thus, as a → 0, in ka, k → ∞. Since, physically we can also visualize that as we contract

the length of our spring to a single point, the spring becomes nearly impossible to compress,

thus increasing the spring constant to ∞.
1Please don’t check the dimensions now, since we are working with one dimension the concept of Pressure

is not so well-defined, Force and Pressure are used interchangeably,
2Working in One Dimension makes us to use pressure and force interchangeably
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3.2 Transition from Discrete to Continuous System

As our aim was to go to continuous system, the index i’s need to be replaced, in other words,

the ηi’s are replaced by their continuous counterparts as η(x). So accordingly,

lim
a→0

ηi+1 − ηi
a

= lim
a→0

η(x+ a)− η(x)
a

= dη

dx

Thus, finally our Lagrangian in eq(3.3) looks like this for our continuous system(note the

summation changes to a integral),

L = 1
2

∫ [
µη̇2 − Y

(dη
dx

)2
]

dx (3.7)

This analogy which we used for 1-dimension, can be extended to 3-dimension, then we define

the quantity inside the integral as Lagrangian Density(L),

L =
∫ ∫ ∫

Ldxdydz (3.8)

3.3 Change of gears:Use of compact notations

Compact notations3, can simplify our life, a bit. The generalised coordinate we are working

with is η(x), and since we are working with Lagrangian density instead of the Lagrangian,our

Euler Lagrange Equation changes accordingly.4

d

dt

 ∂L
∂
(
dηx
dt

)
+ d

dx

 ∂L
∂
(
dηx
dx

)
+ d

dy

 ∂L
∂
(
dηx
dy

)
+ d

dz

 ∂L
∂
(
dηx
dz

)
− ∂L

∂ηx
= 0

d

dt

 ∂L
∂
(
dηy
dt

)
+ d

dx

 ∂L
∂
(
dηy
dx

)
+ d

dy

 ∂L
∂
(
dηy
dy

)
+ d

dz

 ∂L
∂
(
dηy
dz

)
− ∂L

∂ηy
= 0

d

dt

 ∂L
∂
(
dηz
dt

)
+ d

dx

 ∂L
∂
(
dηz
dx

)
+ d

dy

 ∂L
∂
(
dηz
dy

)
+ d

dz

 ∂L
∂
(
dηz
dz

)
− ∂L

∂ηz
= 0

(3.9)

All this equations can written in compact notations as,

d

dxν

(
∂L
∂ηρ,ν

)
− ∂L
∂ηρ

= 0 (3.10)

Thus, it can be seen that the Lagrangian density(L) is a function of only L(η, dηdx ,
dη
dt , x, y, z, t)

Now for 1-D case, the equation of motion turns out to be,

µ
d2η

dt2
− Y d

2η

dx2 = 0 (3.11)

3Use of tensorial notations, though the name sounds gaudy. Relativity demands they be put in relativisti-

cally invariant forms, writing in Tensors ensures that.
4The complete derivation can be found in Classical Mechanics, Herbert Goldstein pg-565



8 Relativistic Fluid Dynamics

3.4 Energy Momentum Tensor

Till now, using Euler Lagrange equations we can find the Equations of Motion. If our

Lagrangian is independent of one of the cyclic generalised coordinates, then the conjugate

generalised momenta is conserved. So in search of that constant of motion, we proceed to

write
dL
dxµ

= ∂L
∂ηρ

ηρ,µ + ∂L
∂ηρ,ν

ηρ,µν + ∂L
∂xµ

(3.12)

By the Euler Lagrange Equation (3.10),

d

dxν

[
∂L
∂ηρ,ν

ηρ,µ − Lδνµ

]
= − ∂L

∂xµ
(3.13)

Now, here we define the Canonical Energy Momentum Tensor. So here if RHS is 0,

then the conjugate momenta corresponding to xµ is constant of motion.

