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Abstract

This thesis investigates the application of neural networks to reduce background interference
when measuring the production of f,(980) resonance in pp collisions at /s = 5.02TeV. The
study focuses on improving the signal-to-background (S/B) ratio in the f,(980) — w7~
hadronic decay channel using the ALICE detector. Traditional methods for calculating the pr
differential yield of f5(980) through invariant mass analysis are discussed. The theoretical
basis and practical implementation of neural networks for background reduction are
presented. A neural network-based approach is applied to a subset of the ALICE dataset, and
the outcomes are compared with those obtained using invariant mass analysis. The study
demonstrates the potential of neural networks to enhance the signal-to-background ratio,
leading to improved measurements.
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Chapter 1

Introduction

Resonances are particles with a very short lifespan, around 10723 seconds, and they decay
through strong interactions. In the field of particle physics, resonances play a crucial role in
studying the fundamental building blocks of matter and how they interact. Understanding
resonances is particularly important in collision experiments. In collisions between proton and
proton (pp collisions), the decay of resonances contributes significantly to the final state of
particles, providing valuable insights into hadron production and serving as a reference for
event generators inspired by quantum chromodynamics (QCD).

Resonances are characterized by a sharp peak in the energy distribution of their decay
products, which corresponds to the mass of the resonance itself. The f,(980) resonance was
first observed in experiments studying the scattering of 77 particles in the 1970s [1, 2]. The
structure of the f;(980) resonance remains an active area of research. Precisely measuring its
production allows for comparisons with production in different configurations predicted by
models like coalescence [3]. However, accurately measuring the production of the f,(980)
resonance is challenging due to the significant background noise present in experimental data.

In recent years, neural networks have emerged as a promising approach to address the issue of
background interference in particle physics experiments. Neural networks have the remarkable
ability to distinguish between signal and background events, resulting in a substantial
improvement in the signal-to-background ratio. By harnessing the power of neural networks
to reduce background noise, the statistical significance of resonance measurements can be
enhanced, enabling more precise determination of their properties.

1.1 Aim

This study aims to investigate the use of neural networks to reduce background noise in
measuring the production of the f3(980) resonance during proton-proton collisions at a
center-of-mass energy of y/s = 5.02 TeV. The main goal is to demonstrate a significant
improvement in the signal-to-background ratio specifically in the hadronic decay channel
f0(980) — 7tn~. We will utilize data collected by the ALICE detector for this purpose. By
employing neural networks, our objective is to enhance the precision of resonance
measurements and gain deeper insights into the dynamics of the strong force involved.



1.2 Terminology

Rapidity (y): Rapidity is a measure of the particle’s velocity in the direction of its
momentum. It is related to the particle’s energy and longitudinal momentum. The formula
for rapidity is given by the equation:

1 E
y=—1In TP (1.1)

Pseudo-rapidity (n): Pseudo-rapidity is another measure of the particle’s velocity, defined
in terms of the angle at which the particle is emitted relative to the beam axis. It is often
used instead of rapidity as it is more convenient for experimental measurements. The formula

for pseudo-rapidity is given by:
0
n=—In|(tan 5 (1.2)

where 6 is the polar angle of the particle with respect to the beam axis.

Transverse Momentum (pr): Transverse momentum is the component of a particle’s
momentum perpendicular to the beam axis. It is a fundamental quantity used to study
particle interactions. The transverse momentum is calculated using the formula:

pr = /D% + 2 (1.3)

Invariant Mass (Mi,y): Invariant mass is a property of a system of particles that remains
constant under Lorentz transformations. It is calculated by combining the energies and
momenta of the particles in the system. The formula for invariant mass is given by:

Minv = v/ E?2 — p2 (14)

where F is the total energy of the system and p is the total momentum vector.

Z Coordinate of the Collision Vertex (zytx): The collision vertex is the point where the
colliding particles interact. z. refers to the z-coordinate of this vertex along the beam axis.

Azimuthal Angle (¢): Azimuthal angle refers to the angle in the transverse plane measured
from a reference direction. In particle physics, it is often measured relative to the beam axis.
The range of ¢ is 0 to 2.

1.3 Detectors

The Time-Projection Chamber (TPC) is the primary tracking detector of ALICE. It is a
cylindrical detector with a large volume (88 m?). The detector has a length of 5.1 m and inner
and outer radii of 0.85m and 2.47 m, respectively. It covers the pseudorapidity range |n| < 0.9
with full azimuthal acceptance. The drift volume is filled with Ne:COy:Ny (90:10:5) [4, 5].
The detector is divided into two drift regions by the central electrode located at its axial
center. The central electrode acts as the cathode, while the anode is situated on the two end
caps. Charged particles passing through the TPC volume ionize the gas along their path,
releasing electrons that drift toward the end plates of the cylinder (anode). The maximum



electron drift time is 94 us. A total of 72 multiwire proportional chambers with cathode pad
readouts are employed in the end plates. The ionized electrons drift for up to 2.5 m and are
detected on 159 pad rows (rows in the radial direction).

The ALICE Time-Of-Flight (TOF) is a large detector that covers a cylindrical surface of 141
m? with an inner radius of 3.7 m. It provides pseudorapidity coverage of |n| < 0.9 and
complete azimuthal coverage, except for the region 260° < ¢ < 320° at |n| < 0.14, to minimize
the material in front of the Photon Spectrometer (PHOS) [4]. The TOF utilizes Multigap
Resistive Plate Chambers (MRPCs), which have an intrinsic time resolution better than 50 ps
with an efficiency close to 100% [6]. The active region of the TOF barrel has a length of 741
cm. It consists of approximately 153,000 readout channels and has an average thickness of
25-30% of Xy, depending on the detector zone. The gas mixture used in the MRPCs is
CoHoFy (93%) and SFg (7%). The MRPCs for the ALICE TOF are designed as double-stack
strips [6]. Each stack has five gas gaps (250 pm wide), and both stacks are positioned on
either side of a central anode. A high voltage is applied to the external voltage of the stack,
and pickup electrodes are located further out. When a charged particle traverses the gas in
the MRPCs, the high electric field amplifies the ionization, resulting in an avalanche. The
resistive plates halt the avalanche development in each gap but allow the fast signals induced
on the pickup electrodes by the movement of electrons to pass through. Therefore, the total
signal is the sum of signals from all gaps. The excellent time resolution is achieved due to the
narrow gaps between different layers of RPC.

Chambers

VD e N IvI|3lpole
VO TRD gy agnet

Trigger
Chamber

Fig. 1.1: Schematic diagram of the ALICE detector. The diagram illustrates the various
components and subsystems of the ALICE detector, including the Time-Projection Chamber

(TPC), Time-Of-Flight (TOF) detector, Photon Spectrometer (PHOS), and other essential
elements

The TOF provides time measurements that, along with the momentum and track length
measured by the tracking detectors, are used to calculate the particle mass. This enables the
particle identification capabilities of the TOF detector.

In the next chapter, we will discuss the traditional method for calculating the pr differential
yield.



Chapter 2

Invariant Mass Analysis

2.1 Dataset

For this analysis, we use the data collected in 2015 and 2017 during the Run 2 period at the
Large Hadron Collider. These are minimum-bias pp collisions at /s = 5.02 TeV.

Data samples used:

LHC15n pass4:

Run list (25 Hadron PID runs - recommended by DPG): 244628, 244627, 244626, 244619,
244618, 244617, 244542, 244540, 244531, 244484, 244483, 244482, 244481, 244480, 244456,
244453, 244421, 244416, 244377, 244364, 244359, 244355, 244351, 244343, 244340.

LHC17p passl (cent woSDD and fast):

Run list (41 Hadron PID runs - recommended by DPG): 282343, 282342, 282341, 282340,
282314, 282313, 282312, 282309, 282307, 282306, 282305, 282304, 282303, 282302, 282247,
282230, 282229, 282227, 282224, 282206, 282189, 282147, 282146, 282127, 282126, 282125,
282123, 282122, 282120, 282119, 282118, 282099, 282098, 282078, 282051, 282050, 282031,
282025, 282021, 282016, 282008.

Simulations: LHC18c8a (anchored to LHC15n) and LHC18c8b (anchored to LHC17p) with
the same run numbers.

The AliRoot version ‘v5-09-59b_ROOT6-1¢ and AliPhysics version ‘vAN-20220722_ROOT6-1°
are used for this analysis.

2.2 Event and Track selection

The goal of the event selection in this analysis is to select the minimum bias events:

o KINTT trigger

e Standard Physics Selection

Pileup rejection

INEL > 0 selection

|Zute| < 10 cm



e SPD vertex z resolution < 0.02 cm

e z-position difference between track and SPD vertex < 0.5 ¢m

After applying the event selection, we are left with 897 million events.

