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ABSTRACT

In recent years, study of event-by-event (e-by-e) fluctuations in physical observables
has been a topic of interest as this may help physicists to understand the properties of
hot and dense matter formed in heavy ion collisions at Large Hadron Collider (LHC) and
Relativistic Heavy Ion Collider (RHIC) energies [1]. In this thesis, I tried to understand the
e-by-e mean transverse momentum 〈?T〉 fluctuations in pp and Pb–Pb collisions at √BNN
= 5.02 TeV . The collision data for Pb–Pb system analysed in this thesis has been taken
from ALICE experiment at LHC whereas for pp collision, the events are simulated using
PYTHIA8 event generator. Fluctuations of any distributed quantity is encoded in its higher
order cumulants. For our analysis, cumulants, C1, C2, C3 and C4 of e-by-e 〈?T〉 distribution
for different centrality classes has been compared with gamma distribution, a baseline for
statistical fluctuations [2]. Before the comparison, the detector efficiency correction in Pb–
Pb collision data is carried out by unfolding and ratio method. Both the method requires
the Monte Carlo (MC) data (containing the detector effects ) from the experiment. The
presence of low MC statistics makes the results skeptical.

PYTHIA8 contains two important phenomenological models for particle production,
Color Reconnection and Rope Hydronization. The effect of these two different physics in
the models on the cumulants of e-by-e 〈?) 〉 distribution is also studied.
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Chapter 1
Introduction

Theoretical predictions and experimental observation by thousands of physicists since
early 20Cℎ century have given us a remarkable understanding to the fundamental structure
of matter. The surrounding we see is made of fundamental particles and, the particles are
governed by four fundamental forces as seen in fig. (1.2). These elementary particles and
their governing force (except gravitational) are explained by the Standard Model [3].

1.1 The standard model of particle physics

Over time and through many experiments, the Standard Model as shown in the fig. (1.1)
has become established as a well tested physics theory [4]. It is one of the most important
achievement for particle physicist till now. According to the model, the elementary particles
can be categorized into six quarks, six leptons, four gauge bosons and the recently discovered
Higgs boson. The six quarks are paired into three generations :

• 1st Generation : up (u) and down (d)
• 2nd Generation : charm (c) and strange (s)
• 3rd Generation : top (t) and bottom (b)

and the leptons are also arranged into three generations:

• 1st Generation : electron (e−) and electron-neutrino (a4)
• 2nd Generation : muon (`−) and muon-neutrino (a`)
• 3rd Generation : tao (g−) and tao-neutrino (ag)

Each of the quarks and leptons also have their corresponding antiparticles with opposite
charge.

1



1 Introduction

Figure 1.1: Fundamental particles of the Standard Model of particle physics

Each fundamental force acts differently via mediating their respective gauge bosons.
Few features of these interactions are as follows :

• The strong interaction, as the name suggests, is the strongest of all four fundamental
interactions. It is only effective only at the level of subatomic particles. The interaction
is mediated by exchange of gauge boson, gluon.

• The weak interaction is also only effective in the subatomic level. This interaction is
responsible for slow decay of unstable subatomic level particles. This interaction is
mediated by exchange of heavier gauge bosons, W and Z bosons

• The electromagnetic interaction occurs between every charged particles and is medi-
ated by exchange of photons.

2



1 Introduction

Figure 1.2: A schematic representation of fundamental forces of standard model [4]

1.2 Nature of strong interaction

The theory of strong interaction is described by Quantum Chromodynamics (QCD). The
fundamental particles in QCD theory are quarks, anti-quarks and gluons. The strong force
between these particles ismediated by the exchange of gluons. Gluons is a boson, and quarks
anti-quarks are fermions. Quark (anti-quark) carry color (anti-color) charge and gluons
carry pair of color anti-color charge. The interaction potential between quark anti-quark
pair is approximately stated as

V = −Us
r
+ ^r (1.1)

here , UB is the strong coupling constant and ^ is the colour string tension. The strong
coupling constant is given by

Us(Q2) = 12c
33 − 2nf

1

ln
(

Q2

_2
QCD

) (1.2)

where Q2 is the momentum transfer, n 5 is the number of quark flavors and _QCD is the scale
parameter. The coupling constant increases as the distance between the quarks increases thus
making them inseparable. This property is known as quark confinement. It is responsible
for binding quarks inside the hadrons. The quark anti-quark pair bind together to form
a meson, while three quarks bind together to form a baryon. If the distance between the

3



1 Introduction

quarks is small, momentum transfer “Q" between them is large, then the coupling constantUB
becomes small and the quarks behave like a free non-interacting particle. This astonishing
property is called Asymptotic freedom [5, 6].

Figure 1.3: A sketch illustrating the experimental exploration of the QCD phase diagram
[7]

In hard processeswhere themomentum transferred during collision is large (Us is small),
QCD calculations can be done perturbatively while in soft processes (dominant process) it
cannot be treated perturbatively ( Us is large). The QCD can be solved non-perturbatively by
lattice QCD approach where the calculation is done on a discrete space time lattice. Lattice
QCD calculations predicts transition from a confined hadron to a deconfined partonic matter
at temperature around 150 MeV [8, 9]. It was believed that high density nuclear matter
containing asymptotically free quarks can be created. Such a matter of free quarks and
gluons is termed asQuark Gluon Plasma (QGP) [10]. The phase diagram of QCD is shown
in fig.(1.3).

4



1 Introduction

1.3 Kinematic variables

In high energy heavy ion collision, particles are accelerated to a speed comparable to the
speed of light therefore relativistic effects must be taken into consideration when we switch
between different frame of references. The light-cone variables, transverse momentum,
rapidity and pseudo-rapidity are few observables that have simple Lorentz transformation
laws and only depends on momentum and energy of the detected particles.

1.3.1 Mean transverse momentum

Particle detectors which are dedicated tomeasure themomentum and energy of the produced
particles are located on transverse direction (x-y plane) of the beam axis (z-axis). The
transverse momentum (?T) is a Lorentz invariant quantity (see appendix A) and is given as,

pT =
√

p2
x + p2

y (1.3)

Figure (1.4) shows plots of pG , pH, pI and p) in Pb–Pb collisions. The small dip in the
center of ?G and ?H is due to ?T cut (> 0.2 GeV/c) given on data for analysis, as below
this detector does is not able measure the momentum correctly. In this thesis we will study
event-by-event (e-by-e) mean transverse momentum (〈?T〉), a widely studied observable of
an event. The e-by-e 〈?T〉 is given as,

〈pT〉 =
1

Ntrack

Ntrack∑
i=1

pTi (1.4)

Here, index i refers to ith charge particle in an event and Ntrack is the total no. of charge
particle detected (or produced) in the event, event charge multiplicity. Figure (1.5d) shows
e-by-e 〈?T〉 distribution in Pb–Pb collisions.

1.3.2 Rapidity

Let us consider a particle resulting from from a collision such that it has four-momentum
p (p0, pT, pz) , then the forward light-cone momentum and backward light-cone momentum
are given as p+ = p0 + pz and p− = p0 − pz respectively. On Lorentz transformation, these
quantities get multiplied by a constant factor (see A.5).

5



1 Introduction

Rapidity (y) of the particle is related to the ratio of p+ and p−. Mathematically it is
expressed as

y =
1
2
ln

(
p0 + pz
p0 − pz

)
(1.5)

Lorentz transformation yields simple relation (for derivation see A.5),

y′ = y − yV here,yV =
1
2

ln
1 + V
1 − V (1.6)

Here, y’ is rapidity in frame F’ and y in frame F (F’ moves with velocity V wrt F).
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Figure 1.4: Few kinematic variables of charge hadrons produced in Pb—Pb collisions. The
y-axis represents total count of tracks over all the events.

1.3.3 Pseudorapidity

Pseudorapidity ([) is another kinematics variable which depends only on the azimuthal
angle \ by the mathematical relation (1.7). Figure (1.5a) shows a typical pseudorapidity
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distribution in Pb–Pb collision, it is almost constant. This has certain advantage that
detectors requires only one observable to measure.

[ = −ln
(
tan

\

2

)
(1.7)
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Figure 1.5: Different physical observables in Pb–Pb collisions

There is one more definition of [ which depends on |®p| and pz and is given by,

[ =
1
2
ln

( |®p| + pz
|®p| − pz

)
(1.8)

In high energy collisions, p0 ≈ |®p|. Therefore rapidity and pseudorapidity are comparable,
y ≈ (.
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1.4 Centrality

Centrality is a measure of "how much" a collision is head-on. It is used in heavy-ion
collisions to characterize an event. Complete details about the calculation of centrality
classes can be found in paper [11, 12]. Here a brief background understanding is presented
as in our analysis the centrality of each event is determined by a pre-defined ALIROOT.

Figure 1.6: Normalised charge multiplicity distribution with NBD-Glauber fit distribution.
In the x-axis, the V0M amplitude is directly proportional to charge particles detected in the
V0 detectors. The lower panel shows the ratio of experimental and fitted values. The figure
is taken from the paper [11]

Centrality classes are constructed by taking into account the whole area under the multi-
plicity curve and dividing this area accordingly from the right to left such that low centrality
values correspond to central collisions and high centrality values to the peripheral collisions.
While defining centrality classes we assume that the impact parameter b is monotonically
related to particle multiplicity(#2ℎ). For collisions with low impact parameter, produced
particles (charge, Nch) is low, and also the momentum of these produced particles will
be low such that these particle might not be able travel to the detector (V0). This will

8



1 Introduction

lead to underestimation of events with large impact parameter or low Nch and it further
leads to incorrect estimation of area under curve as events with low Nch occurs majorly in
the experiment. Hence, the experimentally determined charge multiplicity distribution (fig
1.5c) fails to correctly determine centrality classes.