T νµ = ∂L
∂ηρ,ν

ηρ,µ − Lδνµ (3.14)

3.5 Components of Energy Momentum Tensor

3.5.1 T 0
0 component

T 0
0 = ∂L

∂η̇ρ
η̇ρ − L (3.15)

From the definition of canonical momentum as,

pρ = ∂L
∂η̇ρ

(3.16)

It turns out that

T 0
0 = pρη̇ρ − L = ε(Energy Density of system)

3.5.2 T i
0 component

In continuum limit the Lagrangian density was written,(in 1 dimension)(3.7)

L = µη̇2 − Y
(dη

dx

)2
(3.17)

So, for calculating the T i0th component we need,

∂L
∂ dηdx

= −Y dη
dx

(3.18)

Thus computing T 1
0 ’s(for 1 dimension)

T 1
0 = −Y dη

dx
η̇
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where −Y dη
dx =Force(or Stress in 1 dimension), Therefore,

T i0 =Rate of energy being transferred per unit time(energy current)

3.5.3 T 0
i component

Similarly, for calculating T 0
i th component we need,

∂L
∂ dηdt

= µ
dη

dt
(3.19)

Momentum density(in 1-D momentum per unit length) can be given by µη̇, but when wave

motion(from 3.11) takes place, a net mass change in the length dx at any time is given by,

µ[η(x)− η(x+ dx)] = −µdη
dx
dx

This implies,

Net Momentum= −µη̇ dηdxdx

T 0
i = −µη̇ dηdx(Momentum Density)

3.5.4 T j
i component

For interpreting the T ji components, we take a slightly different approach, where we assume L

represents a free field(L is independent of xµ). This implies T νµ,ν = 0, which upon expansion,

T νµ,ν =
dT 0

µ

cdt
+
dT iµ
dxi

= 0 (3.20)

Now, integrating both sides over a volume V,

d

cdt

∫
T 0
µdV = −

∫
∇ · TµdV (3.21)

Applying Gauss theorem,
d

cdt

∫
T 0
µdV = −

∮
T νµdSν (3.22)

Here the closed integral is over a closed surface enclosing the volume V. In this equation, we

already know T 0
µ represents momentum density. Volume integral of momentum density over

Volume V represents the momentum, and consequently its time derivative give us the Force.

L.H.S =Force⇒ T νµ (only the 3× 3 matrix ) represents Pressure along ν’th direction.
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3.6 Energy momentum tensor in Relativistic Hydrodynamics

Now, that we know all the components of the Energy Momentum Tensor, we construct the

Energy Momentum Tensor for Relativistic Heavy Ion Collision in the Local Rest Frame(LRF)

of the particles,

Tµν =



ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


where

ε =Energy Density

P = Pressure in Local Rest Frame of the Particles.

Since we took an isotropic and perfect fluid, the Pressure is equally distributed and only

diagonal components survive,

T ii = ∆pi
∆t∆xj∆xk

where ∆pi is the momentum change along ith direction, and ∆xj is displacement along jth

direction.

3.7 Fluid in any general inertial frame

In order to obtain the Energy-Momentum Tensor in any general inertial frame, we give it a

Lorentz Boost along arbitrarily chosen uµ(γ, γvx, γvy, γvz) direction,

uµ = ΛµνuνR (3.23)

where uνR is the four velocity unit vector in the rest frame of the system,

uνR = (1, 0, 0, 0)

and Λµν is the Lorentz Transformation. In short,

uµ = Λµ0 (3.24)

The metric tensor used for spatial transformation is also Lorentz boosted,

gρσ = gµνR ΛρµΛσν (3.25)
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Since

gµνR =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


Now,

gρσ = g00
R Λρ0Λσ0 + giiRΛρiΛ

σ
i (3.26)

Thus,

ΛρiΛ
σ
i = uρuσ − gρσ (3.27)

On transforming the TµνR ,

T ρσ = TµνR ΛρµΛσν

= εΛρ0Λσ0 + PΛρiΛ
σ
i

= εuρuσ + P (uρuσ − gρσ)

= (ε+ P )uρuσ − gρσP

(3.28)
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3.8 Hydrodynamics Equations

As in 3.13, we set RHS = 0, implies Lagrangian is independent of space(x, y, z) and time(ct),

which again implies their generalised conjugate momenta, momentum(px, py, pz) and energy(ε)

are conserved. The Energy and Momentum conservation equation is:

∂µT
µν = 0 (3.29)

Entropy current(Jµ = suµ) and baryon number density(Jµ = nbaruµ) current conservation

equation is given by,

∂µJµ = 0 (3.30)

In rest frame, the derivative of energy momentum tensor gives,

∂0T
00 = ∂ε

∂t
= 0 (3.31)

∂iT
ii = ∂P

∂xi
= 0 (3.32)

Thus the energy density is forced to be constant with time but could have spatial variations

while the pressure is constant over all space (no pressure gradients) but could depend on time.