The f(980) resonance is studied by reconstructing its hadronic decay into oppositely charged
pions. In order to use the geometrical region in which ALICE performs full tracking, only
tracks with pseudo-rapidity in |n| < 0.8 and pr > 0.15 GeV/c have been accepted. To ensure
a good quality of the reconstruction, StandardI[TSTPCTrackCuts2011 has been applied. Only
resonance candidates produced at mid-rapidity are selected with a reconstructed pair rapidity
cut |y| < 0.5.

2.3 Particle Identification

PID information is used to identify candidate f5(980) daughters. It is performed by
combining the information of the specific energy loss (dE/dx) in the TPC and the time of
flight measurement from the TOF. Aiming at rejecting as much of them as possible
background while preserving good efficiency, the particle identification strategy chosen for the
analysis is based on the following: if the TOF information is available, it is required that
|noror| < 3 and |norpc| < 2, otherwise identification is performed only using the TPC, with
a cut of |[norpe| < 2. This selection corresponds to the cut set named as
AliRsnCutSetDaughterParticle::kTPCpid TOFveto3s in the resonance analysis package of
AliPhysics.

2.4 Analysis description

When a decay occurs the invariant mass of the decays products is the same as that of the
resonance it decayed from. Invariant Mass of f5(980) is 990 MeV /c? [7], the formula for
calculating the invariant mass is here:

Miny = (E1 + E2)2 — |pi +P_§’2

The f,(980) signal is reconstructed by calculating the invariant mass of the decay products
Tt
The Unlike-Sign Pair (USP) distribution is made by exhaustively pairing opposite-charged

pions from the same events. f5(980) decays into 777, so it is in this distribution along with
uncorrelated opposite-charged pion pairs from the same event.

The Like-Sign Background (LSB) is made by exhaustively pairing like-charged pions from the
same events. This gives us two backgrounds; one made up of 7" 7" pairs and the other from
7w~ pairs. We want to use this background to remove a lot of combinatorial background
from the USP due to the uncorrelated opposite-charges pion pairs.

The formula for combining the two LSBs from 777" and 7~ 7~ into a geometric mean and
corresponding error propagation is as follows.

LSB — 2\/y++y,, (21)
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The idea here is USP has the signal, and the LSB does not, as combining all the possible
like-signed pairs completely excludes the resonance under study. Hence subtracting it should
remove a lot of uncorrelated pion pairs. Figure 2.1 shows the distributions and the extracted
signal. The figure shows the invariant mass distribution with integrated transverse
momentum.
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Fig. 2.1: Left image shows the Unlike pair signal (blue) and combined Like pair background (red)
on the same axes for comparison. The right image shows the output from the subtraction of the
two curves; we see the f;(980) peak.

The next section describes the fit model and the fitting strategy.

2.4.1 Fitting

The pr range has been divided into 22 intervals and each interval is fit individually.

pr(GeV/c) =[0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.5,3,3.5,4,4.5,5,6,7,8,10,12, 16] (2.3)

There are way more particles in the lower pr region than in the higher py region. Hence, the
division scheme is more aggressive in the lower pr region and keeps on getting meeker as we
move to the higher pr region allowing for each interval to have enough statistics to conduct
the analysis.

f0(980) has a mass of 0.990 GeV/c? 7] hence we are working in the invariant mass range 0.8
to 1.4 GeV/c?, other particles which decay in this mass range are py and f(1270), our fit
model needs to account for them. The relativistic Breit-Wigner distribution is used to fit the
signal from decays. For the background, we use a second-order polynomial.

Relativistic Breit-Wigner function [?] is as follows (in natural units):

k

BW(E,M,T) = IR I

(2.4)
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Here, E is the energy of the particle, M is the mass of the resonance, I" is the width of the
resonance, and gamma is the relativistic mass correction factor.

k= (2.5)

The total fit function is the sum of three relativistic Breit-Wigner functions and a
second-order polynomial:

f(@) = poBW (2, p1, p2) + 13 BW i, (980) (¥.pa-p5) + ps BW py1970(, b7, Ds) +po+proxz +pria” (2.7)

Here, the p; s denote the parameters to fit. This model has a total of 12 parameters, but we
will be fixing a few values to the ones from PDG [7]:

e Mass of pg p1 = M,, = 0.775GeV /c?

o Width of rhoy po =Ty = 0.1491GeV/c?

o Width of fo(980) ps = I'fq(es0) = 0.055GeV/c?

o Width of f5(1270) ps = I'f,(1270) = 0.1867GeV /c?

Figure 2.2 contains the invariant mass distribution along with the fit on it for four p; bins.
The right plot of Figure 2.3 shows the mass values along with PDG value [7]. We can integrate
the area under the curve of the Breit-Wigner distribution of f3(980), which would give the
number of f,(980)s found for every pr bin which is shown on the left plot of Figure 2.3.
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Fig. 2.3: The mass of the f;(980) signal from the fits along with PDG is shown (left). Raw pr

spectra: the height of the signal function (right).

2.4.2 Correction and Normalization

Monte-Carlo production simulation of pp samples at 5.02TeV with injected f,(980), f5(1270)
and A(1520) signals is used as the event generator. Geant3 [8] was used to simulate the
particle interaction with the ALICE detector, and the event generator used for creating the
simulation dataset is PYTHIA8 Monash tune [9]. The MC sample consists of 151 x 106
accepted events after the same event selection criteria as applied to the data.



The efficiency x acceptance can be defined as:

Niec (pTTec)
Nyen(p7")

Where, p4t¢ is the transverse momentum measured by the tracking algorithm and pZ™" is the
transverse momentum generated by the event generator. The same track selection cuts as the
data are applied on the tracks of the accepted events. The ratio of N,.. and N, expected to
provide the (Ace x €) for every pr bin. Figure 2.4 shows the Acceptance x Efficiency.
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Fig. 2.4: Acceptance x efficiency

Monte-Carlo provided us with the correction to include all the events which satisfied the
KINT7 trigger condition. Still, we want to include all the inelastic events, not just the ones
that satisfy the kKINT7 trigger. This factor could not be calculated due to a lack of
general-purpose simulations that have defined f,(980), so the factor from ¢ meson analysis for
the same collision system was used. This is acceptable because the signal loss correction for
resonance decaying into two charged particles is not significantly affected by the mass of the
resonance [10].

2.4.3 Normalisation

(2.8)

dprdy - dprdy  (Acc x €)(pr) N..BR

67‘60

d*>N  raw counts  r(pr) €sL Jrorm X fotz
)

Where,



e N, is the number of accepted events = 897 million events.

e 7(pr) is the factor from reweighing from the last section.

e (Acc x €)(pr) is the acceptance x efficiency.

o (esr/€rec)(pr) is the signal loss correction.

e BR is the branching ration of the f3(980) in the decay channel 777~ = 46% [7].

® f.orm is the factor for converting particle yield normalized to the number of trigger
events to a yield normalized to the number of inelastic events, which for this collision
system is found to be = 0.757 + 0.019 [11].

e f.. is the factor that corrects for vertex quality cuts but without the cut on the
z-position of the vertex. For this collision system, it is estimated to be 0.958 [12].

2.5 Final p;r Spectra

The Efficiency corrected and normalized f5(980) pr spectrum is shown in figure 2.5. The
spectra fit the Levy-Tsallis function [13], the integral of this function is the total yield, and
the mean is the mean pr of the resonance.

dN

oy — 00827 0.0001(stat.)

(pr) = 0.905 £ 0.0024(stat.) GeV/c

In Table 2.1, results from this analysis are compared with ALICE results.

This analysis

ALICE result [14]

dN/dy
(pr)

0.0327 £ 0.0001(stat.)
0.905 £ 0.0024(stat.) GeV/c

0.03850 == 0.0001 (stat.) = 0.0047(syst.)
0.9624 £ 0.0014(stat.) 4+ 0.0357(syst.) GeV/c

Table 2.1: Comparing my results with ALICE
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Fig. 2.5: The pr differential yield of f4(980) for the collision system pp /s = 5.02 TeV.
Statistical error to too small to see. Systematic error is not included.

2.5.1 Sources of error

The statistical error on the yield is calculated by propagating the error on the fit parameters
through the integral of the relativistic Breit-Wigner function. The yield is calculated by
integrating the relativistic Breit-Wigner function, which is a function of the fit parameters.
Some of the sources of systematic error are listed below:

e Raw yield extraction

e Particle identification

e Event selection

e Track quality selection

e Material budget

e Global tracking (ITS-TPC Matching efficiency)

e Hadronic interaction cross section in the material

e Signal loss correction

11



Chapter 3

Machine Learning and Tensorflow

3.1 Machine Learning

Machine learning is a subset of artificial intelligence that involves designing and developing
algorithms and models that can learn patterns and relationships from data. The primary goal
of machine learning is to build predictive models that can generalize well to unseen data. In
other words, given a dataset with input variables and a corresponding output variable,
machine learning algorithms aim to learn a function that can accurately predict the output
for new inputs. This is achieved by iteratively adjusting the model parameters using an
optimization algorithm until the model minimizes a cost function that measures the difference
between the predicted and actual output. In our context, we will be using labelled data from
Monte-Carlo simulations to train a model to discriminate between background and signal and
then use the model to reduce the background and extract signal with greater significance.