Figure 1.7: Event-by-event 〈?T〉 distribution for different centrality classes Pb–Pb collisions.

To correct this discrepancy, a Negative Binomial Distribution-Glauber model fit is done
to the data as shown in fig. 1.6 [12]. The fitted distribution is used to calculate the centrality
classes for the experimental data. Figure (1.7) shows e-by-e 〈?T〉 distribution for five
different centrality classes.

1.4.1 Multiplicity Percentile

In proton-proton (pp) collision, multiplicity percentile is used to characterize events, It
has the same meaning as centrality in heavy-ion collisions. Head-on collisions imparts
Multi-Parton Interactions (MPIs) resulting in large multiplicity. Therefore low multiplicity
percentile is defined as most central collision and high multiplicity percentile as peripheral
collisions. Thereafter the total area under multiplicity distribution is diced as shown in
fig. (1.8). The method used to cut the multiplicity distribution in simulated pp collision is
simple due to absence of detector effects. Figure (1.9) shows e-by-e 〈?T〉 distribution for
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six different multiplicity classes.

Figure 1.8: Plot shows the multiplicity (V0M when actual data is used) percentile division
of the charge multiplicity distribution in pp collisions.

Figure 1.9: Event-by-event 〈?T〉 distribution for different multiplicity percentile classes in
pp collisions.
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1.5 Cumulants of distribution

Cumulants are numbers that quantify shape of a distribution. For a given random variable
x,

C1 = `
′

1 (1.9a)

C2 = `2 (1.9b)

C3 = `3 (1.9c)

C4 = `4 − `2
2 (1.9d)

Here the raw moment `′1 is the mean of the distribution of x and given as,

`
′

1 =
#∑
8=1

G (1.10)

and the central moment `A is calculated as,

`A =

#∑
8=1
(G − `1)A (1.11)

In our analysis, x is event-by-event mean transverse momentum 〈?T〉 and N is Nevent,
the total number of events. The error on cumulants are calculated using delta-theorem and
are given as,

Var(C1) =
`2
n

(1.12)

Var(C2) =
1
n

[
`4 − `2

2
]

(1.13)

Var(C3) =
1
n

[
`6 − `2

3 + 9`3
2 − 6`4`2

]
(1.14)

Var(C4) =
1
n

[
`8 − 12`6`2 − 8`5`3 − `2

4 + 48`4`
2
2 + 64`2

3`2 − 36`4
2

]
(1.15)

A complete calculation is provided in appendix E.
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1.6 Motivation for the thesis

The main aim of ALICE experiment at CERN is to study the properties of QGP formed
during heavy-ion collisions. To probe the properties of QGP, many authors studied the
event-by-event (e-by-e) fluctuations of physical quantities such as chargemultiplicity, photon
multiplicity, mean transverse momentum and energy. Event-by-event fluctuations are of
two kind : Statistical and Dynamical. Dynamical fluctuations arise from different sources
of correlations among the final-state particles, such as jets, resonance decays or quantum
correlations [13] whereas the statistical fluctuations arises due to limited acceptance of
the detectors, finite particle multiplicity, fluctuations in the number of primary collisions,
impact parameter fluctuations, or effects of re-scattering of secondaries [14, 1]. To probe
the dynamical fluctuation (if present) which might be associated to some new physics, it is
necessary that we first understand the expected statistical fluctuation. If the particles are
emitted independently, the fluctuations will be purely statistical and its baseline for e-by-e
mean transverse momentum ( 〈?T〉 ) distribution will be gamma distribution [2]. In this
thesis, I have compared the e-by-e 〈?T〉 distribution for different centrality classes with be
gamma distribution to check whether the observed fluctuations is purely statistical as was
earlier found in central collisions for Pb–Pb system at √BNN = 158 GeV [2].

Fluctuations study in small collision systems like proton-proton act as a model indepen-
dent baseline to search for non-trivial fluctuations in heavy-ion collisions [13]. Therefore the
same analysis is performed in pp system (in PYTHIA model) to understand the difference
in fluctuations that we observe in Pb–Pb system.
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Chapter 2
Pythia8 simulation for pp collision

PYTHIA is a computer simulation program which virtually collides elementary par-
ticles like 4−, 4+, ?, ?̄ and mimics the high energy particle accelerator experiments. The
mimicking process like for initial and final state radiation, beam remnants, multiple parton
interactions, hadronization and particle decays is based on several coherent physics models.
PYTHIA8 is the newest version of this event generator and it is written in C++ platform
[15].

2.1 hadronization

Hadronization of produced quarks (anti-quark) and gluons into observed hadron lies in
the non-perturbative QCD regime and hence a complete theoretical understanding is still
missing. PYTHIA8 implements Lund string fragmentation model for hadronization as seen
in fig. (2.1). This model incorporates color strings between partons which then later on
fragments successively into final state hadrons.

Figure 2.1: A schematic diagram of string fragmentation model of hadronization [16]

The the model also has many limitations like ,

1. It is unable to explain the observed flow like patterns or in simple words the increase
in transverse momentum of the particle with event multiplicity[17].
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2 Pythia8 simulation for pp collision

2. Mechanism underestimates production of strange and baryon particles in proton-
proton collision [18].

Figure 2.2: A phenomenological diagram of proton-proton collision in the event generators
perspective. [16]

2.1.1 Color Reconnection

A proton-proton collision with high multiplicity is accompanied by multiple parton-parton
interactions (MPI) and each parton is classified by the MPI system they belongs to or to say
from which parton-parton collision they were produced. The high multiplicity events are
naturally accompanied by high parton density and this phenomena then favour more than
one pair of quark and anti-quarks in the vicinity of each other.
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2 Pythia8 simulation for pp collision

Figure 2.3: Examples of two closely spaced dipoles (quark & anti-quark pair) formed
from same proton-proton collision but different MPI system. They can form two different
configuration (a) or (b).The image is reproduced from reference [16]

As from the fig.(2.2) we know that partons are color connected (strings are present) to
their beam remnants and there is already a inherited strings connections present between
partons of each MPI system. In default these inherited strings breaks successively into
hadron. Color Reconnection is a model which decides whether the strings between two
dipoles of MPI sytems can switch or not in order to reduce their potential energy or their
string length (given by _ measure). This problem can be visualized with the sample fig.
(2.4) presented below.

Figure 2.4: An example of hard parton-parton sub-collision. (a) The outgoing partons (top
and bottom dots ) as colour connected to the projectile and target remnants (left and right
dots). Initial state radiation may give extra gluon kinks (small dots in between strings) (b)
A second hard scattering would give two new strings (from top & bottom to left & right)
connected to the remnants. (c) The partons are colour reconnected, so that the total string
length becomes as short as possible. The image is reproduced from reference [19]

2.1.2 Rope hadronization

High multiplicity events in proton-proton collision is accompanied with MPIs and hence
high density of dipoles. This leads to large number of strings occupying the same transverse
area ( ∼ 1fm2). Rope Hydronization (RH) model takes into account the interaction of these
overlapping strings through two distinctive way :
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2 Pythia8 simulation for pp collision

1. By allowing the overlapping strings to push/shove each other in the respective outward
direction as seen in fig. (2.5).

2. The color charges and/or the “gluon kinks" at the end points of the overlapped strings
can coherently forma rope, having coloredmultiplet and larger effective string tension.
This effect is also known as flavour ropes as it has considerable effects on the flavour
composition of final state hadron composition.

Figure 2.5: A schematic diagram showing the overlapped dipoles (quark & anti-quark pair)
in impact parameter (®1) space. The image is reproduced from reference [20]

2.2 Event and Track selection for analysis

In this project, the pp collision events are generated in PYTHIA8(vs .235) with the selection
criteria for events depending on the ALICE detector.

• Collision energy :
√
B = 5.02 TeV

• No. of events : 10 Million
• Hadrons (ℎ±) : p±, c± and  ±

• particle must not be produced via weak decay.
• produced particle should be product of collision only.
• Multiplicity Distribution :

– [ range (ALICE V0M detector [21]) : −3.1 < [ < −1.7 (V0C) or 2.8 < [ < 5.1
(V0A)

• event-by-event 〈pT〉 distribution :

– [ range (ALICE TPC detector [21]) : |[ | < 0.8

– pT cut : 0.2 < pT < 2.0
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The particles generated virtually in the event generator are detected symmetrically in
[ and q range but to mimic the detector acceptance range, the above selection criteria are
followed then the generated events are selected as an observation if and only if there is
atleast one particle detected in [ range of both V0M and TPC detector [21].

Now, four different configuration of CR and RHmodel has been used to generate events.
These configurations are as follows :

1. CR (ON) and RH (OFF) : CR model without RH model. This is also the default
configuration in PYTHIA8.

2. CR (ON) and RH (ON): Both CR and RH model included.
3. CR (OFF) and RH (OFF) : Both the models are excluded.
4. CR (OFF) and RH (ON) : RH model without CR model.

To get a general idea only the default tunes of each models are used i.e, CR is the default
MPI based model and RH model has the default tune of shoving and flavour on always.