For a moving fluid, more work is needed. To obtain a scalar quantity from the requirement

of energy-momentum conservation, we contract 3.29 with the velocity uν ,

uν∂µTµν = 0 (3.33)

0 = uν∂µTµν

= uν∂µ[(ε+ P )uρuσ − gρσP ]
(3.34)

Upon expanding,

0 = uνuµuν∂µ(ε+ P ) + (ε+ P )(uνuµ∂µuν

uνuν∂µuµ)− uν∂νP (3.35)

Since u is a unit four-vector, uνuν = u2 = 1. In addition, this property also gives us

uν∂µuν = (1
2)∂µ(uνuν) = 0. The derivative is zero since u2 = 1.

Using these expressions we get,

uν∂νε+ (ε+ P )∂νuν = 0 (3.36)

Now from 1st law of thermodynamics,

ε+ P = Ts+ µnbar (3.37)
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where

ε = energy density

P = Pressure

T = Temperature

s = Entropy density

u = Chemical Potential

nbar = Baryonic Density

Now keeping T ,P and µ fixed we can write ∂νε = T∂νs + µ∂νnbar, Replacing directly into

3.36,

0 = Tuν∂νs+ µuν∂νnbar + (Ts+ µnbar)∂νuν

= T∂ν(suν) + µ∂ν(nbaruν).
(3.38)

Since the particle current Jν is just nbaruν , the second term in 3.38 is zero by baryon number

conservation. Thus we have,

T∂ν(suν) = 0 (3.39)

One more contraction of 3.29 will result in second hydrodynamics equation. Let us choose a

tensor combination gνλ − uνuλ, which is perpendicular to uν .5

(gνλ − uνuλ)∂µ[(ε+ P )uρuσ − gρσP ] = 0 (3.40)

On expansion,

0 = uµuλ∂µ(ε+ P ) + (ε+ P )(uµ∂µuλ + uλ∂µuµ)− ∂λP

− (ε+ P )(uλuµuν∂µuν + uλ(uνuν)∂µuµ)

− uλuµ(uνuν)∂µ(ε+ P ) + uλuµ∂νP

(3.41)

Again using uνuν = 1 and uν∂µuν = 0, the equation which survives is

(ε+ P )uµ∂µuλ − ∂λP + uµuλ∂
µP = 0 (3.42)

Again using 3.37, now we keep ε, s and nnar are fixed then,

∂λP = s∂λT + nbar∂λµ (3.43)

Replacing in 3.42

s(uµ∂µ(uλT )− ∂λT ) + nbar(uµ∂µ(uλµ)− ∂λµ) = 0 (3.44)
5uνgνλ − uνuλ = uλ − uλ = 0
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If the net baryon density is zero, the equation becomes easier to handle and upon more

simplification and dividing by T gives,

0 = uµ∂µuλ − ∂λ lnT + uµuλ∂µ lnT (3.45)

The entropy current conservation equation can also be rewritten in terms of temperature

using d lnT
d lnS = c2

s,

∂µuµ + 1
c2
s

uµ∂µ lnT (3.46)

3.9 Application to Heavy Ion Collisions

In centre of mass frame, the accelerated motion of the nuclei before collision is completely

longitudinal.

Figure 3.2: Time Evolution of Relativistic Heavy Ion Collision
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Figure 3.3: Schematic representation of the various stages of a HIC as a function of time t

and the longitudinal coordinate z (the collision axis).The light cones represent the velocity

of the two colliding nuclei. The ’time’ variable which is used in the discussion in the text is

the proper time τ =
√
t2 − z2, which has a Lorentz invariant meaning and is constant along

the hyperbolic curves separating various stages in this figure.

Figure 3.4: Dominant Longitudinal Evolution after HIC
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Since longitudinal evolution is dominant, so it is taken as the z coordinate. Some radial

component is expected, as we are dealing in cylindrical coordinate system. But due to

rotationally symmetry azimuthal angular dependence is ignored. In cylindrical coordinate

the uµ can be written as

uµ = 1√
1− (v2

r + v2
z + v2

φ)
(1, vz, vr, vφ)

Since vφ = 0,

uµ = 1√
1− (v2

r + v2
z)

(1, vz, vr)

where vr and vz are radial and longitudinal components respectively. In general vr < vz,

but here for simplicity we assume vr � vz, then in terms of rapidity variable "θ" this can be

written as,(since vz = tanh θ)

uµ = (cosh θ, sinh θ, 0, 0)

where θ is the fluid velocity. Now lets try to untangle from the compact notations for the

equations (3.42), for λ = 0,

0 = −∂0P + uµu0∂
µP + (ε+ P )uµ∂µu0

= −∂P
∂t

+ cosh θ
(

cosh θ∂P
∂t

+ sinh θ∂P
∂z

)
+ (ε+ P )