3.1.1 Terminologies

Features are the variables which are the input. They are the observables by which the data
point is defined. We may also refer to them as discriminating variables, as the classifier makes
predictions based on the discriminating power of these features.

Let x1, x5, ...x,, be n number of features where each feature is a measure of some attribute of
the data. We define the feature vector X to be of the form

X = [x1, 29, ..., Ty (3.1)

The feature vector is a fundamental component of machine learning algorithms, as it
represents the input data that is used to train and test the model. In addition to the feature
vector, machine learning algorithms require a set of corresponding output labels representing
the target variable the algorithm is trying to predict. Together, the feature vector and output
labels form the training data set used to train the machine learning model.

It is important to carefully select the features in the feature vector, as this can greatly impact
the performance of the machine learning algorithm. Features should be relevant to the
problem being solved and should have good discriminatory power to distinguish between
different classes or categories. In some cases, it may be necessary to preprocess or transform
the features in order to make them more informative or to reduce their dimensionality.

Overall, the choice and quality of features is a crucial aspect of machine learning, as it
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directly impacts the accuracy and effectiveness of the resulting models.

A classifier machine learning model is a type of algorithm that takes a set of input data,
typically represented as a feature vector, and predicts the category or class to which the data
belongs. The classifier model is trained using a labelled dataset, where each data point is
associated with a known class label. The training process aims to learn a function that maps
the input features to the corresponding output labels.

Many types of classifier models exist, including logistic regression, decision trees, support
vector machines (SVMs), and neural networks. Each of these models has its own strengths
and weaknesses, and the choice of model will depend on the specific problem being solved and
the characteristics of the input data.

Once the classifier model has been trained, it can be used to make predictions on new,
unlabelled data. The model takes the feature vector representing the input data and applies
the learned function to predict the most likely class label. The accuracy of the classifier model
is typically evaluated on a separate test dataset, which was not used during training, to
ensure that the model can generalize to new data.

The training dataset is used to train the machine learning model. It consists of a set of
labelled data points, where a feature vector and an associated class label or output value
represent each data point. During the training process, the machine learning algorithm uses
the training data to learn a mapping from the input features to the output labels by adjusting
the parameters of the model based on the training examples.

On the other hand, the testing dataset is used to evaluate the performance of the trained
machine learning model. It consists of a separate set of labelled data points, which were not
used during training. The testing data is fed into the trained model, and the predicted output
labels are compared to the true labels in the testing dataset. The accuracy and performance of
the model can then be evaluated based on how well it predicts the labels for the testing data.

It is important to use separate training and testing datasets in order to avoid overfitting,
which occurs when a machine learning model becomes too closely tuned to the training data
and performs poorly on new, unseen data. By evaluating the model’s performance on a
separate testing dataset, we can ensure that the model can generalize well to new data and
make accurate predictions in real-world applications.

3.2 Neural Networks

Neural Networks are a type of machine learning algorithm modeled after the structure and
function of the human brain. We will be using one of the most popular types of neural
networks, Multilayer Perceptron (MLP). MLP is a feedforward network consisting of an input
layer, one or more hidden layers, and an output layer. Each neuron in the input layer receives
input from the data and sends it to the neurons in the next layer. A presentation of the
model is shown in the figure 3.1. Each neuron in the hidden layer takes the input and applies
a nonlinear activation function, such as the sigmoid or ReLU function (Shown in figure 3.2),
to produce an output that is then sent to the next layer. The output layer takes the final
output of the last hidden layer and produces a final output that can be used for classification
or regression tasks.

z x>0

3.2
0 =<0 (3:2)

ReLU(z) = {
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1st hidden layer 2nd hidden layer

Input layer

Fig. 3.1: Representation of a Multilayer Perceptron with an input layer, 2 hidden layers, and an
output layer.

f(x)

s
1.0

0.8

0.6

Fig. 3.2: Rectified Linear Unit (ReLU) on the left and Sigmoid on the right. These are common
activation functions. In our case, ReLU is used in all the layers except for the last one, a sigmoid.

1
Sigmoid(z) = Ty (3.3)

Figure 3.3 shows a visualization of the weights and biases used in a Multi-Layer Perceptron
(MLP). The colours in the figure represent values that correspond to the colour map shown
beside each heatmap. Each heatmap on the top represents a matrix, and the ones on the
bottom represent a vector. The values in the matrix represent the weights used in the
network, and the values in the vector represent the biases used in the network.

To perform prediction on a new data point, the input parameters are first organized in a
vector. This vector is then multiplied by the weight matrix and the biases are added to the
result. This process is repeated for every layer in the network. Before moving to the next
matrix multiplication, the values in the resulting vector are passed through an activation
function, which helps to introduce non-linearity into the network. The output of the last layer
is the final prediction for the input data point.
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Fig. 3.3: Heatmap representation of an MLP

The claim is that a big enough neural network can be used to imitate any function if the
weights and biases are set correctly.

The Universal Approximation Theorem: The theorem states that a feedforward neural
network with a single hidden layer, containing a finite number of neurons, can approximate
any continuous function on a compact set to an arbitrary degree of accuracy, provided that
the activation function used in the neurons is non-constant, bounded, and
monotonically-increasing. Simply said, an MLP with a single hidden layer is capable of
approximating any complex functions given enough nodes, and if the values of the matrix and
vector are set correctly. These values can be found out it just fitting these parameters to
data. In the next subsection, we look at gradient descent, one of the most commonly used
methods to set these values.

3.2.1 Gradient Descent - Training Algorithm

Gradient descent is a popular choice because it is computationally efficient and can be applied
to many models. The goal of gradient descent is to find parameters that give a small value for
the loss function for a given dataset. We start with a random set of weights and biases, at
each iteration, the gradient of the cost function with respect to the weights and biases is
computed and used to update the values in the direction of the negative gradient. This
process is repeated until convergence. Mathematically we can write it like this.

6 =0 - aAJ(O) (3.4)

Here, © are the weights and biases of the model, « is the learning rate that controls the step
size, and AJ(O) is the gradient of the loss function.

5J(©) 6J(©) §J(©)  8J(6)

AJ(©) = 50, ' 60, ' 005 7 5O,

(3.5)

Where n is the number of parameters in the model. In each iteration of gradient descent, the
algorithm updates the parameter values by subtracting the gradient of the cost function with
respect to the parameters multiplied by the learning rate «.. This updates the parameter
values in the direction of the steepest descent of the cost function until a good minimum is
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found.

3.2.2 Tensorflow

TensorFlow is a powerful machine learning library that is widely used in the development of
multilayer perceptron (MLP) models. It provides a flexible and scalable platform for creating,
training, and deploying machine learning models, including MLPs. TensorFlow is particularly
well-suited for deep learning applications, which require the use of complex neural network
architectures with many layers. With TensorFlow, developers can easily design and
implement custom MLP models, optimize their performance through hyperparameter tuning
and regularization, and train them using advanced optimization algorithms such as gradient
descent. TensorFlow also provides a variety of tools for visualizing and interpreting model
outputs, making it a valuable tool for machine learning researchers and practitioners. In the
broader context of machine learning, TensorFlow is just one of many powerful libraries and
tools that are available to developers, and it is used in conjunction with other popular
libraries such as Scikit-learn, Keras, and PyTorch.
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Chapter 4

Neural Network Analysis

4.1 Data set and selection

For this analysis, we used the data collected in 2015 during the Run2 period at the Large
Hadron Collider. These are minimum-bias pp collisions at /s = 5.02 TeV.

Data: LHC15n Run list (25 Hadron PID runs - recommended by DPG): 244628, 244627,
244626, 244619, 244618, 244617, 244542, 244540, 244531, 244484, 244483, 244482, 244481,
244480, 244456, 244453, 244421, 244416, 244377, 244364, 244359, 244355, 244351, 244343,
244340.

Simulation: LHC18c8a (anchored to LHC15n).

4.1.1 Track Selection Cuts

We have used the following track cuts. These are some standard cuts used in the ALICE
experiment to select primary tracks.