2.3 Event-by-event 〈?T〉 cumulants in pp system

To understand the effect of model configuration charge multiplicity distribution and first
four cumulants of event-by-event 〈pT〉 distributions are compared with respect to each other.

Figure 2.6: Charge multiplicity distribution for various model configuration
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2 Pythia8 simulation for pp collision

Figure 2.7: Variation of cumulants of event-by-event 〈?T〉 with multiplicity percentile for
various model configuration. The y-axis represent respective cumulant and x-axis represent
multiplicity percentile classes.

1. For charge multiplicity distribution,

• Effect of each model is prominently seen in lower (Nch . 20) and higher
multiplicity (Nch & 50) events as seen in fig. (2.6). After reviewing each model
it is well understood that both the models will greatly effect the event generation
by increasing or decreasing events with high multiplicity and as the no. of
event generated is same in all configuration. If events with high multiplicity
are enhanced or suppressed, the lower multiplicity events gets suppressed or
enhanced respectively.

• Keeping CR model either ON or OFF : RH enhances events with higher multi-
plicity.

• Keeping RH model either OFF or ON : CR suppresses events with higher
multiplicity.

• On compared to default ; applying RH model or removing CR model, events
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with higher multiplicity are enhanced.

2. And for event-by-event 〈pT〉 distribution cumulants,

• CR increases the C1 and it increases monotonously as centrality decreases as
seen in fig. (2.7). CR flips the strings between a low p) dipole of one MPI
system and a high p) dipole of another MPI system (with a probability that is
inversely proportional to the square of p) ). The p) of the newly formed dipoles
is more than the former one and hence there is enhancement of mean, C1.
Decreasing centrality means decreasing the impact parameter of the collisions.
Lower centrality results from head-on collision in which MPIs occurs and it
also increases with decreasing centrality. And higher MPIs mean, larger dipole
density and the CR effect is seen much more.

• CR also increases the C2 and it decreases monotonously with CR as centrality
decreases. CR works iteratively, taking the lowest p) dipole and tries to connect
with successive higher p) dipole with probability remaining the same. This
results in increase in variation (C2) of dipole’s p) compared to the case where
CR effect is not seen.

• C1 and C2 are slightly larger with RH for large centrality (& 80%).

• C3 and C4 increases with increasing centrality. Comparison between eachmodel
is complex but the behaviour is different from C1 and C2 as for lower and higher
centrality each configuration asymptotically becomes same.
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Chapter 3
The Experimental Setup

A particle accelerator pushes charge particles like protons, electrons or ions at a speed
which is close to the speed of light. These accelerated particles are then smashed either
onto a fixed target or against particles accelerating in opposite direction. Study of these
collisions help us to unfold the world of the infinitely small.

The European Council for Nuclear Research, CERN (in French Conseil Européen pour
la Recherche Nucléaire) holds the largest particle physics laboratory in the world. The main
attraction of CERN is the Large Hadron Collider (LHC) which till date remains the world’s
largest and most powerful particle accelerator dedicated to study fundamental physics.

Figure 3.1: A pictorial representation of accelerator complex at CERN. The largest oval
shaped ring is the LHC accelerator. The four yellow markers at the LHC ring are the
location of four major experiments, ALICE, ATLAS, CMS and LHCb [22].

20



3 The Experimental Setup

3.1 The Large Hadron Collider

On 10th September 2008, LHC was added to the CERN accelerator complex. It lies
underground at a depth of 50 - 150 m in a 27 km long tunnel across the Switzerland and
France border. It is a circular structure of superconducting magnets, and is divided into
eight octants. Each octant are 2.45 km long arcs containing 154 dipole magnets. The LHC
is designed to collide pair of heavy-ions with maximum center of mass energy of 5.5 TeV
per nucleon. The experimental discussion will be mainly on Pb–Pb system which is used
in my analysis; apart from this, other colliding system includes pp and p-Pb.

Figure 3.2: The schematic diagram shows different components of Large Hadron Collider
(LHC) [23]

At first, pure lead (Pb-208) sample is heated to about 500 >C to get vapours of Pb atoms.
In the the initial stage only few electrons are removed from the atoms using an electric
filed. The partially ionised atoms first travels through a linear accelerator called LINAC 3.
After attaining an energy of 4.5 MeV per nucleon at LINAC3 few more electrons removed.
The ions are then collected and accelerated to an energy of 72 MeV per nucleon in the
Low Energy Ion Ring, or LEIR. The beam is then accelerated to an energy of 5.9 GeV per
nucleon at Proton Synchrotron (PS), having a circumference of 628 m. Thereafter the beam
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is further accelerated to a much higher energy of 177 GeV per nucleon at the Super Proton
Synchrotron (SPS) which has a circumference of 7 km. After this step-by-step increment
of energy, the ions are finally divided into bunches travelling in opposite direction of the
LHC main ring. At LHC, the ions are accelerated to the desired energies before collision.

The pictorial representation of the CERN accelerator complex is shown in figure 3.2.

• At octant 2 and 8, the particles are injected to the LHC ring.

• At the octant 4, the beam is accelerated by Radio Frequency (RF) system.

• At octant 3 and 7, particles having large spatial spread from the bunch center are
removed by the collimation system.

• The four major detectors are located at octant 1, 2, 5 and 8. At these points, oppositely
accelerated beams collides.

• At octant 6, the beam is removed from the LHC ring by the beam dumping system.

Figure 3.3: The schematic diagram shows the Cartesian coordinate system used at ALICE.
Image taken from [24]
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The co-ordinate system assigned to the detector is shown in fig. 3.3. Conventionally, the
interaction point (IP) is chosen as origin (0, 0, 0); Z-axis is along the beam direction; X-axis
lies on the horizontal plane of detector and +X-axis point towards the LHC center; +Y-axis
points upward and is perpendicular to the Z-axis & X-axis. Cylindrical coordinate system
is often more useful seeing the shape of the detector. For an observer standing at - Z-axis
and looking towards the IP. The azimuthal angle, q runs clockwise from +X-axis covering
an total angle of 2c whereas the polar angle, \ runs from -Z to +Z direction covering an
angle of c.

There are six experiments running in parallel at the LHC.

1. ALICE (A Large Ion Collider Experiment)

2. ATLAS (A Toroidal LHC ApparatuS)

3. CMS (Compact Muon Solenoid)

4. LHCb (LHC-beauty)

5. LHCf (LHC-forward)

6. TOTEM (TOTal Elastic and diffractive cross section Measurement)

The thesis work is based on data taken from ALICE experiment. A brief details of
ALICE experiment is described in the following section.

3.2 ALICE at the LHC

The main motivation of ALICE experiment is to understand the formation and evolution
of highly dense nuclear matter formed during the collision of heavy-ions. The detector
is located at the second octant of the LHC ring as seen in fig. 3.2. It weighs around 10
thousand tonnes and has a dimension of 26(;4=6Cℎ) × 16(ℎ486ℎC) × 16(F83Cℎ) m3. It is
installed within a magnet of maximum strength 0.5 Tesla. The whole detector is categorised
in three components; Central Barrel Detectors (CBDs), a Muon Spectrometer and Forward
Detectors.
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Figure 3.4: The schematic diagram shows the location of different detector at ALICE. Image
taken from [24]

3.2.1 Central Barrel Detectors

The Central Barrel Detectors (CBDs) consists of 7 components :

1. Inner Tracking System (ITS)

2. Time Projection Chamber (TPC)

3. Transition Radiation Chamber (TRD)

4. Time Of Flight (TOF) detector

5. High Momentum Particle Identification Detector (HMPID)

6. PHOton Spectrometer(PHOS)

7. Electro-Magnetic CALorimeter (EMCAL)
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8. ALICE COsmic Ray DEtector (ACORDE).

The position of each component is shown in figure 3.4. ITS, TPC and TOF are three
important detectors related to our data analysis so a brief outline of these detectors are given
in the following sub-sections.

3.2.1.1 Inner Tracking System

The beampipe cylinder ismade of berylliumand has a radius of 2.9 cmwith a radial thickness
of 800 `m. It is surrounded by 6 layers of cylindrical silicon detectors, collectively known
as Inner Tracking System (ITS) . The layers further consist of three different categories of
detector.

Figure 3.5: A schematic diagram of inner tracking system at ALICE. Image taken from [25]

1. Silicon Pixel Detector (SPD) : It is the innermost two layers of ITS. SPD is mainly
used for the calculation of primary and secondary vertices and can operate at very
high track densities about 50 tracks/cm3 and in a high radiation environment.

2. Silicon Drift Detector (SDD) : They are the two intermediate layers (3rd and 4th)
of the ITS. It can give high precision position information (a position resolution of
35 `m) and the information of the energy loss (dE/dx) which can be used for the
identification of particles.

3. Silicon Strip Detector (SSD) : The SSDs are the outermost layers of the ITS. They
play important role inmatching the tracks from the ITS to the TPC. It can provide a 2-D
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measurement of the track position. In addition it can provide the dE/dx information.