(
cosh θ∂ cosh θ

∂t
+ sinh θ∂ cosh θ

∂z

)
= (cosh2 θ − 1)∂P

∂t
+ cosh θ sinh θ∂P

∂z

+ (ε+ P )
(

cosh θ sinh θ∂θ
∂t

+ sinh2 θ
∂θ

∂z

)
(3.47)

where we have used u0 = cosh θ. Using the identity cosh2 θ − 1 = sinh2 θ and dividing by

sinh θ, we are left with

0 = sinh θ∂P
∂t

+ cosh θ∂P
∂z

+(ε+ P )
(

cosh θ∂θ
∂t

+ sinh θ∂θ
∂z

)
(3.48)

for λ = 1,

0 = −∂1P + uµu1∂
µP + (ε+ P )uµ∂µu1

= ∂P
∂z + sinh θ

(
cosh θ ∂P∂t + sinh θ ∂P∂z

)
+(ε+ P )

(
cosh θ ∂ sinh θ

∂t + sinh θ ∂ sinh θ
∂z

)
= (sinh2 θ + 1)∂P∂z + sinh θ cosh θ ∂P∂t

+(ε+ P )
(
cosh θ sinh θ ∂θ∂z + cosh2 θ ∂θ∂t

)
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Using u1 = sinh θ. Again using similar identities we get back eqn(3.48). Using almost the

same routine we can get from 3.36,

0 = cosh θ∂ε
∂t

+ sinh θ∂θ
∂z

+(ε+ P )
(

sinh θ∂θ
∂t

+ cosh θ∂θ
∂z

)
(3.49)

Now, let us simplify the equations even more by using light cone variables,space-time rapidity

(ηs)6 and proper time (τ),

ηs = 1
2 ln t+ z

t− z

τ =
√
t2 − z2

(3.50)

Now, t and z can be parametrized as follows(since 1
2 ln 1+x

1−x = tanh−1 x⇒ z
t = tanh ηs),

t = τ cosh ηs

z = τ sinh ηs
(3.51)

Upon transforming the partial derivatives,
∂

∂t
= ∂τ

∂t

∂

∂τ
+ ∂ηs

∂t

∂

∂ηs

= cosh ηs
∂

∂τ
+ 1
τ

sinh ηs
∂

∂ηs

(3.52)

∂

∂z
= ∂τ

∂z

∂

∂τ
+ ∂ηs

∂z

∂

∂ηs

= − sinh ηs
∂

∂τ
+ 1
τ

cosh ηs
∂

∂ηs

(3.53)

Substituting in (3.49) and using trigonometric identities,

0 = cosh (θ − ηs)
∂ε

∂τ
+ 1
τ

sinh (θ − ηs)
∂ε

∂ηs

+(ε+ P )
(

sinh (θ − ηs)
∂θ

∂τ
+ 1
τ

cosh (θ − ηs)
∂θ

∂ηs

)
(3.54)

Finally dividing by cosh (θ − ηs) and multiplying by τ , we are left with

0 = τ
∂ε

∂τ
+ tanh (θ − ηs)

∂ε

∂ηs

+(ε+ P )
(
τ tanh (θ − ηs)

∂θ

∂τ
+ ∂θ

∂ηs

)
(3.55)

Likewise we do the same treatment with (3.48) and we get,

0 = τ tanh (θ − ηs)
∂P

∂τ
+ ∂P

∂ηs

+(ε+ P )
(
τ
∂θ

∂τ
+ tanh (θ − ηs)

∂θ

∂ηs

)
(3.56)

6This rpidity is different from the rapidity variable θ
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Now, we expand the baryon number conservation equation,

∂µ(nbaruµ) = 0 (3.57)

0 = τ
∂nbar
∂τ

+ tanh (θ − ηs)
∂nbar
∂ηs

+nbar
(
τ tanh (θ − ηs)

∂θ

∂τ
+ ∂θ

∂ηs

)
(3.58)

Since the entropy current conservation looks the same , so,

0 = τ
∂s

∂τ
+ tanh (θ − ηs)

∂s

∂ηs

+s
(
τ tanh (θ − ηs)

∂θ

∂τ
+ ∂θ

∂ηs

)
(3.59)
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3.10 Solution of Hydrodynamics equations

We have three equations(Eq3.55,3.56 and 3.58) with the following variables:

• Energy Density(ε)

• Pressure(P )

• Fluid Velocity(θ)

• Baryon Density(nbar)

Thus, we need one more equation to describe the complete picture, which would relate ε and

P . We know the equation of state for a free gas of massless quarks and gluons,

P = ε

3 (3.60)

3.10.1 Initial Conditions

Initial conditions decide the evolution of the fluid further.