1. pr > 0.15 GeV/c?
2. Jy| <0.5

3. In| <0.8

4.2 Analysis description

We reconstruct f,(980) using the fy(980) — 77~ hadronic decay channel with a branching
ratio of 46%. We identified charged pions using the Time Projection Chamber (|orpc| < 2.0)
and Time Of Flight (|oror| < 3.0) detectors. Simulations of the same collision system were
used to generate data for training our model. Pions were identified using the PID provided,
and a table was generated containing all possible pairs of unlike charged pions for every event
individually with kinematic observables, namely 2 momentum vectors, 2 angular coordinates,
and the rapidity for both pions. The table also included the invariant mass of the f;(980)
assuming the pions were decay daughters, as well as a boolean value indicating if they were
actually decay daughters of the same f,(980), labelledl ’is_f0_pair’. Our goal was to set the
parameters of the MLP such that given the kinematic variables as input, it would output
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either 1 or 0 depending on the value of ’is_f0_pair’. This MLP can then be used on real data
to label weather a pion pair is from the background or is coming from a f;(980).

px1 px2 | pyl py2 | pzl pz2 etal | eta2 | phil | phi2 | thetal | theta2 | invmass
0.235 | 1.60 | -0.04 | 0.82 | -0.07 | -0.88 | -0.31 | -0.47 | 3.349 | 0.474 | 1.884 | 2.029 | 1.377
2.852 | -7.83 | -0.95 | -2.34 | -0.20 | -1.85 | -0.06 | -0.22 | 3.463 | 3.432 | 1.638 | 1.794 | 0.860
0.103 | -0.07 | 0.700 | -0.27 | -0.50 | -0.15 | -0.66 | -0.53 | 1.717 | 4.461 | 2.191 | 2.079 | 0.933
2885 | 0.686 | -0.36 | -0.63 | 0.004 | 0.739 | 0.009 | 0.724 | 5.387 | 5.535 | 1.561 | 0.902 | 0.579

Table 4.1: Representation of the unlike charged pion pairs table (The decimal places have been
decreased to show all columns in one go). Out goal is to classify which row corresponds to a
f0(980) (signal), and which doesn’t (background).

4.2.1 Loss Function

In general, when fitting a model, a loss function such as Mean Squared Error (MSE) is used.
However, for binary classification problems, a well-known loss function that performs better is
Binary Cross-Entropy. This loss function can be calculated for a given set of inputs X and
corresponding true labels (from simulation) Y using the following formula:

J = —[Y -log(MLP(X)) + (1 = Y) - log(1 — MLP(X))] (4.1)
Here, J represents the loss, Y is a vector of labels consisting only of 1s and 0s, and the output

from the MLP is a vector of real numbers between 0 and 1, each corresponding to an output
for X. As can be seen, when the predictions are equal to the labels, the loss reaches 0.
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4.2.2 Preparation of data for training and testing
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Fig. 4.1: Distributions of input features.

Once the labelledl data table was prepared, it was observed that the number of rows for the
background was several orders of magnitude higher than that for signal (f,(980)). This was
expected. To ensure that the model does not bias towards labelling everything as background,
it was necessary to balance the data by having an equal number of signal and background
data points. After balancing the classes, the input distributions were compared. Figure 4.1
shows the distributions corresponding to the columns in the table after balancing.

The data was then split into training (80%) and testing (20%) datasets. The reason for this
split and its significance is explained in the Terminologies section. In the next section, we will
train and optimize an MLP.
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4.3 Model Training and Optimization

Loss for different hidden layer
combinations

0.401 Hidden layers
0.35 1 — 16 8
14 6
3 0.251 104
0.20 -
0.15 -
0 10 20 30 40 50
Epoch

Fig. 4.2: Loss as a function of training for models with different number of nodes in the 2 hidden
layers. One can observe that for a smaller model it takes more iterations to decrease the loss.

We decided to use 2 layers in our model. To determine the number of nodes in a layer, we
started by trying out a few sizes. Figure 4.2 shows how the model’s loss decreases as we train
it. We can see that larger models learn quicker. However, if we use an arbitrarily large model,
the computational costs for training and using the model increase exponentially. Hence, we
try to get a smaller model and train it for a longer time. To decide on the number of nodes
we can calculate the importance of the k" node in the I*" layer using the following formula:

Importance(l, k) = Z lwk.|, (4.2)
i=0

where w!, is the weight at (k,4) index from the [*-layer matrix, and m is the number of
columns in this matrix. We have taken the sum of absolute values of the weight matrix that a
particular node is getting multiplied to. The weights for the 12-4 model are shown in heatmap
representation in Figure 4.3. The importance of each feature and node is shown in a bar plot
in Figure 4.4. We normalized the values with the largest value in each table because the
importance must be seen relative to nodes in the same layer. We found that z-momenta and ¢
are not very important, and only 4 nodes from the 1st hidden layer are significant, as only 4
of them have a relative importance greater than 0.1. We then tried a 4-4 model and trained it
for double the number of epochs. The heatmap representation of the 4-4 model is shown in
Figure 4.5. All the nodes have significant importance values, so we chose this model for our
classification.
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Fig. 4.3: Heatmap representation of the model with hidden layers containing 12 and 4 nodes
respectively. Layer O is the operation on the input layer and so on.
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Fig. 4.4: Relative importance of each node for every layer. Layer O corresponds to the input
layer. The red dotted line represents 0.1. In the input, we see that z-momenta and ¢ are not very
important. In the 1st hidden layer, hardly 4 nodes are actually important. In the last hidden layer,
all the nodes are important.
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Fig. 4.5: Heatmap representation of optimized and trained MLP with 2 hidden layers having 4
nodes each. z-momenta and ¢ have been removed from the input.
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Next, we evaluated the model’s performance on testing datasets. The output is shown in
Figure 4.6. We now need to decide on a threshold such that the rows corresponding to the
prediction value higher than the threshold are predicted as a signal, and the rows with a
prediction value less than the threshold are predicted as background. We calculated the
accuracy as the number of correct predictions divided by the total number of data points.
The y-axis on the right-hand side shows the accuracy. The red line shows the accuracy as a
function of the threshold. We see that maximum accuracy is achieved when the threshold
value is 0.5. Now that the model is trained and optimized, we will use it to classify the signal
and background on real data and make measurements.

Test dataset Output distribution
and Accuracy as a function of threshold
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Fig. 4.6: Distribution of neural network output on test data signal and background. The red line
represents the accuracy as a function of the threshold, we see that accuracy peaks when 0.5 is
taken as the threshold.

4.4 Application

One by one each row is passed through the 4-4 model and the predictions are stored in
another column. We now apply cuts on the value of prediction from 0.1 to 0.9 and look at the
invariant mass distributions. The invariant mass distributions are shown in figure 4.7 as red
hollow dots. We see that the shape of the peak is distorted when we take 0.2 as the threshold
and gets better as we increase the threshold. We fit the invariant mass distributions with a
model consisting of the relativistic Breit-Wigner distribution with mass-dependent width and
a poly2 for any remaining background. The Breit-Wigner can be written as follows.

B m2I'2(m)
BWm) = o = a2y ¢ et (m) (43)

where m is the invariant mass of the particle, M is the mass of the particle, and I'(m) is the
mass-dependent width of the particle, given by:

[(m) = FO%

M 2J+1 Vm? — (my +ma)2y/m? — (my — my)?
(m) VM2 — (mi +mg)?\/M? — (m1 — mo)? .
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where 'y is the width at the resonance peak, ¢ and ¢y are the momentum of the particle at m

and M, respectively, m; and msy are the masses of the decay products, and J is the spin of the
particle.
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Fig. 4.7: Invariant mass distributions of the signal as predicted by the 4-4 model for a given

threshold. Data points are in red, the blue line is the total model, the green line is the signal peak,
and the orange line is the background.

We do not need to worry about other resonances or decays as we have to with the traditional
method, this is because the model has been trained to label everything that is not f;(980) as
background. The figure 4.7 shows fits of the model for different thresholds.

In figure 4.8 we see the distribution of the fit parameters as a function of threshold. It is seen
that the parameters which describe the shape of the peak stabilise after 0.5. This is an
indication that enough background has been removed. We also see that the width has
stabilised to around 100 GeV/ ¢® which is in agreement with PDG accepted range of 10 to
100GeV /c?, although using the invariant mass method the width comes around 50 GeV/c?
[14], this could be because we are using a completely different analysis method. In the next
section, we will see which pr range is resulting in a good signal.
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Fig. 4.8: Distribution of fit parameters of the signal as a function of threshold. We see that the
shape parameters stabilise after 0.5.

4.4.1 pr cuts

We analyzed the invariant mass distributions of the signal for different pr ranges using a
threshold of 0.5, as shown in Figure 4.9. Our findings indicate that a good signal peak is only
observed in the transverse momentum range of 1.0 < pr < 5.0 GeV. The thin peak in the low
pr region is expected due to a large amount of background and the inability of detectors to
measure below pr < 0.15 GeV. However, the high pr region shows poor distributions,
indicating an issue with the training data.
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Fig. 4.9: Invariant mass distribution of signal for different transverse momentum ranges.