3.2.1.2 Time Projection Chamber

Figure 3.6: Schematic diagram of TPC. Image taken from [23]

The Time Projection Chamber (TPC) is the most important device of the ALICE detector.
It is used for tracking and identification of charge particles. The schematic diagram of TPC
is shown in fig. 3.6. The TPC is a hollow cylinder surrounding the ITS detector. It has a
length of 5 m with an inner and outer radius of approximately 0.8 m and 2.5 m respectively.
In between the inner and outer containment vessel, it has a mixture of Ne, CO2 & N2

(85.7%, 9.5%&4.8%) gas at atmospheric pressure with a volume of 90 m3 . The gaseous
chamber is divided into two equal zones by a high voltage electrode surface ( perpendicular
to the axis of TPC ). This electrode is a cathode kept at potential of -100 kV, and with the
help of voltage dividing network at the surface of inner and outer cylinder, it provides a
uniform electric field with strength of 400 V/cm. The electric field lines runs parallel to the
beam axis from central cathode to the outer end plates ( anode at potential +1.5 kV).
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Figure 3.7: Schematic diagram of TPC’s working principle. Image taken from [26]

Figure 3.7 shows the working principle of TPC. When a charged particle passes through
the active gas volume, it excites and ionizes gas atoms along the trajectory of the track.
Ionized free electrons are drifted towards the end plates of the cylinder due to the electric
field and the ions are drifted towards the high voltage cathode placed at the centre of the
TPC. The drifting of electrons are not affected by the external magnetic field as it is oriented
parallel to the electric field. Drifted electrons are amplified by an avalanche process at the
end of drift path around the anode wires. The x, y positions of the tracks are reconstructed
from the hits on the anode pads at the end plates. The z-coordinates of the tracks are
calculated based on the information of drift velocity and arrival time of the drift electrons
at the anode plane. The tracks are reconstructed from the 3D space points and the curvature
of the track helps in determination of ?T of the tracks.
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Figure 3.8: The red and orange lines shows the tracks of an actual event recorded by ALICE
detector. Image taken from[27].

3.2.1.3 Time of Flight Detector

The TOF detector at ALICE measures the time taken by the particles to reach the detector
from the vertex where it was produced and thus helps to measure the speed of the particles.
It is based on Multigap Resistive Plate Chambers (MRPCs). Around 1593 MRPCs with
active volume of 1.2 × 0.74 m2 are arranged on the 18 azimuthal sector. The MRPCs has a
double-stack design, it is made of two stacks of 5 gas gaps (250 `m). As the charged particle
ionize the gas while transversing the detector, high electric field amplifies the ionization
through electron avalanche, which are stopped due to the resistive plates. The total signal
is the sum of all the signals from all gaps. It has an ability to detect particles with 99.9 %
efficiency with a time resolution of about 85 ps in Pb–Pb collisions. The particles in TOF
can also be identified by an Nfcut [24]. TOF detector also identifies the charge particles
in the intermediate momentum range.
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Figure 3.9: A schematic representation of time of flight detector at ALICE. Image taken
from [28]

3.2.2 V0 detectors

The two V0 detectors, V0A and V0C are part of ” forward detectors " and are located
on either side of beam direction. The V0 detectors are small-angle plastic scintillator
detectors situated in the forward directions on both sides of the ALICE collision vertex.
They cover full azimuthal angle coverage and the pseudo-rapidity ranges of 2.8 < [ < 5.1
for the V0A detector and -3.7 < [ < -1.7 for the V0C detector. Both of the V0 detectors
consist of two arrays of 32 scintillator counters. The scintillating light is collected by
Photo Multipliers (PMTs) through Wave-Length Shifting (WLS) fibres. Figure shows the
position of two V0 detectors in ALICE layout. The V0 detectors are dedicated to provide
a minimum bias trigger during the data taking of pp and heavy-ion collisions. They are
also used to discriminate the beam-gas interactions by correlating V0A and V0C timing.
In addition, V0 detectors are also used to determine the collision centrality in heavy-ion
collisions, multiplicity classes in pp collision and event plane by measuring the V0A and
V0C amplitudes. Details about the centrality estimation of centrality classes are provided
in section.
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Chapter 4
Event-by-event 〈?T〉 cumulants in Pb–Pb system
4.1 Data-Set

The analysis is carried out with 17 million raw ALICE data and 1 million ALICE MC
(HĲING) data fro Pb–Pb collisions at √BNN = 5.02 TeV. The events were accepted if there
is at least one hit in any of V0A, V0C, and SPD,MinimumBias (MB) trigger (pre-defined in
“kINT7" ). The centrality of each event is calculated from pre-defined ALIROOT package
“V0M estimator". The kinematic cuts for selection of each tracks are

• 0.2 < ?T (GeV/c) < 2.0

• |[ | < 0.8

4.2 Cumulants of raw data

The data which we get directly from the experiment is called the raw data. Figure (4.1)
shows the higher order cumulants, C2, C3 and C4 of e-by-e 〈?T〉 distribution for raw data.
Their values are very less for collisions with centrality less than ∼ 60%. To see the variation
of higher order cumulants with centrality, the y-axis is chosen to be logarithmic.
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Figure 4.1: Plot of C2, C3 and C4 of event-by-event 〈?T〉 distribution for raw data.
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4 Event-by-event 〈?T〉 cumulants in Pb–Pb system

Taking this into consideration, the trend of first four cumulants with centrality can
be clearly seen fig. (4.2). C1 decreases with centrality, and also the rate with which
it decreases increases with centrality. In contrast the higher order cumulants increases
sharply with centrality.
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Figure 4.2: Plot shows the cumulants of event-by-event 〈?T〉 distribution of raw data. the
y-axis of higher order cumulants are in log scale. The vertical line in markers represent
statistical error.

The raw data contains detector effects which has to be removed. In the following section
we will try to remove the detector effects and get corrected distributions.
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4.3 Detector Efficiency Correction

In any experiment, the detector effects or errors are embedded in the measured distribution
and thus it differs from the corresponding “true" physical distribution. The aim of physicist
is to extract the true distribution by removing these distortions. This is intuitively shown in
the fig. (4.3). One of the widely used method to perform this task is Unfolding and Ratio
Method.

Figure 4.3: A pictorial representation to show different aspects of correcting detector
effects[29].

4.3.1 Unfolding

All the measurement effects are encoded in detector response matrix which maps the
particle level “true" distribution onto the detector level “measured" distribution. If T8 and
M 9 are the events in bin i and j of true and measured distribution respectively; then the
response matrix element R 98 is the fraction of events T8 that ends up being measured as
M 9 . The response matrix is usually created with Monte Carlo simulations taken under
same detector conditions during experiment. Unfolding is a process to reproduce the true
distribution from the given measured distribution using response matrix [30].

RooUnfold have different pre-coded algorithms to carry out the unfolding process. In
this thesis work I have used the iterative Bayesian unfolding, widely used by high energy
physicist, to remove the event-by-event detector effects. A brief background theory of
Bayesian unfolding procedure is provided in the appendix B. The response matrix for this
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analysis is created with the generated and reconstructed event-by-event 〈pT〉s’ of HĲING
Monte Carlo simulations from ALICE experiment. The generated ( particle level ) values
are produced from the HĲING model and are then fed in GEANT4 simulation to create
the reconstructed ( detector-level ) values. In the code, the no. of iteration for unfolding
is determined by the “ j2 of change", which reduces as we increase the iterations. This
parameter is kept close to 1 for our analysis.

4.3.1.1 Problems with unfolding in Pb–Pb system

The main problem with unfolding in Pb–Pb system is that there is no model which is able
to explain the e-by-e 〈?) 〉 trend with Nch (or centrality). As seen in fig. 4.4 various
model like DPMJET, AMPT, Glauber MC and importantly HĲING (used in our analysis)
underestimates e-by-e 〈?) 〉.
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Figure 4.4: Event-by-event 〈?T〉 vs charged-particle multiplicity Nch for three different
collision systems: proton-proton (upper panel), proton–Pb (middle panel), and Pb–Pb
(lower panel). The data results are compared with various model calculations.[31]

This hinders the unfolding procedure as the range of e-by-e 〈?) 〉 distribution of generated
and reconstructed MC data is different from the distribution of raw data measured in the
experiment. Figure 4.5 shows this difference in range of MC and raw data distribution. This
difference is reflected in the response matrix as it will have the range same as of MC data
(as it is like a correlation matrix between generated and reconstructed e-by-e 〈?) 〉 data),
and hence, if and only if the raw distribution falls in its range the unfolding procedure is
feasible, which is not in our case.
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Figure 4.5: Plot shows event-by-event 〈?T〉 distribution for three different data-set as
mentioned in the legend. The vertical line on marker represent statistical error.

I tried to overcome this problem by applying a simple and naive algorithm as stated
below :

1. Make a histogram between e-by-e 〈?T〉 and centrality for raw, generated and recon-
structed data as shown in fig. (4.6)

2. For each centrality (histogram bin), find the difference between raw and reconstructed
e-by-e 〈?T〉. Thus the difference is same for all e-by-e 〈?T〉 having same centrality.

3. As centrality is a characteristic of an event, check the centrality of event and then add
the respective difference to the generated and reconstructed e-by-e 〈?T〉 data.

35



4 Event-by-event 〈?T〉 cumulants in Pb–Pb system

0 10 20 30 40 50 60 70 80 90
Centrality (%)

0.55

0.6

0.65

0.7

0.75

0.8

 (
G

eV
/c

)
〉

Tp〈

(GeV/c) <2.0
T

p|<0.8, 0.2< η|

± = 5.02 TeV, h
NN

sPb, −Pb

Raw Data

Generated MC 

Reconstructed MC

This Thesis

Figure 4.6: Plot shows trend of event-by-event 〈?T〉 with centrality for three different
data-set as mentioned in the legend.