Landau Initial Conditions

Landau’s model assumed hydrodynamical evolution that begins from rest, complete stopping

of the initial nuclei. According to Landau, when two hadrons collide, the collision energy is

released into a very small volume in the center of mass. The energy distribution in a small

volume can be treated statistically without actually knowing the nuclear interaction. The

volume is contracted in the direction of motion, as discussed in the introduction. Landau’s

final assumption, that the final-state particles are formed instantaneously and immediately

leave the collision volume without further interaction, is not justified. First, since hadrons

interact strongly, it is unlikely that they would leave the volume without interacting with

any of the other particles around them. In addition, particle production is not instantaneous.

Finally, the system should expand and the number of produced particles is only ’frozen in’

after interactions cease.

Thus according to him,

• θ(t = 0, ~x) = 0

The Drawback of this initial condition is that the assumption that the system starts

from rest is generally too extreme.
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Bjorken Initial Condition

Figure 3.5: A space-time-image illustration of a heavy-ion collision in the ultra- relativistic

(Bjorken) collision limit. Left: Lorentz-contracted nuclei collide and separate as a function

of the laboratory time (vertical axis). Right: the light cone establishes the causality limit for

the flow of energy, which fills the space-time domain between the separating nuclei.

In order to apply this special initial conditions, we need to assume the following,

1. the colliding particles has so much energy that the flow of energy and matter after the

collision remains unidirectional along the original collision axis; and

2. the transverse extent of the system is so large that the existence of the edge of matter

in a direction transverse to the collision axis is of little relevance

3. Soon after the collision the baryon number of the nuclei begins to separate leaving the

intermediate region a trail of energy, presumed to be in baryon-number-free QGP phase.

The nuclei are trailed to right and left by the expansion of the energy they deposited

at the instant of collision.
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If all particles move with a constant velocity along a common longitudinal direction z in

laboratory frame, the trajectory of each particle is a straight line z = vt, leading from the

interaction point to the freeze-out location on the hyperbolic τf =constant surface.

Thus the initial conditions are;

•

ε = ε0(τ, ηs) (3.61)

•

P = P0(τ, ηs) (3.62)

•

T = T0(τ, ηs) (3.63)

•

uµ = (u0,
z

t
, 0, 0) (3.64)

•

θ(ηs, τ) = ηs (3.65)

3.10.2 Solutions of (0 + 1) hydrodynamics equation

0 = τ
∂ε

∂τ
+ ε+ P (3.66)

0 = ∂P

∂ηs
(3.67)

0 = τ
∂nbar
∂τ

+ nbar (3.68)

0 = c2
s + τ

∂ lnT
∂τ

(3.69)

Thus, the solutions can be enumerated as follows,

nbar(τ) = nbar(τ0)τ0
τ
, (3.70)

s(τ) = s(τ0)τ0
τ
, (3.71)

ε(τ) = ε0

(
τ0
τ

)4/3
, (3.72)

T (τ) = T0

(
τ0
τ

)1/3
(3.73)

Here 1/3 in the exponent corresponds to the speed og sound in that medium, since we had

taken ideal gas speed of sound is constant as the EoS is dP
dε = c2

s = 1
3 . The 4th equation
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represents cooling of the QGP state, since decreases with τ . On numerical computation also

the following results are obtained. I used 4th Runge Kutta method to solve the differential

equations and for the lattice EoS, I first used 4 point interpolation to correlate Pressure v/s

energy density and then again used RK-4 to solve the corresponding differential equations.

Figure 3.6: ε
ε0
v/s ττ0

plot
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Figure 3.7: s
s0
v/s ττ0

plot

3.10.3 Solution of Hydrodynamics Equation with given Lattice EoS

The given lattice EoS was

Figure 3.8: ε v/s T plot
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Figure 3.9: P v/s T plot

And the solution for energy density is,

Figure 3.10: ε
ε0
v/s ττ0

plot
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Figure 3.11: ε
ε0
v/s ττ0

plot
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