The original py distribution of the background to signal is presented in the left plot in figure
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4.10. We observed that the signal pr distribution is flat since the pr distribution of f,(980)
was not well-studied during the simulations, and a flat pr distribution was injected. However,
the challenge arises when balancing the signal and the background, as seen in the right plot of
Figure 4.10. In the high pr region, there is essentially no background due to a considerable
amount of background being in the low pr region. Consequently, the model learned that if pr
is greater than 5 GeV, it is always a signal. We attempted to sample from both classes in
small pr bins to balance in pr. However, this resulted in other issues since other items in the
background (f(1270)) were also inserted with a flat py distribution for the same reasons.
Therefore, we decided to abandon the efforts to balance p; and proceeded with making a
measurement in the 1.0 < pr < 5.0 range.

Original pr distribution New pr distribution (after balancing)
4
Background + Signal 10 Signal + Background
105 Signal Signal
it 2
s 104 s
S S
103
10%
2 4 6 8 10 2 4 6 8 10
pr [GeV] pr [GeV]

Fig. 4.10: The effect of balancing the classes on pr distribution of signal and background.

The invariant mass distributions for different thresholds in the transverse momentum range of
1 to 5 GeV are shown in Figure 4.11. We observed that the relevant fit parameters stabilize
after 0.5. Moreover, we observe that the fluctuations have decreased, indicating good
classification. Before making the measurement and comparing it with the results from the
Invariant Mass Analysis, we would like to explore the possibility of using a weighted loss
function when the background is even larger.
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Fig. 4.11: Invariant mass distributions of the signal as predicted by the 4-4 model for a given
threshold in the transverse momentum range of 1 < py < 5 GeV. Data points are in red, the blue
line is the total model, the green line is the signal peak, and the orange line is the background.

4.4.2 Weighted Loss Function

When the background is high, as in heavy-ion collisions, it is necessary to remove it more
aggressively. To achieve this, we propose using a weighted loss function. One way to
implement this is to multiply a number to the term that calculates the loss due to background

misclassification. This will encourage the model to learn to remove the background more
effectively.

The loss function now looks like this:

J = —[wY -log(MLP(X)) + (I = Y) - log(I — MLP(X))] (4.5)

Here, w is a positive real number we call the weight. We trained three models with the same
architecture using loss functions with weights of 1, 4, and 10. Figure 4.12 shows the output
distributions on test data for signal and background. As can be seen, the background
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distribution is pushed further toward 0 for higher weight values. The signal distribution is
also pushed slightly towards 0 because there are limits to the information present in the input
variables. We observed the invariant mass distribution for different thresholds using the three
models on experimentally obtained data from pp collisions. However, the distributions are
unsatisfactory, and more work is required to achieve the desired results.

NN output (weight=1.0) NN output (weight=4) NN output (weight=10)
5000 12000 Background
8000 Signal
4000 10000
6000 8000
£ 3000
3
g 6000
(&)
2000 4000
4000
2000
1000 2000
0 0 0
00 02 04 06 08 10 00 02 04 06 08 10 0.0 0.2 0.4 0.6 0.8

Neural Network Output

Fig. 4.12: Output distribution of 3 MLPs with custom loss function with the weights 1, 4, and
10. We see that more weight leads to more aggressive background removal. This happens at the
cost of some signal being marked as background.

4.4.3 Results

x10° 1.0< p_<5.0GeV/c
&:)\ R ¢ Data (stat. uncert.) 14 {ALICE o data
% 2500 ‘ —Signal + background 12 pp V5 =>5.02TeV 5 : gm + pol2
o B p(770) o (0-100%), y| <0.5] o2
S 2000 fo(980) S 1095,(980)sm*n-
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Fig. 4.13: Right side is the signal measured using a Neural network, while the one on the left is
using Invariant Mass analysis.

The left plot in figure 4.13 shows the invariant mass distribution used to extract the signal
using Invariant Mass analysis, on the right is the invariant mass distribution after removing
the background using our neural network. The width comes out to be 106 GeV/ ¢® which,
with the systematic error of 10%, would lie within the accepted range from PDG which is 10
to 100 GeV/ ¢®. The counts of signal and background calculated by integrating the fit
functions using the two methods are shown in table 4.2. We see that the signal-to-background
ratio has increased by a factor of ~1,000, and the significance is improved by a factor of ~3.
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Analysis method # of events | Signal Background | S/B Significance
IMD (450) 8.79 x 108 3.90 x 105 | 1.04 x 107 3.74 x 1072 | 36.05

IMD (£30) 8.79 x 10® 3.72 x 10° | 5.31 x 106 7.02 x 1072 | 47.51

Neural Network (£50) | 8.3 x 107 2.05 x 10* | 120 170.55 142.64

Table 4.2: Comparison of Neural Networks with standard Invariant Mass analysis (Like back-
ground subtraction). In 1 < pr < 5 GeV we see that the signal-to-background ratio has
increased by a factor of ~1,000, the significance is also improved by a factor of ~3. The signif-
icance is calculated using the formula S/v/S + B. The signal for the IMD is scaled to match

the number of events in this analysis for calculating the significance.
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Chapter 5

Summary, Conclusions, and Outlook

In this 10th-semester project, the effectiveness of neural networks in conjunction with
invariant mass analysis was explored. The findings suggest that this approach has the
potential to significantly enhance the signal efficiency (S/B) by up to 1,000 times and
improve the significance three-fold within the transverse momentum range of 1 to 5 GeV. It is
important to note that the successful removal of background resulted in a loss of
approximately 40% of the signal, highlighting the tradeoff inherent in the methodology. The
measurement of the width of the fo(980) resonance was determined to be 106 MeV /c®, which
may differ from alternative analysis techniques.

Addressing pr artifacts in the analysis proved challenging, but a proposed solution involves
assuming a pr distribution for injected particles, such as f,(980) and f»(1270), and sampling
data points from this distribution. Further investigation is required to confirm the
effectiveness of this approach.

Although the utilization of weighted loss functions did not yield favorable results, the findings
demonstrate the promising potential of neural network analysis in enhancing the sensitivity of
invariant mass analysis. Future research should focus on refining and optimizing this
technique to achieve even more accurate and precise measurements of high-energy particles
and their properties.

The application of this technique holds particular relevance in the measurement of resonances
during heavy-ion collisions, where backgrounds are often substantial and pose challenges to
traditional methods. By effectively differentiating between signal and background events,
neural networks can significantly improve the accuracy and precision of such measurements,
thereby enhancing our understanding of high-energy particle properties. This approach also
has broader implications for other areas of particle physics research, where accurate
identification of signal events from large background sources is vital for meaningful
measurements.
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Appendix A

Code

In this appendix, we present the important code snippets used in the implementation of
Invariant Mass Analysis. These code snippets provide additional insights into the

implementation details. The code has been formatted and syntax-highlighted for clarity using

the 1listings package in LaTeX.

double background_model (double x,double b,double n,double c) {

//
//
//
//
//
//

//
//
//
//
//
//

double background_model_helper (double *x,
return background_model (x[0], params[0], params[1], params([2]);

}

// double breit_wigner_relativistic(double x, double median, double

//
//
//
//
//

// double E = x-0.28;
if (x < 0.28) {
return O;
}
double E = TMath::Power (x-0.28, n);

return bxTMath::Sqrt (E)*TMath::Power (c,

1.5)*TMath: :Exp (-c*E) ;

double poly2(double x,double a,double b,double c) {

return a + b*x + C*xX*X;

}

double poly2_helper (double *x, double *par) {

return poly2(x[0], par([0], par[1],
}

par [2]) ;

double poly3(double x,double a,double b,double c,double d) {

return a + b*x + Cckxx*xX + d*X*kX*X;

}

double poly3_helper (double *x, double *par) {

return poly3(x[0], par[0], par[1],
}

gamma )

{
double mm = median*median;
double gg = gamma*gamma;
double mg = median*gamma;
double xxMinusmm = X*X - mm;
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43

68

// double y = sqrt(mm * (mm + gg));
//  double k = (0.90031631615710606%mg*y)/(sqrt (mm+y)); //2%sqrt (2)
/pi = 0.90031631615710606

// double bw = k/(xxMinusmm*xxMinusmm + mg*mg) ;
// return bw;
/] }

// double breit_wigner_relativistic_helper (double *x, double *params
) {

// return params [0]*breit_wigner_relativistic(x[0], params[1],
params [2]) ;

//}

double breit_wigner_relativistic_width_dep_mass(double x, double
median, double gamma)

{
double mm = median*median;
double xx = X*X;
double xxMinusmm = XX - mm;
double j = 0;
double m_pi_sq = 0.13957018%0.13957018;
gamma = gamma * pow((xx - 4*m_pi_sq)/(mm - 4*m_pi_sq) , (2xj + 1)
/2) * x/median;
double mg = median*gamma;
double gg = gamma*gamma,;
double y = sqrt(mm * (mm + gg));
double k = (0.90031631615710606*mg*y)/(sqrt(mm+y)); //2xsqrt(2)/pi
= 0.90031631615710606
double bw = k/(xxMinusmm*xxMinusmm + mg*mg) ;
return bw;
X

double breit_wigner_relativistic_width_dep_mass_helper (double x*x,
double *params) {
return params [0]*breit_wigner_relativistic_width_dep_mass (x[0],
params [1], params[2]);

