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ABSTRACT

Fluctuations of conserved quantities are sensitive observables to probe the sig-

nature of QCD phase transition and critical point in heavy-ion collisions. With the

UrQMD model, we have studied the centrality and energy dependence of various

order cumulants (up to fourth order) of net-proton, net-charge and net-kaon multi-

plicity distributions in Au+Au collisions at lab energies of 4, 6, 8, and 10 AGeV. We

further calculated the cumulants after UrQMD events were passed through the CBM

detector setup and probed different methods to get back the real cumulants from the

data from the detctors. Furthermore, we studied the second order mixed cumulants

of the above net-particle distributions as they are also related to quantities which

are sensitive to the QCD phase transition. To correct for detector inefficiencies, we

used two different methods : binomial acceptance and unfolding, and showed that

cumulants of unfolded distributions have better agreement with the real cumulants

from UrQMD. Finally, to correct for the mixed cumulants, we introduced unfolding

for two-dimensional distributions and successfully corrected for detector inefficiencies.
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Chapter 1

Introduction

The Compressed Baryonic Matter experiment (CBM), planned at Facility for An-

tiproton and Ion Research (FAIR) in Darmstadt, aims at investigating the nuclear

matter phase diagram in the region of high net baryonic densities and moderate

temperatures [1]. This is complimentary to the experiments at Large Hardron Col-

lider (LHC) and Relativistic Heavy Ion Collider (RHIC) energies, which explore the

Quantum Chromodynamics (QCD) phase diagram in the transition region between

quark-gluon-plasma (QGP) and hadron gas, at vanishing baryon chemical potentials,

and high temperatures [2]. A schematic of the QCD phase diagram is shown in Fig.1.

Figure 1.1: Schematic of the QCD Phase Diagram [3].

At µB = 0, it has been found theoretically that there occurs a cross-over transition

between hadronic and quark-gluon phases at high temperatures [4]. Recent model

1



1 Introduction

calculations have also predicted a QCD critical point (CP) and a first order phase

boundary between quark-gluon and hadronic phases at finite µB [5]. The experimen-

tal discovery of a first order phase transition or a critical point in the QCD phase

diagram would significantly enhance our understanding of strong interactions [6, 7],

along with the knowledge of neutron stars, and origin of hadron masses. Among the

primary goals of the CBM experiment are the search for the predicted first order

phase transition between hadronic matter and partonic matter and the search for the

critical point.

A good signature of a phase transition and a CP are non-monotonic variations

of observables related to the moments of the distributions of conserved charges (α)

such as net-baryon (B), net-charge (Q), and net-strangeness (S) number with centre-

of-mass energy per nucleon
√
sNN [8]. One of the primary aims of the Beam Energy

Scan (BES) [9, 10] at RHIC was to look at multiplicity distributions of particles which

carry these conserved charges (α = B,Q, S) and identify the signature of criticality.

It is reported that the n-th order cumulants of the net-multiplicity distributions (κnα)

are related to the n-th order thermodynamic susceptibilities (χnα) of the corresponding

conserved charges in QCD that diverge near the CP [11] -[14]. The cumulants, unlike

the thermodynamic susceptibilities, do not diverge near the CP but obtain large

finite values, owing to the finite system size and finite time for evolution of the

system [15]. Following the BES program, the first measurements of the beam energy

(
√
sNN = 7.7 − 200 GeV/c) and collision centrality dependence of the mean(M),

standard deviation (σ), skewness(S), and kurtosis (κ) have been reported for net-

proton (a proxy for net-baryon) [16], net-charge [17], and net-kaon (a proxy for net-

strangeness) [18] multiplicity distributions in Au-Au collisions at midrapidity. These

observables have shown a centrality and beam energy dependence for the net-proton

distributions, as shown in Fig.1.2, which is neither predicted by non-CP transport

2



1 Introduction

Figure 1.2: Beam Energy Dependence
of Sσ, and κσ2 for net-proton distri-
butions, after all corrections, for most
central (0-5%) and peripheral (70-80%)
bins from Au-Au and p-p collisions at
RHIC. This is taken from [16].