This way we are just scaling the MC data to the raw data so that the range of response
matrix is within the range of raw e-by-e 〈?T〉 distribution. After doing these steps , we
followed our unfolding procedure with this scaled generated and reconstructed MC data. In
the following section of analysis, wherever the MC data is mentioned, it is scaled MC data
unless otherwise specified.

4.3.1.2 Closer Test

To ensure the unfolding process works well, we conducted a closer test. The algorithm is
the following,

• Divide the MC generated and reconstructed event-by-event 〈pt〉 into two halves (Lets
say A and B). The selection of event for each half is done randomly to ensure no
predetermined preference is present.

• Out of two halves, one data set (A) is used to make response matrix, and the recon-
structed values of other half (B) is taken as measured values for unfolding.

• The unfolded distribution (fromB) are compared with the generated distribution(from
A), and ideally they should be same.
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Figure 4.7: The upper plots shows the response matrix for three different centrality bin.
In the lower three plots, the upper panel shows the generated, reconstructed and unfolded
event-by-event 〈pT〉 distribution, using the respective response matrix plotted above them
and the lower panel shows their ratio. The vertical line on markers represent statistical error.

Figures 4.7d, 4.7e & 4.7f shows the comparison between the generated and unfolded MC
distribution using the mentioned algorithm. The bin-by-bin ratio of generated and unfolded
MC distributions are close to 1 (within error bars). Maximum deviation of 20% is seen for
data points far away from the distribution mean.
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Figure 4.8: The upper panel of the plots show first four cumulants of MC generated,
reconstructed and unfolded event-by-event 〈?T〉 distribution for respective centrality bin
and the lower panel shows their ratio. The Y-axis of higher order cumulants are in log
scale. The vertical line on markers represent statistical error.Missing markers in higher
order cumulants indicates the values are negative.

As stated previously in the algorithm of closer test, a perfect unfolding leads the unfolded
e-by-e 〈?T〉 distributions of MC to be same as the generated MC distribution. This directly
implies that the cumulants of both the distribution to be same as well. Therefore a better
comparison is made by reviewing their first four cumulants as shown in figure (4.8). C1

and C2 are same, within 0.2 % and 4 % deviation as seen in the generated by unfolded
cumulants ratio plots in sub-fig. 4.8a and 4.8b respectively. C3 is fairly comparable within
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error range but the ratio plot in sub-fig. 4.8c shows strong deviation in 15-20 % centrality
range. C4 values are negative for few centrality bins below 30%. Further the ratio plot in
sub-fig. 4.8d reveals the strong deviation between them. The strong deviation of C3 and C4

is evident from low MC statistics used in unfolding.

4.3.1.3 ALICE data Unfolding

The response matrix for unfolding raw (measured in experiment) data looks the same as
provided in fig. (4.7) just that it is made with full MC statistics. The unfolded distribution
for three different centrality is shown in fig. (4.9).
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Figure 4.9: Plots show the raw and unfolded event-by-event 〈?T〉 distribution. The vertical
line on markers represent statistical error

Figure 4.10 shows the first four cumulants of raw and unfolded e-by-e 〈?T〉 distributions.
The trend in C1 and C2 is same for both the distribution. Their ratio have a constant value
for each centrality bin. In case of C3, the trend in the unfolded and raw is same, but there
is clearly large deviation for centrality below 45% as seen in the ratio plot. Meanwhile C4

shows strong deviation. Fairly in most centrality bins, the unfolded C4 are negative, and a
negative constant ratio shows that the trend is opposite than that of raw i.e, it is decreasing
with centrality. The subplot in the upper panel of fig. (4.10d) has the y-axis in linear scale.
This shows the negative values of C4 which is missing in the plot. Clearly, the study of
higher cumulants are very skeptical for the unfolded distributions.

The reason for this result is due to very low MC statistics. The HĲING MC data set
available in ALICE is about 3 million of which ∼ 1.4 million are good events to be used
for our analysis. Unfolding is good when MC statistics and raw statistics are large and
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comparable. Therefore to unfold a large raw data (17 million in this analysis), the available
MC statistic which have the detector effects are very low.
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Figure 4.10: The upper panel in the plots show the cumulants of raw and efficiency corrected
(by unfolding) event-by-event 〈?T〉 distributions and the lower panel shows their ratio. The
y-axis of higher order cumulants are in log scale. The vertical line on markers represent
statistical error. The sub-plot in the upper panel of the plot (d) has y-axis in linear scale; it
shows the negative values which are missing in the plot.
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4.3.2 Ratio Method

A more simplistic approach than unfolding is used to remove the detector effects. In this
approach we assume relation (4.1) holds for all cumulants.

Crec
i

Cgen
i

=
Craw

i
Ccor

i
i ∈ {1, 2, 3, 4} (4.1)
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Figure 4.11: The upper panel in the plots show the cumulants of raw and efficiency corrected
(by ratio method) event-by-event 〈?T〉 distributions and the lower panel shows their ratio.
The y-axis of higher order cumulants are in log scale. The vertical line on markers represent
statistical error. Missingmarkers in higher order cumulants indicates the values are negative.
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Hence, the corrected cumulant (Ccor ) is easily calculated by the following equation,

Ccor
i =

Craw
i

Crec
i /C

gen
i

i ∈ {1, 2, 3, 4} (4.2)

Here, Cgen, Crec and Craw are the cumulants of generated MC, reconstructed MC and raw
e-by-e 〈?) 〉 distribution. The cumulants of these three distribution are centrality bin width
corrected (CBWC). Therefore, the corresponding corrected cumulants which we obtain are
also CBWC. The details about this correction is provided in paper [32].

The corrected C1 and C2 follows the same trend as of the raw cumulants. For C3, the
corrected does follow the trend of raw cumulants but have large deviation at low centrality
bins (< 20%). In this method also we find that C4 is negative for few centrality bins, despite
this the corrected follows the trend of raw at higher centrality bins (>50 %).
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Chapter 5
Mean transverse momentum fluctuations

It was observed that the event-by-event (e-by-e) mean transverse momentum ( 〈?T〉 )
distribution for Pb-Pb collision measured by NA49 experiment, SPS, CERN was explained
by Gamma Distribution (GD) function ( 5Γ(G, _, U)) and mixed event distribution (a dis-
tribution solely acting as a statistical baseline) very well. Another interesting point noted
by M. J. Tannenbaum [2] was that the inclusive single particle ?T distribution is given as
3N2ℎ
?T

= _24−_?T . This is clearly a GD with _ = 2. These two points motivated author to
look into the properties of the GD. As a result the special properties of GD concluded that
if the emitted particles are statistically independent and ?T follow gamma distribution then
e-by-e 〈?T〉 should follows GD or stated differently GD acts as a statistical baseline for
e-by-e 〈?T〉 [2].

Gamma distribution with variable G (0 ≤ G ≤ ∞) and parameters _ (> 0) & U (> 0) is
defined as,

5Γ(G, _, U) =
_

Γ(U) (_G)
U−1 4−_G (5.1)

The cumulants for the Gamma distribution is calculated by the following relations (5.2
(for derivation see D.3a).

C1 =
U

_
(5.2a)

C2 =
U

_2 (5.2b)

C3 =
2U
_3 (5.2c)

C4 =
6U
_4 (5.2d)
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5.1 In pp system

Similar analysis of event-by-event 〈pT〉 in proton-proton collisions has been implemented
for the event generator models in the subsequent plots. Every plot (fig.5.1-5.4) consists
of event-by-event 〈pT〉 distribution for six different multiplicity percentile classes. Each
distribution has been fitted with Gamma distribution. The fitted parameter along with
j2/=35 value has been provided in the upper right corner of each subplot. Best fit is
considered when the j2/=35 is close to zero. The theoretical details about j2/=35 test to
find best fit is given in appendix F.

Figure 5.1: Event-by-event 〈pT〉 distribution for events generated with configuration CR-
OFF and RH-OFF and its corresponding fit function. The y-axis represent number of events
and x-axis represent event-by-event 〈pT〉.
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Figure 5.2: Event-by-event 〈pT〉 distribution for events generated with configuration CR-
OFF and RH-ON and its corresponding fit function. The y-axis represent number of events
and x-axis represent event-by-event 〈pT〉.

Figure 5.3: Event-by-event 〈pT〉 distribution for events generated with configuration CR-ON
and RH-OFF and its corresponding fit function. The y-axis represent number of events and
x-axis represent event-by-event 〈pT〉.

45



5 Mean transverse momentum fluctuations

Figure 5.4: Event-by-event 〈pT〉 distribution for events generated with configuration CR-ON
and RH-ON and its corresponding fit function. The y-axis represent number of events and
x-axis represent event-by-event 〈pT〉.

Figure 5.5: C4 variation with multiplicity percentile for all four model configuration used
for particle production in PYTHIA8. The x-axis represent multiplicity percentile.
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Figure 5.6: C2 variation with multiplicity percentile for all four model configuration used
for particle production in PYTHIA8. The x-axis represent multiplicity percentile.

Figure 5.7: C3 variation with multiplicity percentile for all four model configuration used
for particle production in PYTHIA8. The x-axis represent multiplicity percentile.
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Figure 5.8: C4 variation with multiplicity percentile for all four model configuration used
for particle production in PYTHIA8. The x-axis represent multiplicity percentile.