}

double fit_function(double #*x, double *params) {
return
// rhoO

params [0] * breit_wigner_relativistic_width_dep_mass(x[0],
params [1], params[2]) +

// £0 980

params [3] * breit_wigner_relativistic_width_dep_mass(x[0],
params [4], params[5]) +
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77 // £0 1270

78 params [6] * breit_wigner_relativistic_width_dep_mass(x[0],
params [7], params[8]) +

79 background_model (x[0] , params[9], params[10], params[11]);

80 // poly2(x[0], params[9], params[10], params[11]);

s5 double fit_function_without_980(double *x, double *params) {
86 return

87 // rhoO

88 params [0] * breit_wigner_relativistic_width_dep_mass(x[0],
params [1], params[2]) +

89 // £0 980

90 // params[3] * breit_wigner_relativistic_width_dep_mass (x[0],
params [4] , params [5]) +

91 // fO 1270

92 params [6] * breit_wigner_relativistic_width_dep_mass(x[0],
params [7], params[8]) +

93 background_model (x[0] , params[9], params[10], params[11]);

94 // poly2(x[0], params[9], params[10], params[11]);

Listing A.1: Functions used for fitting

1 int make_InvMass_proj_in_pt_range (THnSparseF* PM, THnSparseFx* PP,
THnSparseF* MM, double pt_low, double pt_high, bool verbose=false)
{
2 double val_pos, val_neg, err_pos, err_neg, combined_value,
combined_error;
3 int pt_range_index;

5 auto *out_file = new TFile("fit_analysis.root", "UPDATE");
6 TH1D *hist_pm, *hist_pp, *hist_mm, *hist_like, *hist_signal;

8 // saving the total histogram. The whole pt-range
9 if (verbose) cout << "Working on pt range: " << pt_low << " - "
<< pt_high << endl;

11 int pt_low_bin_index = PM->GetAxis (1) ->FindBin(pt_low); //
getting bin index for pt_low and pt_high
12 int pt_high_bin_index = PM->GetAxis (1) ->FindBin(pt_high);

14 PM->GetAxis (1) ->SetRange (pt_low_bin_index, pt_high bin_index);
15 PP->GetAxis (1) ->SetRange (pt_low_bin_index, pt_high_bin_index) ;
16 MM->GetAxis (1) ->SetRange (pt_low_bin_index, pt_high _bin_index);

17 hist_pm = (TH1D*)PM->Projection(0, "E");
18 hist_pp = (TH1D*)PP->Projection(0, "E");
19 hist_mm = (TH1D*)MM->Projection(O, "E");
20

21 hist_like = (TH1D*)hist_pp->Clone() ;

22 hist_signal = (TH1D*)hist_pp->Clone () ;
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for (int i=1; i< hist_pp->GetNbinsX (); i++) {

n -

val_pos hist
val_neg = hist
err_pos = hist
err_neg = hist

combined_value
hist_like->Set

combined_error

TMath::Power (err_pos/val_pos,

val_neg
)
hist_like->Set

_pp->GetBinContent (1) ;
_mm->GetBinContent (i) ;
_pp->GetBinError (i) / val_pos;
_mm->GetBinError (i) / val_neg;

= 2xTMath::Sqrt(val_pos*val_neg);
BinContent (i, combined_value);

= combined_valuex*xTMath::Sqrt(
2) + TMath::Power (err_neg/
» 2)

BinError (i, combined_error) ;

hist_signal->SetBinContent (i, hist_pm->GetBinContent (i) -
combined_value) ;

hist_signal->SetBinError (i, hist_pm->GetBinError (i) +
combined_error) ;

// making the name
std::ostringstream

with bin edge values
pt_low_string;

pt_low_string << std::fixed << std::setprecision(l) << pt_low;

std::ostringstream

pt_high_string <<

TString hist_name
pt_high_string.

if (verbose) cout

endl ;
out_file->WriteObj
out_file->Close () ;
return 1;

// driving function
int do_pt_binning(bool

pt_high_string;
std::fixed << std::setprecision (1) << pt_high;

= "Signal_" + pt_low_string.str() + "_" +
str () ;
<< "Signal calculation done " << hist_name <<

ect(hist_signal, hist_name);

verbose=true) {

auto *file = new TFile("../all_data.root");
auto *key = (TKeyx*)file->GetListO0fKeys () ->At(1);

auto *list = (TLis

THnSparseF * PM =
FOppData_FO_Unl
THnSparseF * PP =

t*)file->Get (key->GetName ()) ;

(THnSparseF *) list->FindObject ("
ikePM") ;
(THnSparseF *) list->FindObject ("

FOppData_FO_LikePP");

THnSparseF * MM =

(THnSparseF *) list->FindObject ("

FOppData_FO_LikeMM");

// pt binning
// double pt_binni

ng[] =

{0,0.2,0.4,0.6,0.8,1,1.2,1.45,1.6,1.8,2,2.5,3,3.5,4,4.5,5,
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68

69

N

24

6,7,8,10,12,16};
double pt_binning[] = {1.0, 5.0%};
int pt_bin_count = (int)sizeof (pt_binning)/sizeof (pt_binning[0])

b

make_InvMass_proj_in_pt_range(PM, PP, MM, pt_binning[0],
pt_binning[pt_bin_count-1], verbose);

// making the histograms for individual pt_ranges
for (int pt_range_index=0; pt_range_index < pt_bin_count-1;
pt_range_index++) A{

double pt_low = pt_binning[pt_range_index];

double pt_high = pt_binning[pt_range_index+1];

make_InvMass_proj_in_pt_range(PM, PP, MM, pt_low, pt_high,
verbose) ;

}
if (verbose) cout << "pt binning done" << endl;
return 1;

Listing A.2: Projecting ND-histograms from AliPhysics into 1D-histograms for fitting

#include "model_functions.C"
#include "helper_functions.C"

int write_to_file(TFitResultPtr r, double pt_low, double pt_high,
TString file_name, double chi2_ndf, double yield, double yield_err
, double pair_mass_min, double pair_mass_max) {
ofstream file;
file.open(file_name, ios::app);

file << pt_low << "," << pt_high << ", ";

for (int i=0; i<12; i ++) {
file << r->Parameter (i) << "," << r->ParError (i) << ", 6 '";
}

file << chi2_ndf << "," << yield << "," << yield_err << "," <<
pair_mass_min << "," << pair_mass_max << endl;
file.close () ;

return 1;

void fit_analysis(bool verbose=true) {

TString output_filename("fit_result.csv");

ofstream output_file;

output_file.open(output_filename) ;

output_file << "pt_low,pt_high,pO,pO_err,pl,pl_err,p2,p2_err,p3,
p3_err ,p4,p4_err ,p5,pS5_err ,p6,p6_err ,p7,p7_err ,p8,p8_err ,p9,
p9_err ,pl0,pl0_err ,pll,pll_err,chi2_ndf ,yield,yield_err,
pair_mass_min ,pair_mass_max" << endl;

double pt_binning[] =
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%}

{0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.5,3,3.5,4,4.5,5,

6,7,8,10,
int pt_bin_count =

b

cout

auto

<< pt_bin_count << "

xfile =

12,16%};

new TFile("fit_analysis.root");

pt bins"

double initial_parameters[12][23] =

{// total 1
4 5
8
12
16 17
20 21
/*0%/ { 100.0, 100.0,
498.746 , 178.,
49.746 , 49804 .746 ,
44384.000, 21024.000,
2864.863, 2162.143,
877.343, 100, 100
/*x1%/ { 0.8, 0.8,
0.8, 0.8,
0.775, 0.775,
0.775, 0.775,
0.764, 0.764,
0.78, 0.78, 0.764
/*2%/ { 0.149, 0.149,
0.149, 0.149,
0.149, 0.149,
0.149, 0.149,
0.149, 0.149,
0.149, 0.149, 0.149
/*3%/ { 6212.475, 6782.295,
6212.475, 8401.475,
6212.475, 6212.475,
1168.000, 876.000,
310.300, 31.536,
14.600, 5.840, 5.840
/*4%/ { 0.965, 0.973,
0.965, 0.965,
0.965, 0.965,
0.965, 0.965,
0.964, 0.964,
0.964, 0.964, 0.964
/*5%/ { 0.055, 0.055,
0.055, 0.055,
0.055, 0.055,
0.055, 0.055,
0.055, 0.055,
0.055, 0.055, 0.055
/*6%/ { 9193.854, 3153.43,
9193.854, 7893.854,