Figure 1.3: Beam Energy Dependence
of a)σ2/M , b)Sσ, and c)κσ2 for net-
charge distributions, after all correc-
tions, for most central (0-5%) and pe-
ripheral (70-80%) bins from Au-Au col-
lisions at RHIC. This is taken from [17].

model (like UrQMD) calculations, nor by the Hadron Resonance Gas Model (HRG).

For net-charge and net-kaon distributions, σ2/M is shown to monotonically increase,

while the remaining observables Sσ and κσ2 have a weak dependence of centrality

and beam energy, as shown in Figs. 1.3 and 1.4. Within the uncertainties, a smooth

behavior had been observed in the products of moments of net-charge as a function

of collision energy.

Most measurements, until recently, have focused on the self-correlation of a spe-

cific conserved charge (α), which can be quantised by the diagonal cumulants (κnα).

Similar to these diagonal cumulants, one can construct and measure off-diagonal cu-

mulants of orders m and n (κm,nα,β ) of the net-baryon, net-charge, and net-strangeness

multiplicity distributions [19]. These off-diagonal cumulants are related to the off-

3
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Figure 1.4: Beam Energy Dependence
of Sσ, and κσ2 for net-kaon distribu-
tions, after all corrections, for most
central (0-5%) and peripheral (70-80%)
bins from Au-Au and p-p collisions at
RHIC. This is taken from [18].

Figure 1.5: Beam energy dependence of
cumulant ratios (Cp,k, CQ,p, and CQ,k;
top to bottom) of net-proton, net-kaon,
and net-charge distributions, after all
corrections, for most central (0-5%)
and peripheral (70-80%) bins from Au-
Au collisions at RHIC. This is taken
from [19].

diagonal thermodynamic susceptibilities (χm,nα,β ) that carry the correlation between

different conserved charges (α, β) in QCD [20] - [21]. It has been shown in [20] that

baryon-strangeness correlations can be studied by measuring the energy dependence

of the ratio of off-diagonal cumulants over diagonal cumulants (κ1,1B,S/κ
2
S), which in

turn, is quantified by the susceptibility ratio CB,S = −3χ1,1
B,S/χ

2
S and is expected to

show a rapid change during the transition of the system from de-confined to confined

state [22]. The off-diagonal cumulants are also expected to elucidate the character of

chromodynamic matter. The mixed susceptibilities (baryon-strange, baryon-charge)

4
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have been reported to differ significantly in the Hadron Resonance Gas (HRG) model

and lattice QCD calculations [21, 23]. The off-diagonal cumulants at second-order

have also been shown to be sensitive to the difference between calculations from the

ideal HRG and lattice QCD [24]. Therefore, measurement of these cumulants of net-

multiplicity distributions can put constraints on various models which describe QCD

matter [23]. One such study probing the energy dependence of the susceptibility

ratios Cp,k, CQ,p, and CQ,k, where net-proton (p) and net-kaon (K ) serve as proxies

for net-baryon and net-strangeness, has been reported recently [19]. As shown in

Fig. 1.5, while Cp,k has a strong dependence on beam energy and centrality at lower

energies, the other observables have strong dependences on centrality and beam en-

ergy at all energies, none of which are predicted by UrQMD and HRG. There is,

therefore, a need to understand the various processes which contribute to these de-

pendencies. The aim of BES-II in RHIC and CBM experiment in FAIR is to look

for the non-monotonic behaviour in these observables by making measurements with

high statistical precision. This can then be associated to the existence of a critical

point.

The organisation of this thesis is as follows. In Chapter 2, the CBM detector

system is briefly described. Then, in Chapter 3, the physics observables related to

event-by-event fluctuations are briefly discussed. In Chapter 4, important formulae

for the analysis of diagonal and off-diagonal cumulants of net-proton, net-charge,

and net-kaon distribution are stated and/or derived. In Chapter 5, the analysis

techniques are discussed, and the diagonal and off-diagonal cumulants are presented

for net-proton, net-charge, and net-kaon multiplicity distributions. Two different

efficiency correction techniques are discussed for the cumulants. Finally, in Chapter

6, the thesis ends with a discussion of the results and the outlook for this analysis.