The unusually large difference in the lower multiplicity class is due to bad fitting and/or
low statistics. It is observed that the mean (C1) of e-by-e 〈?T〉 distribution and the Gamma
fitted function are nearly comparable. But for the higher cumulants, C2, C3 and C4 the
difference grows with centrality. Therefore, it can be inferred that the particle emitted in
each event are not independently emitted.

5.2 In Pb–Pb system

From the first two cumulants C1 andC2 of e-by-e 〈?T〉, the parameters_ andU are calculated.
If the e-by-e 〈?T〉 distribution followsGD then higher order cumulants calculated from these
parameters should match the cumulants calculated from the distribution itself. It was seen
earlier that C3 and C4 of corrected e-by-e 〈?T〉 distribution from both the method, unfolding
and ratio, bears lot skepticism due to low MC statistics. Still this analysis is also done
to understand what C3 and C4 values will look when corrected e-by-e 〈?T〉 follows GD,
statistical baseline.

Out of all the cumulants calculated from the parameters, C1 and C2 will match with the
C1 and C2 calculated from the e-by-e 〈?T〉 distribution for obvious reasons. This is clearly
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5 Mean transverse momentum fluctuations

seen in figures 5.9 and 5.10.
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Figure 5.9: The upper panel in the plots show the variation of corrected (by ratio method)
cumulants with statistical baseline and lower panel shows their ratio. The y-axis of higher
order cumulants is in log scale. Upper two plots are the "closer test" for the comparison
procedure. The black markers missing in plot (d) is due to the values are negative.

Only C3 can be compared fairly as most of the C4 values of corrected distribution from
the method are negative. The trend and order of the values are same but for many centrality
classes, the values deviate each other by more than 20 % as shown in ratio plot of fig. (5.9c).
The values of C4 are negative so in log scale they are not visible as shown in fig. (5.9d),
and from the ratio plot it can only inferred that the order of C4 are same.
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Figure 5.10: The upper panel in the plots show the variation of corrected (by ratio method)
cumulants with statistical baseline and lower panel shows their ratio. The y-axis of higher
order cumulants is in log scale. Upper two plots are the "closer test" for the comparison
procedure. Missing markers in higher order cumulants indicates the values are negative.

In case of corrected data from ratiomethod, C3 values from the distribution is comparable
to the C3 calculated from GD parameters but not for centrality classes less than 20% as
there is large deviation of C3 values (calculated from distribution) from the general trend
5.10c. A better comparison can be made for C4 values as there exits a general trend in C4

with centrality 5.10d. The C4 are in same order and are slightly comparable within error
bars.
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Chapter 6
Summary

In this thesis,proton-proton collision events were simulated using PYTHIA8 event gen-
erator. At first we briefly looked into color reconnection (CR) and rope hadronization (RH)
model for particle production present in PYTHIA8. Then, effect of these two models was
observed by taking four different configuration during event generation:

• CR-ON and RH-OFF (default configuration in PYTHIA8)

• CR-ON and RH-ON

• CR-OFF and RH-ON

• CR-OFF and RH-ON

Effect of each model was prominently observed in higher multiplicity events (low multi-
plicity percentile class), and RH increases particle production in both CR(On and CR(OFF)
configuration. The cumulants of event-by-event (e-by-e) mean transverse momentum ( 〈?T〉
) shows a common trend with multiplicity percentile in each configuration. C1 decreases
with multiplicity percentile, and C2, C3 and C4 increases with multiplicity percentile. How-
ever, RH decreases the value of each cumulant. Also in low multiplicity percentile classes,
C1 and C2 are higher when CR model is used for particle production.

Statistical fluctuation are inherent in each observation due to various unavoidable rea-
sons [14, 1]. To check whether the observed fluctuations are only statistical, e-by-e 〈?T〉
distribution is compared with gamma distribution (GD), a baseline for statistical fluctuation.

In pp collisions, the e-by-e 〈?T〉 distribution is fitted with gamma distribution function,
and then the cumulants of e-by-e 〈?T〉 distribution and fit curve are compared. Independent
of the model configuration used for particle production in PYTHIA8, there exits a large
difference in C3 and C4 of e-by-e 〈?T〉 distribution and gamma fit curve, and the difference
grows with multiplicity percentile.
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6 Summary

In case of Pb-Pb collisions a different method is applied, first the parameters of GD are
calculated from efficiency corrected C1 and C2 , then C3 and C4 constructed from these
parameters are compared with the ones calculated from e-by-e 〈?T〉 distribution. When
the data is corrected by unfolding method, C3 is fairly comparable but with deviation upto
50% in collisions with centrality < 50%, and the unreasonable values of corrected C4 don’t
lead to any comparison. In ratio method, the corrected C3 (within error bars) are in good
comparison with C3 calculated from gamma parameters but have large deviation in central
collisions (centrality < 20%), while C4 is slightly comparable within error bars.

The trend of cumulants with multiplicity percentile in pp collision is same as the trend
of cumulants with centrality in Pb–Pb collisions. In central and semi-peripheral collision,
higher order cumulants, C3 and C4 in Pb–Pb collision are much lower than cumulants (for
any modal configuration) in pp collision. Also the comparison with statistical baseline
shows that in pp collisions, the deviation of higher order cumulants from statistical baseline
increases with multiplicity percentile. This dependence with centrality is absent in Pb–Pb
collisions. So far two naive conclusions can be said, first high multiplicity proton-proton
collisions show similar characteristics as peripheral heavy-ion collisions and as system size
increases from pp to Pb–Pb, e-by-e fluctuations is dominated by statistical part.
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Appendix A
Lorentz transformations calculations

All variables defined in the later section are in natural units i.e., 2 = ℏ = 1
If we choose the beam direction to be z-axis and the particle is moving with speed V

then Lorentz transformation laws state that,

?′I = W(?I − V?0) (A.1)

p′x = px (A.2)

p′y = py (A.3)

p′0 = W(p0 − Vpz) (A.4)

Now suppose we observe that under Lorentz transformation from lab frame (F) to a frame
(F’) which is boosted in the z-direction with velocity V, the rapidity in F’ is given as

y′ =
1
2

ln
( p′0 + p′z
p′0 − p′z

)
=

1
2

ln
(
W(p0 − Vpz) + W(pz − Vp0)
W(p0 − Vpz) − W(pz − Vp0)

)
=

1
2

ln
(
p0(1 − V) + pz(1 − V)
p0(1 + V) − pz(1 + V)

)
=

1
2

ln
[
1 − V
1 + V +

p0 + pz
p0 − pz

]
= y − 1

2
ln

1 + V
1 − V

Therefore,

y′ = y − yV here,yV =
1
2

ln
1 + V
1 − V (A.5)

yV is often referred to as “ rapidity of the moving frame". This relation is same as that of
Galilean transformation of velocities (V � 1). therefore, rapidity is often said as relativistic
measure of the “ velocity " of the particle [33].

54



Appendix B
Bayes Unfolding Theory

Lets assume the following notations, P(C8) as probability of cause C8 and P(E|C8) as the
conditional probability of cause C8 to produce the effect E. If we observe the effect E, then
the probability that is due to cause C8 is given by Bayes’ theorem as

P(Ci |E) =
P(E|Ci) · P(Ci)∑nc
l P(E|Cl) · P(Cl)

(B.1)

On observing n(E) no. of events with effect E, the expected no. of events for each cause is

n̂(Ci) = n(E) · P(Ci |E) (B.2)

If the measurement has nE possible number of effects Ej(j = {1, 2, . . . nE}) for the cause
C8. Bayes’ formula holds for each of the effect and thus P(C8 | E 9 ) can be calculated by eq.
(B.1). Again with the initial probability of causes taken as P0(C8), eq. (B.1) is written as

P(Ci |Ej) =
P(Ej |Ci) · P0(Ci)∑nc
l P(E|Cl) · P0(Cl)

(B.3)

The probabilities P(Ci |Ej) referred as Smearing Matrix , S elements (S8 9 ) and P(Ej |Ei)
referred as Response Matrix , S elements (E 98). Suppose after N>1B experimental obser-
vations, the frequency of nE effects are n(E1), n(E2), . . . , n(EEn). Using eq. (B.2), the
expected frequency for each cause C8 is given as,

n̂(Ci) =
1
ni

nE∑
j=1

n(Ej) · P(Ci |Ej) ni ≠ 0 (B.4)

Here ni ≡
∑nE

j=1 P(Ej |Ci) is the efficiency of detecting a cause for all possible effects. ni ∈
[0, 1] and if it is equal to 0 then n̂(Ci) is 0, as none of the effect is caused due to C8.
These n̂(Ci) are the unfolded frequencies. Now the true total number of observations is
N̂true =

∑nC
i=1 n̂(Ci) and therefore the estimated final probabilities of the causes are

P̂(Ci) =
n̂(Ci)
N̂true

(B.5)
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B Bayes Unfolding Theory

This final distribution P0(C) depends how the initial distribution P0(C) is chosen. Therefore,
the unfolding gives better results if the initial distribution is closer to the "true" distribution.
However guessing the initial distribution is always not possible therefore an iterative method
is applied [34]:

1. A initial distribution P0(C) is chosen. Then the initial expected no. of events for
causes is n0(Ci) = P0(Ci) · Nobs.

2. n̂(Ci) and P̂0(Ci) are calculated using eq. (B.4) and (B.5) respectively.