2

13

22

49804 .746,

49. ,

49804 .746 ,

7464.863,
877.343,
},
0.8,

0.8,

0.775,

0.764,
0.764,

},
0.149,
0.149,
0.149,

0.149,

0.149,
1,
6212.475,
6212.475,
6212.475,

810.300,
14.600,
},

0.965,

0.965,

0.965,

0.964,
0.964,

1,
0.055,

0.055,

0.055,

0.055,
0.055,

},
9193.854,
9193.854,
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<< endl;

(int)sizeof (pt_binning)/sizeof (pt_binning [0])

11

14 15

19

498.746,
49.,

44384.000,

2864.863,
877.343,

0.8,
0.775,
0.775,
0.764,
0.764,

0.149,
0.149,
0.149,
0.149,
0.149,

15000.0,
6212.475,
1168.000,
310.300,
14.600,

0.974,
0.965,
0.965,
0.964,
0.964,

0.055,
0.055,
0.055,
0.055,
0.055,

11000.0,
9193.854,



39

40

41

42

45

46

9193.854, 9193.854, 9193.854, 7592.000,

7592.000, 3504.000, 1657.316, 657.316,
657.316, 50.224, 17.520, 17.520,
17.520, 9.344, 9.344 },

/*T*x/ { 1.257, 1.257, 1.257, 1.257,

1.257, 1.257, 1.257, 1.257,
1.257, 1.257, 1.257, 1.257,
1.257, 1.257, 1.257, 1.257,
1.257, 1.257, 1.257, 1.257,
1.257, 1.257, 1.257 },

/*8%/ { 0.187, 0.1867, 0.187, 0.187,
0.187, 0.187, 0.187, 0.187,
0.187, 0.187, 0.187, 0.187,
0.187, 0.187, 0.187, 0.187,
0.187, 0.187, 0.187, 0.187,
0.187, 0.187, 0.187 },

// /*x9%x/ { 143521.504, 3212640, 143521.504, 1430521.0,
143521.504, 143521.504, 143521.504, 143521.504,
143521.504, 143521.504, 143521.504, 233600.000,
400000, 46720.000, 23441 .935, 15006,

15006, 6601.244 , 3097 .244 , 2097 .244 ,
3097.244 , 1345.244 , 1345.244 1},

// /*x10x%/ { 30000.543, 70000.322, 300000.543, -2000000.0,

3.543, 4.043, 3.543, 3.543,
3.543, 3.543, 3.543, 3.543,
-400000, 3.543, 1.839, 1.9,
1.9, 1.839, 1.839, 1.839,

1.839, 1.3, 1.67 },

// /*x11x/ { 1000000, 1000000, 1000000, 700000,

-3.543, -4.043, -3.543, -3.543,
-3.543, -3.543, -3.543, -3.543,
70000, -3.543, -1.839, -1.9,
-1.9, -1.839, -1.839, -1.839,

-1.839, =1.3, -1.67 },

/*9%x/ { 1e+6, 2e+5, 1.4e+5, 1.4e+5,
1.4e+5, 1.3e+5, 1.3e+5, 1.3e+5,
143521.504, 143521.504, 143521.504, 233600.000,
2e+b, 46720.000, 23441.935, 15006,

15006, 6601.244, 3097 .244 , 2097 .244 ,
3097 .244, 1345.244, 1345.244 %},
/x10%x/ { 1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
1, 1 },
/*x11%/ {1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1, 5,
1, 1, 1, 1,
1, 1, 1, 1,
1, 1 },
};
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51 const char *parameter_names [12] = {

52 "rho_O_height", "rho_O_mass", "rho_O_width",

53 "f0980_height", "f0980_mass", "f0980_width",

54 "f01270_height", "£f01270_mass", "f01270_width",

55 "bg_b", "bg_n", "bg_c"

56 };

58

59 int low_delta_state=0, high_delta_state=0; // -1 to subtract; O

to not do anything; 1 to add
60 /3% Y7 3k ok sk ok sk sk ok ok ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk ok ok sk sk ok sk ok sk ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok /

61 // CHECKING STABILITY OF THE FIT (Part start)

62 // int options[3] = {-1, 0, 1};

63 // for (int a = 0; a<3; a++) {

64 // low_delta_state = options[a];

65 // for (int b = 0; b<3; b++) {

66 // high_delta_state = options[b];

67 /% 7 5k sk ok ok %k ok sk %k 5k % oK 5k %k 5k %k ok %k ok 5k %k 5k % 5k 5k %k 5k k % 5k 5k 5k 5k %k 5k 5 %k >k %k 5 5 % >k % >k 5k % > * % >k % % * k k %k * /

69 double low_range_delta = 0.03, high_range_delta = 0.03;
70 // int i=2;

71 // for (int pt_range_index=i; pt_range_index < i+2;
pt_range_index++) {
72 // for (int pt_range_index=0; pt_range_index < 10;

pt_range_index++) {

73 for (int pt_range_index=0; pt_range_index < pt_bin_count-1;
pt_range_index++) {

74 // binning and name tstring

75 cout << endl << endl << "RI:" << pt_range_index << endl;

76 cout << "fit_index:" << pt_range_index + 1 << endl;

78 double pair_mass_min = 0.81, pair_mass_max = 1.4;

79

80 // Ignore if not checking stability

81 if (low_delta_state == 1) {

82 pair_mass_min += low_range_delta;

83 } else if (low_delta_state == -1) {

84 pair_mass_min -= low_range_delta;

85 }

86 if (high_delta_state == 1) {

87 pair_mass_max += high_range_delta;

88 } else if (high_delta_state == -1) {

89 pair_mass_max -= high_range_delta;

90 }

o1 //

92

93 auto *func = new TF1("model", fit_function, pair_mass_min,
pair_mass_max, 12);

04 double pt_low = pt_binning[pt_range_index];

95 double pt_high = pt_binning[pt_range_index + 1];
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96

97

98

99

100

101

102

103

104

106

107

108

109

110

118

119

120

121

122

129

130

131

133

134

std::ostringstream pt_low_string, pt_high_string;

pt_low_string << std::fixed << std::setprecision(l) <<
pt_low;

pt_high_string << std::fixed << std::setprecision(1l) <<
pt_high;

TString pt_low_tstr = pt_low_string.str();

TString pt_high_tstr = pt_high_string.str();

TString hist_name = "Signal_" + pt_low_tstr + "_" +
pt_high_tstr;

auto *hist = (TH1D*)file->Get (hist_name);

// hist->Rebin(2) ;

if (verbose) cout << hist_name << endl;

// setting parameters
for (int i=0; i<12; i++) {
func->SetParameter (i, initial_parameters[i] [
pt_range_index+1]) ;
func->SetParName (i, parameter_names[i]);

+

func->SetParLimits (0, O, hist->Integral (0, 4)); // keeping
height of rhoO positive (might not always work)

cout << "Max rhoO height:" << hist->Integral (0, 2) << endl;

// func->SetParLimits(l, 0.47, 0.8); // rhoO mass (2\sigma
of PDG)

// func->SetParlLimits (1, 0.675, 0.8); // rhoO mass

func->FixParameter (1, 0.775); // rhoO mass

func->FixParameter (2, 0.1491); // rhoO width

func->SetParLimits (3, 0, hist->Integral(0, 2)); // keeping
height of f0(980) positive (might not always work)

func->SetParLimits (4, 0.93, 1.05); // f0 mass (3\sigma of
PDG)

// func->FixParameter (5, 0.055); // fO0 width (Try freeing
the width a little)

func->SetParlLimits (6, 0, hist->Integral (0, 2)); // keeping
height of f2 positive (might not always work)

func->SetParlLimits (7, 1.2, 1.35); // £2 mass (3\sigma of
PDG + some)

// func->SetParlimits (7, 1.2731, 1.2779); // £2 mass (3\
sigma of PDG + some)

// func->FixParameter (7, 1.2755) ;

func->FixParameter (8, 0.1867); // f2 width

func->SetParlLimits (10, 0.1, 100); // ‘n‘ the bg parameters

func->SetParlLimits (11, 0, 10); // ‘c‘ the bg parameters (
function is only positive definite for 0 < c)

/// specific configuration for specific fits are here

// linear interpolation of mass

// if (pt_range_index == 7) {

// func->FixParameter (1, 0.7326) ;
/] }

// if (pt_range_index == 8) {

// func->FixParameter (1, 0.7342);
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136 / / }

137 // if (pt_range_index == 9) {

138 // func->FixParameter (1, 0.736) ;

139 / /

140 // if (pt_range_index == 10) {

141 // func->FixParameter (1, 0.739) ;

142 //

143 // if (pt_range_index == 11) {

144 // func->FixParameter (1, 0.742) ;

145 / /

146 // if (pt_range_index == 0) {

147 // func->FixParameter (7, 1.2755) ;