5



Chapter 2

The Compressed Baryonic Matter
(CBM) Experiment

The Facility for Antiproton and Ion Research (FAIR) is a new accelerator complex

currently under construction at the GSI Helmholtz Centre for Heavy Ion Research in

Darmstadt, Germany. The Compressed Baryonic Matter experiment [31] is a heavy-

ion fixed target experiment, which is being built in FAIR. Heavy nuclei beams will be

provided to CBM using two synchrotrons, the SIS100 and the SIS300. The 100 and

300 signifies the bending power (B.r) of the magnets used. SIS100 has a strength of

100 Tm, while SIS300 has a strength of 300 Tm. The available kinetic beam energy

per nucleon depends essentially on the bending power B.r provided by the dipole

magnets.

E/A =
√

(0.3×B.r × Z/A)2 +m2 −m (2.1)

where Z and A are the charge and atomic number of the ion respectively, B is the

magnetic field, r is the radius of the synchrotron, and m the mass of the nucleon.

Table 2.1 shows the proposed kinetic energy per nucleon for different ion species in

SIS100 and SIS300 setup.

The CBM experiment will investigate nucleus-nucleus collisions with energy rang-

ing from 2 AGeV to 45 AGeV in the lab frame [25]. It will complement the BES

program of RHIC (where centre of mass energy ranges from 7.7 to 200 GeV per nu-

cleon). The experiment at CBM is fixed-target, designed to run at extremely high

interaction rates of upto 10 MHz [26]. It will be capable of measuring both hadrons
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2 The Compressed Baryonic Matter (CBM) Experiment

Table 2.1: Ion species and their kinetic energy per nucleon for a beam rigidity of 100
Tm at the SIS100 and 300 Tm at the SIS300. The table has been reproduced from
[27].

Beam Z A
E/A GeV

SIS100
E/A GeV

SIS300
p 1 1 29 89
d 1 2 14 44

Ca 20 40 14 44
Ni 28 58 13.6 42
In 49 115 11.9 37
Au 79 197 11 35
U 92 238 10.7 34

and leptons produced in the nuclear collisions. The CBM detector system will accept

polar emission angles between 2.5 and 25 degrees and has full azimuthal coverage.

2.1 Detectors in CBM

The setup contains the following sub-detectors :

1. Dipole Magnet [28]: The CBM superconducting dipole magnet is a central part

of the detector system. The target station and the Silicon Tracking System

(STS) are placed in the magnet gap. The magnet provides a vertical magnetic

field with a bending power of 1 Tm.

2. Micro-Vertex Detector (MVD) [29, 30]: The MVD consists of four layers of

ultra-thin and highly-granulated monolithic silicon sensors known as Monolithic

Active Pixel Sensors (MAPS) which are located close to the target. The four

layers are located 5, 10, 15 and 20 cm downstream the target. The MVD is

needed to reconstruct the primary collision vertex. It will also detect secondary

vertices with high precision which are required for the reconstruction of open

charm (D0, D
∗ etc.). The angular coverage for MVD is 2.5 deg - 25 deg.
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2 The Compressed Baryonic Matter (CBM) Experiment

3. Silicon Tracking System (STS) [32]: The STS consists of up to 8 tracking layers

of silicon detectors. They are located downstream of the target at distances

between 30 and 100 cm in a magnetic dipole field of 1 Tm bending power. The

task of the STS is to provide track reconstruction and momentum determination

of charged particles. The required momentum resolution is of the order of

∆p/p = 1%. The angular coverage for STS is 2.5 deg - 25 deg.

4. Ring Imaging Cherenkov Detector (RICH) [33]: The RICH detector comprises

a CO2 radiator and a UV photon detector realized with multi-anode photo-

multipliers for electron identification. It is designed to provide identification of

electrons and suppression of pions in the momentum range below 8 GeV/c. The

angular coverage for RICH is 2.5 deg - 25 deg.

5. Transition Radiation Detector (TRD) [34]: Three Transition Radiation Detector

stations each consisting of 34 detector layers will serve for particle tracking and

for the identification of electrons and positrons with p > 1.5 GeV/c (γ > 1000).

Each layer consists of a radiator where the transition radiation is produced by

electrons, and of a gaseous detector in which the deposited energy of charged

particles and the transition radiation can be measured. The angular coverage

for TRD is 2.7 deg - 44.7 deg.