3. A j2 comparison is made between n̂(Ci) and n̂0(Ci).

4. Check the j2 is "small enough". If not replace P̂0(Ci) with P̂(Ci) and n̂0(Ci) with
n̂(Ci), and start the step 2 again untill desired j2 is obtained.
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Appendix C
Unfolding Related Plots
C.1 Response Matrices
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Figure C.1: Plots shows the response matrix made with generated and reconstructed event-
by-event 〈pT〉 MC data.
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C Unfolding Related Plots
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Figure C.2: Plots shows the response matrix made with generated and reconstructed event-
by-event 〈pT〉 MC data.
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C Unfolding Related Plots

C.2 Unfolded MC Plots
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Figure C.3: In the plots, the upper panel shows the generated, reconstructed and unfolded
event-by-event 〈pT〉 distribution and the lower panel shows their ratio. The vertical line on
markers represent statistical error.
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C Unfolding Related Plots
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Figure C.4: In the plots, the upper panel shows the generated, reconstructed and unfolded
event-by-event 〈pT〉 distribution and the lower panel shows their ratio. The vertical line on
markers represent statistical error.
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Appendix D
Gamma Distribution Cumulants

Using the definition ??, the characteristic function of Gamma distribution is given as,

PU,_ (k) = �
[
e−]kx]

=

∫ ∞

0
e−]kx

(
_UxU−1e−_x

Γ(U)

)
=

_U

Γ(U)

∫ ∞

0
e−]kxe−_xxU−1

=
_U

Γ(U)

∫ ∞

0
e−t tU−1

(_ + ]k)U−1
dt

(U + ]k) t = (_ + ]k)

=
_U

Γ(U) (_ + ]k)U
∫ ∞

0
e−ttU−1dt here the integral part is definition of Γ(U)

Therefore,
PU,_ (k) =

(
_

_ + ]k

)U
(D.1)

The cumulant generating function is defined as,

Φ(k) = ln
(

_

_ + ]k

)U
(D.2)

On solving the above equation,

Φ(k) = −Uln
(
1 + ik

_

)
= −U

[(
ik
_

)
− 1

2

(
ik
_

)2
+ 1

3

(
ik
_

)3
+ . . .

]
=

[
U

_
(−]k) + U

_2
(−]k)2

2
+ U
_3
(−]k)3

3
+ U
_4
(−]k)4

4
. . .

]
But Φ(k) = ln(E[e−]kx]) = E

[∑∞
i=1
(−]kx)n

n!

]
Writing term by term of these two results,

E
[
(−]kx)0

0!
+ (−]kx)1

1!
+ (−]kx)2

2!
+ (−]kx)4

4!
+ . . .

]
=[

U

_
(−]k) + U

_2
(−]k)2

2
+ U
_3
(−]k)3

3
+ U
_4
(−]k)4

4
. . .

]
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D Gamma Distribution Cumulants

The rth order cumulant, E[xr] is the coefficient of (−]k)r, therefore comparing LHS and
RHS we get,

C1 =
U

_
C2 =

U

_2

C3 =
2U
_3 C4 =

6U
_4

(D.3a)
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Appendix E
Cumulant Error Analysis

The rth moment static for a sample is defined as

m′r =
1
=

=∑
9=1
GA9 (E.1)

Th expectation value of rth moment is given as,

E[m′r] =
1
n

n∑
j=1

E(xr)

=
1
n

nE(xr)

= `′A (E.2)

By definition the variance is given as

Var(m′r) = E
(
m′r − E(m′r)

)2 (E.3)

On further simplifying the above equation,

Var(m′r) = E ©­«1
n

n∑
j=1

xr
j − `′r

ª®¬
2

= E

((
1
n

∑
xr

j

)2
− 2

n
`′r

∑
xr

j + (`′r)2
)

=
1
n2

(
E

[∑
i=j

x2r
j +

∑∑
j≠i

xixj − 2n`′r
∑

xr
j + n2(`′r)2

])
=

1
n2

(
n`′2r + n(n − 1) (`′r)2 − n2(`′r)2

)
Therefore,

Var(m′r) =
1
n

(
`′2r − (`

′
r)2

)
(E.4)

In this calculation xi, xj are assumed independent that’s why the mean of the product and
the product of the mean values are equal.

63



E Cumulant Error Analysis

The covariance is defined as

Cov(m′q,m′r) = E
(
m′q − `′q

) (
m′r − `′r

)
(E.5)

On simplification,

Cov(m′q,m′r) = E
[(

1
n

∑
xq − `′q

) (
1
n

∑
xr − `′r

)]
=

1
n2 E

[∑
xq

∑
xr − n`′r

∑
xq − n`′q + n2`′q`

′
rn2

]
=

1
n2 E

[∑
i=j

xq+r +
∑∑

i≠j
xq

i xr
j

]
− 1

n

(
`′qE

[∑
xr

]
+ `′rE

[∑
xq

] )
+ `′q`′r

=
`′@+A
=
+ = − 1

=
`′@`

′A −
2`′@`′A
=
+ `′@`′A

Therefore,

Cov(m′q,m′r) =
1
n

(
`′q+r − `′q`′r

)
(E.6)

Now, the rCℎ central moment is defined as,

mr =
1
n

=∑
9=1

(
x 9 −m′1

) r (E.7)

here, m′1 =
∑=
9=1 x 9 is the mean of the random variables x 9 .

Now, the binomial expansion of the expectation value of mr gives,

E(mr) = E

1
n

=∑
9=1

(
x 9 −m′1

) r
=

1
n
E


=∑
9=1

(
rC0(x 9 )r +r C1(x 9 )r−1(−m′1)

1 +r C2(x 9 )r−2(−m′1)
2 + . . .

+rCA (x 9 )0(−m′1)
A
) ]

(E.8)

Neglecting the terms which has (m1)k for k > 2 as <1 = 5 (1/n) and these terms will
contribute less.

E(mr) =
1
n
E


=∑
9=1

(
(x 9 )r + r(x 9 )r−1(−m′1)

1 + r(r − 1)
2
(x 9 )r−2(−m′1)

2
) (E.9)
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E Cumulant Error Analysis

Using the relation of m’1 in the above equation,

E(mr) =
1
n
E


=∑
9=1
(x 9 )r −

r
n

=∑
9=1
(x 9 )r−1

=∑
:=1

x:

+ r(r − 1)
2n2

=∑
9=1
(x 9 )r−2

(
=∑
:=1

x:
)2 (E.10)

Each term in double summations are broken in view of random variable having same or
different summation index.

=∑
9=1
(x 9 )r−1

=∑
:=1

x: =
=∑
9=1

xr9 +
=∑
9=1

=∑
:=1

9≠:

xr−1
9 G:

=∑
9=1
(x 9 )r−2

=∑
:=1

x:
=∑
;=1

x; =
=∑
9=1

xr9 +
=∑
9=1

=∑
:=1

9≠(:=;)

xr−2
9 G2

: +
=∑
9=1

=∑
:=1

=∑
;=1

9≠:≠;)

xr−2
9 G:G;

Applying in the inital eq.(E.10) so we finally get,

E(mr) = 1
n
E


(
1 − r

n
+ r(r − 1)

2n2

) ∑
xr9 +

r(r − 1)
2n2

∑∑
9≠(:=;)

xr−2
9 x2

:

 (E.12)

Note that the summation terms are devoid of index but it will be understood as before that
each summation runs from 1 to n. Here few terms are missing as one might wonder, lets
take one such term and find its expectation value,

E ©­«
∑∑
9≠:

xr−1
9 x:

ª®¬ = E
(∑

xr−1
9

)
E

(∑
x:

)
=

∑∑
9≠:

E[xr−1
9 ]E[x: ]

= n(n − 1)`A−1`1 the factor comes from choosing i,j pair s.t. i ≠ j

= 0 as the first central moment `1 = 0

therefore terms with E (∑ G0) will all contribute to zero. Again,

E(mr) =
1
n

[(
1 − r

n
+ r(r − 1)

2n2

)
(n`r) + n(n − 1) r(r − 1)

2n2 `r−2`2

]
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E Cumulant Error Analysis

for large n, terms with denominator n: where : ≥ 2 are ignored. Thus,

E(mr) =
(
1 − A

=

)
`r +

r(r − 1)
2n

`r−2`2 (E.13)

To find the variance we need to find the E[m2
r ]. The calculations follow the same pattern

as above,

E(m2
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n2E
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]
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n2E
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− r
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∑
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9

∑
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: (x;)

2
]

(E.14)

Now term by term analysis of RHS of eq.(E.14) is done to get the results.
The first term,

E
[(∑

xr
j

)2
]
= E


∑

x2r
j +

∑∑
j≠k

xr
jx

r
k


= n`2r + n(n − 1)`2

r (E.15)
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The second term,

E
[(∑

xr−1
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∑
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r−1 + `
2 (E.16)

The third and sixth terms in RHS of eq.(E.14) have coefficients of 1/n4 and 1/n3 respectively
and they tends to zero for large value of n. Thus are neglected.