148 /7 }

149

150 // printing initial parameters

151 if (verbose) {

152 cout << "Initial parameters:" << endl;
153 for (int i=0; i<12; i++) {

154 cout << func->GetParameter (i) << endl;
155 }

156 }

157

158 // hist->SetAxisRange (0, (1.2 + 0.6*(pt_range_index>5) +

0.5*%(pt_range_index > 11) + 1x(pt_range_index>14))*hist->
Integral (0, 1), "Y");

159 hist->SetMinimum (0.) ;

160 hist->SetAxisRange (pair_mass_min, pair_mass_max, "X");

161 hist->SetXTitle ("m_{#pi " {+}#pi~{-}} (GeV/c~"2)");

162 hist->SetYTitle("Counts") ;

163 TF1 *hist_func = hist->GetFunction("model") ;

164 TFitResultPtr r = hist->Fit("model", "S");

165 TF1* BW_f0_980 = make_composite_plot(r, pt_low_tstr,
pt_high_tstr, hist, pair_mass_min, pair_mass_max);
166 double chi2_ndf = r->Chi2()/r->Ndf ();
167 cout << "Chi2/ndf: " << chi2_ndf << " (" << r->Chi2() << "/"
<< r->Ndf () << ")" << endl;
168 cout << "yield of £f0(980): ";

169 // get bin width of hist

170 double invmass_bin_width = hist->GetBinWidth (1) ;
171 double pt_bin_width = pt_high - pt_low;

172 double pt_center = (pt_high + pt_low)/2;

173 cout << "Mass Bin width: " << invmass_bin_width << endl;

174 cout << "Pt bin width: " << pt_bin_width << endl;

175 cout << "Pt center: " << pt_center << endl;

176 // double factor = invmass_bin_width*pt_bin_width*pt_center;
177 double factor = invmass_bin_width*pt_bin_width*2;

178 double f0_980_yield = BW_f0_980->Integral (0.990-5%0.055,

0.990+5%0.055) /factor;

180 TMatrixDSym cov = r->GetCovarianceMatrix (), covl;
181 cov.GetSub(3, 5, covl);
182 double f0_980_yield_err = BW_f0_980->IntegralError

(0.990-5%0.055, 0.990+5*x0.055, BW_f0_980->GetParameters (),
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189

190

191

192

193

194

195

196

11

15

16

19

20

3

covl.GetMatrixArray())/factor;
cout << f0_980_yield << "+-" << f0_980_yield_err << endl;

// write_to_file(r, pt_low, pt_high, "fit_result_1_to_5.csv
", chi2_ndf, f0_980_yield, f0_980_yield_err , pair_mass_min
, pair_mass_max) ;

/% W 3% %k ok % 5k % 5k %k 5k 3k %k ok %k ok %k ok %k 5k % 5k 3k 3k 5k %k 5k % 5k % >k %k 3k 5k k 5k 3k >k %k >k % > %k 5k % >k % >k % > % % K % >k % % % %k x /
// CHECKING STABILITY OF THE FIT (Part end)

// }

/]

/*A***********************************************************/

return 1;

Listing A.3: Function used to fit the models onto data histogram. The commented sections
can be used to nudge the initial fitting parameters to check stability of the fit. The fitted
parameters are saved to a csv file and the yield is calculated by the method discussed in the
analysis section.

#include "rapidcsv.h"
#include "mcefficiency_reweight.C"

int

correction_and_normalization(bool verbose=true) {

double pt_binningl[] =
{0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.5,3,3.5,4,4.5,5,
6,7,8,10,12,16};

int pt_bin_count = (int)sizeof (pt_binning)/sizeof (pt_binning[0])

cout << "pt_bin_count: " << pt_bin_count << endl;

rapidcsv::Document fit_result_csv("fit_result.csv");

std::vector<float> pt_low = fit_result_csv.GetColumn<float>("
pt_low");

std::vector<float> pt_high = fit_result_csv.GetColumn<float>("
pt_high");

std::vector<float> yield = fit_result_csv.GetColumn<float>("
yield");

std::vector<float> yield_err = fit_result_csv.GetColumn<float>("

yield_err");

rapidcsv::Document acceptance_efficiency_csv ("
acceptance_efficiency.csv");

std::vector<float> acceptance_efficiency =
acceptance_efficiency_csv.GetColumn<float>("
acceptance_efficiency");

std::vector<float> pt_mid = acceptance_efficiency_csv.GetColumn<
float>("pt_low");

if (verbose) {
cout << "pt_low, pt_high, yield, yield_err,
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acceptance_efficiency"

for (int i=0; i<pt_bin_count-1; i++) {

cout << pt_low[i] << " "

] << " " << yield_err[i] << " " <<
acceptance_efficiency[i] << endl;

<< endl;

<< pt_high[i] << " " << yieldl[i

+
b
// Corrected spectra
TH1D* corrected_spectra = new TH1D("corrected_spectra", "
Corrected Spectra", 22, pt_binning);
for (int i=0; i<pt_bin_count-1; i++) {
double factor = acceptance_efficiencyl[i];
if (verbose) cout << i << "acceptance: " << factor << " ("

pt_mid[i] <<")" << endl;
corrected_spectra->SetBinContent (i+1, yield[i]/factor);
corrected_spectra->SetBinError (i+1, yield_err[i]/factor);

}

TFile* f = new TFile("corrected_spectra.root", "RECREATE");

corrected_spectra->Write ();
f->Close () ;

// reweighing and multiply the reweighing factor to the

corrected spectra per pt bin < 1 only

// mcefficiency_reweight () ;

TFile *f_reweighting = new TFile("reweight.root", "READ");
TH1D *reweights = (TH1D*)f_reweighting->Get ("
corrected_spectra_correction_i2");

for (int i=0; i< 5; i++) {

if (verbose) cout << i <<

// signal loss correction

rapidcsv::Document loss_correction_csv("loss_correction.csv");

"reweighting factor: " <<
reweights ->GetBinContent (i+1) << endl;

corrected_spectra->SetBinContent (i+l1, corrected_spectra->
GetBinContent (i+1) *reweights->GetBinContent (i+1));

corrected_spectra->SetBinError (i+l, corrected_spectra->
GetBinError (i+1) *reweights->GetBinContent (i+1));

std::vector<float> loss_correction = loss_correction_csv.
GetColumn<float>("loss_correction") ;
pt_mid = loss_correction_csv.GetColumn<float>("pt_mid") ;

// multiply the factors to the pt_spectra per pt bin

for (int i=0; i<pt_bin_count-1;
if (verbose) cout << i + 1 <<

loss_correction[il

<<

n (ll

i++) {

"loss_correction: " <<
<< pt_mid[i] << ")" << endl;

corrected_spectra->SetBinContent (i+1, corrected_spectra->
GetBinContent (i+1)*loss_correction[i]) ;

corrected_spectra->SetBinError (i+l, corrected_spectra->
GetBinError (i+1)*loss_correction[i]) ;

// Normalization
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68

90
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92

double branching_ratio = 46.0/100.0; // pm 6%
double f_norm = 0.7574; // pm 0.019
double f_vtx = 0.958;
int event_count = 897000000;
double factor = f_norm*f_vtx/event_count/branching _ratio;
if (verbose) cout << "Normalization factor: " << factor << endl;
for (int i=0; i<pt_bin_count-1; i++) {
corrected_spectra->SetBinContent (i+1, corrected_spectra->
GetBinContent (i+1) *factor) ;
corrected_spectra->SetBinError (i+l1, corrected_spectra->
GetBinError (i+1)*factor) ;

// open file to write to
ofstream corrected_spectra_csv;
corrected_spectra_csv.open("normalised_corrected_spectra.csv");

// write the corrected_spectra to a csv file
corrected_spectra_csv << "pt_low,pt_high,yield,yield_err" <<

endl ;
for (int i=0; i< pt_bin_count-1; i++) {
corrected_spectra_csv << pt_binning[i] << "," << pt_binningl
i+1] << "," << corrected_spectra->GetBinContent (i+1) << ",
" << corrected_spectra->GetBinError (i+1) << endl;
b
TFile *f2 = new TFile("normalized_corrected_spectra.root", "
RECREATE") ;

corrected_spectra->Write () ;
f2->Close () ;

// sum up the corrected spectra*pt_bin_width
double dNdy = O;
for (int i=0; i<pt_bin_count-1; i++) {

cout << "bin " << i1 << ": " <K< corrected_spectra->
GetBinContent (i+1) << " * " << pt_binning[i+1]-pt_binningl
i] << " = " << corrected_spectra->GetBinContent (i+1) *(

pt_binning[i+1]-pt_binning[i]) << endl;
dNdy += corrected_spectra->GetBinContent (i+1)*(pt_binningl[i
+1] -pt_binning[i]);
}
cout << "dNdy: " << dNdy << endl;

return 1;

Listing A.4: Correction and Normalization of pr spectra
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