The forth term,

E
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xr
j

∑
xr−1

k

∑
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]
= E


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The fifth term,

E
[∑
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Therefore, taking the results (E.15), (E.16, (E.17) & (E.18) and using in eq. (E.14),

E
[
m2

r
]
=

1
n2

[(
n`2r + n(n − 1)`2

r

)
+ r2

n2

(
n`2r + n(n − 1)`r+1`r−1 + n(n − 1) (n − 2)`2

r−1 + `
2
)

−2r
n

(
n`2r + n(n − 1)`2

r + n(n − 1)`r+1`r−1

)
− r(r − 1)

n2 ()
]

(E.19)

Now, terms having terms f(1/n: ) for k≥ 2 are neglected assuming large value of n.
Therefore,

E
[
m2

r
]
=

1
n

(
`2r + (n − 1)`2

r + r2`2
r−1`2 − 2r(`r+1`r−1 + `2

r ) + r(r − 1)`r`r−2`2

)
(E.20)

The variance is given as,

Var(mr) = E[m2
r ] − (E[mr])2

= E[m2
r ] −

((
1 − 2r

n

)
`2

r +
r(r − 1)

n
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1
n

{(
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r ) + r(r − 1)`r`r−2`2

)
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r − r(r − 1)`r`r−2`2
}

(E.21)

Again if someone notices the terms of O(1/n2) are neglected as for large value of n these
tends to zero. Finally the variance of the rth central moment is given as,

Var(mr) =
1
n

[
`2r − `2

r + r2`2
r−1`2 − 2r`r+1`r−1

]
(E.22)

If we compare the equation of Variance (E.4) to Covariance (E.6) equation is obtained
through these simple relationships 2r→ r + q, (`′r)2 → `′r`

′
q & r2 → A@.

The rigorous calculation is ignored in this phase and with these simple relations we get
the final equation of Covariance for a central moment as follows :

Cov
(
mr,mq

)
=

1
n

[
`r+q − `r`q + rq`r−1`q−1`2 − r`r−1`q+1 − q`r+1`q−1

]
(E.23)
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Let use assume a function of k random variables to be g(x) = g(x1, x2, x3, . . . , xk) and
the mean of each random variable is \1, \2, \3, . . . , \: respectively. On Taylor expansion of
g(x) up untill two terms,

g(x) = g(\) +
k∑

i=1
g
′ (\i) (xi − \i)

here, g′ (\i) =
��� mg
mxi

���
xi=\i

. The expectation value of g(x) will be

E [g(x)] = E [g(\)] +
��

���
���

���
�:0:∑

8=1
6
′ (\8)� [(G8 − \8)]

= 6(\)

and the Variance of g(x) will be

Var(g(x)) = E
[∑

g′(\i) (xi − \i)
]2

=
∑

E[g′(\i)2]E [xi − \i]2 +
∑∑

i≠j
E[g′(\i)g′(\j)]E

[
(xi − \i) (xj − \j)

]
Using the definition of variance and covariance as done before the variance of g(x) comes
out to be,

Var(g(x)) =
∑

E[g′(\i)2]Var(xi) +
∑∑

i≠j
E[g′(\i)g′(\j)]Cov(xi, xj) (E.24)

The relation between the first four cumulants and moments are

C1 = m′1 (E.25)

C2 = m2 (E.26)

C3 = m3 (E.27)

C4 = m4 − 3m2
2 (E.28)

The Variance on the first three cumulant can be written down directly from the relations
(E.4) and (E.22) and they are,
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Var(C1) = Var(m′1) =
1
n

[
`′2 − (`

′
1)

2 ]
=
`2
n

Var(C2) = Var(m2) =
1
n

[
`4 − `2

2 + 4��
�*0

`2
1`2 − 4����:0`3`1

]
=

1
n

[
`4 − `2

2
]

Var(C3) = Var(m3) =
1
n

[
`6 − `2

3 + 9`3
2 − 6`4`2

]
The Variance of �4 can be obtained using eq.(E.24). Let assume c4 = g(m4,m2) and the
expectation value of m4,m2 is `4, `2 respectively. Therefore the variance is ,

Var(C4)= Var(g(m4,m2)) = E

[(
mg
mm4

)2
(m4 − `4)2 +

(
mg
mm2

)2
(m2 − `2)2

+
(
mg
mm4

mg
mm2

)
(m4 − `4) (m2 − `2) +

(
mg
mm2

mg
mm4

)
(m4 − `4) (m2 − `2)

]
= Var(m4) + 36`2

2Var(m2) − 12`2Cov(m4,m2)

=
1
n

[
`8 − 12`6`2 − 8`5`3 − `2

4 + 48`4`
2
2 + 64`2

3`2 − 36`4
2

]
Hence the variance in cumulants are,

Var(C1) =
`2
n

Var(C2) =
1
n

[
`4 − `2

2
]

Var(C3) =
1
n

[
`6 − `2

3 + 9`3
2 − 6`4`2

]
Var(C4) =

1
n

[
`8 − 12`6`2 − 8`5`3 − `2

4 + 48`4`
2
2 + 64`2

3`2 − 36`4
2

]

(E.29a)

(E.29b)

(E.29c)

(E.29d)

The results have been verified from the book “Kendall’s Advanced Theory of Statistics.
Volume 1. Distribution Theory " [35].
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Appendix F
j2/=35 test for goodness-of-fit

Let us consider # to be no of bins in a histogram and"8 to be the no. of measured events
in bins. Usually, "8 follows the Poisson’s distribution 5 ("8; \), here \ (\1, \2, \3 . . . \=) are
n unknown parameters. The expectation value of M8, E[M8] assuming Poisson distribution
is `1(\8) or simply for notation, `8.

The likelihood function is a joint probability density function (p.d.f.) for the data is
given as

L(`(\); M) =
#∏
8−1

4`8`
"8
8

"8

(F.1)

The maximum likelihood estimator (MLE) of \ can be constructed by maximizing the
likelihood ratio _(\)

_(\) = L(`(\); M
max{L( ˆ̀; M)}

This is equivalent to just maximizing the likelihood function. The maximum of likelihood
function, L( ˆ̀i; M) can be found by solving the differential equations (generally any one
function of the product term gives the estimator)

mL
m`i

����
`i=m̂ui

= 0 for any value of i = 1, 2, 3, . . . , = (F.2)

It is also equivalent to minimizing the corresponding j2 function defined as

j2 = −2ln_(\) (F.3)

For large no. of data points in each bin, Poisson distribution approaches or say is approxi-
mated as Gaussian distribution with,

E[Mi] = `i(\) (F.4)

Var(Mi) = f2
i = `i(\) (F.5)
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F j2/=35 test for goodness-of-fit

Now the likelihood function is given as,

LGauss (`(\); M) =
N∏

i=1

1√
2c`i(\)

exp
(
− (`i(\) −Mi)2

2`i(\)

)
(F.6)

Lets find ˆ̀8 for a arbitrary bin,

mL
m`

=
m

m`

[
1√
2c`

exp
(
− (` −M)2

2`

)]
=

1√
2c`

exp
(
− (` −M)2

2`

) [
− 1

2`
−

{
2`(` −M) − (` −M)2

2`2

}]
=

1√
2c`

exp
(
− (` −M)2

2`

) [
− 1

2`
{
`2 + ` −M2}]

For ` ≠ 0 and ` ≠ ∞ , mL
m`

���
`= ˆ̀

= 0 can be obtained by solving the quadratic equation

`2 + ` −M2. The two values are,
√

1/4 +M − 1/2 and −
√

1/4 +M − 1/2. The negative
value is neglected as on using this value in the factor 1√

2c`
it makes function imaginary.

But the former value is positive always and hence also the Gaussian function. A positive
` valued Gaussian function is always positive and has one peak at mean, `. Therefore, for
ˆ̀ =

√
1/4 +M − 1/2 the likelihood function is maximum.

The Gaussian-j2 can be written using eq. (F) as,

j2
Gauss = −2ln_Gauss(\)

= −2ln
[

LGauss(`; M)
max {LGauss( ˆ̀; M)}

]
= −2ln

[
LGauss(`; M)
LGauss( ˆ̀; M)

]
= −2

N∑
i=1

[
ln

(
1√

2c`i

)
− (`i −Mi)2

2`i
− ln

(
1√

2c ˆ̀i

)
+ ( ˆ̀i −Mi)2

2 ˆ̀i

]
=

N∑
i=1

[
(`i −Mi)2

`i
+ ln

(
`i
ˆ̀i

)
− ( ˆ̀i −Mi)2

ˆ̀i

]
Now, for large statistics, Mi →∞ implying ˆ̀i →∞. Thus, ˆ̀i ≈ Mi. This condition
simplifies the upper result by following two approximation,

( ˆ̀i −Mi) ≈ 0 ≈ ( ˆ̀i −Mi)2
ˆ̀i
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F j2/=35 test for goodness-of-fit

ln
(
`

ˆ̀

)
≈ ln

(
`i
Mi

)
≈ ln(1) (= 0) for large statistics, model and observed mean are compara-

ble Therefore,

j2
Gauss =

N∑
i=1

(`i(\) −Mi)2
`i(\)

(F.7)

This j2 formula is widely known as j2
Pearson. The j

2 distribution is given by,

Pr(x) =
x r

2−1e− x
2

Γ( r
2 )2

r
2

(F.8)

Here, x = j2 value and r is the no. of degrees of freedom (no. of data points - no. of
parameter of the fitting model). If we compare the above eq.(F.8) with Gamma distribution
(??) then it is clear that j2 distribution is a Gamma distribution with Gamma parameter
(U, _) = ( A2 ,

1
2 ). Therefore using the relations (D.3a), the mean of the Gamma distribution

is given as C1 =
U
_
=

r/2
1/2 = r. Therefore, for good fit one expects that j2 ≈ r or j2/ndf ≈ 1

[36, 37].
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