6. Muon Chamber System (MuCh) [35]: Muons will be measured with an active

hadron absorber system consisting of iron layers and muon tracking chambers

(MuCh). The final design of the muon detector system consists of 6 hadron

absorber layers and 18 gaseous tracking chambers located in triplets behind

each absorber slab. The angular coverage for MuCh is 5.7 deg - 25 deg.

7. Time of Flight Detector (TOF) [36]: Charged hadron identification will be
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2 The Compressed Baryonic Matter (CBM) Experiment

Figure 2.1: The CBM Detector Setup. The components of electron and muon setup
are both shown in the diagram.

performed by a time-of-flight (TOF) measurement with a wall of resistive plate

chambers (RPC) located at a distance of 10 m behind the target. A micro-strip

detector provides the start signal for the TOF measurement. The equations

pertaining to the time of flight measurements are derived in Chapter 4. The

angular coverage for TOF is 2.5 deg - 25 deg.

8. Electromagnetic Calorimeter (ECAL) and Projectile Spectator Detector (PSD)

[37]: ECAL provides information on photons and neutral hadrons in selected

regions of phase space. PSD is needed for the determination of the collision

centrality and the orientation of the reaction plane.

CBM will run in two different setups : Electron setup and Muon setup. The

electron setup will comprise of MVD, STS, RICH, TRD, TOF, ECAL, and PSD

detectors. In the muon setup, the RICH detector will be replaced by MuCh for

muon detection. A summary of the required detectors for different particle

measurements is presented in Table 2.2.
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2 The Compressed Baryonic Matter (CBM) Experiment

Table 2.2: Observables and required detectors. ‘x’ denotes that the detectors can
detect the mentioned observables. The table has been taken from [27].

Observables MVD STS RICH MuCh TRD TOF ECAL PSD
π, K, p x x x x x

Hyperons x x x x
Electrons x x x x x x

Muons x x x x
Photons x x

Photons via
e± conversion

x x x x x x

2.1.1 Detectors used for our analysis

We have used the data from the following detectors for our analysis.

1. Micro Vertex Detector for primary collision vertex, and track reconstruction

of particles.

2. Silicon Tracking System for track reconstruction, and momentum determi-

nation of particles.

3. Time-of-Flight detector for particle identification.

The Time-of-flight detector is used only for cumulants of net-proton and net-kaon

multiplicity distributions, where it is necessary to identify protons and kaons. For

analysis of net-charge multiplicity distributions, particle identification is not required,

hence data from MVD and STS were only used.
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Chapter 3

Event-by-Event Fluctuation Observ-
ables

In this thesis, the aim is to look at event-by-event fluctuations of conserved quantities

like net baryon number, net charge, and net strangeness, in the CBM detector setup.

Theoretically, it has been predicted that at high temperatures, there is a cross-over

from hadronic phase to quark-gluon-plasma at µB = 0 MeV [4]. At larger µB, a first

order phase transition is predicted between quark-gluon and hadronic phases, which

ends in a critical point (CP). Several other studies have reported that the CP region

is unlikely to be found below µB = 200 MeV [38].

It has also been observed in several experiments that the value of baryon chemical

potential µB increases with decreasing center of mass energy
√
s. In fact, the following

parameterisation of µB vs
√
s has been reported [39].

µB(
√
s) =

1.308 GeV

1 + 0.273 GeV−1 ×
√
s

(3.1)

This can be understood by the fact that with increasing
√
s, the amount of entropy

(heat) generated grows, while the net baryon number is limited by that of the initial

nuclei [40]. The CBM experiment would look for the experimental signatures of a

first order phase transition by colliding Au ions at various
√
sNN . The non-monotonic

variations of observables which are related to the moments of net baryon, net-charge,

and net-strangeness number with respect to the beam energy are predicted to be good

signatures of phase transitions and a critical point [20].
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3 Event-by-Event Fluctuation Observables

3.1 Fluctuations and Correlations

A system in thermal equilibrium in the grand canonical ensemble is characterised by

its partition function

Z = Tr

[
exp

(
−H −

∑
i µiQi

T

)]
(3.2)

where H is the Hamiltonian of the system and Qi and µi denote the conserved

charges and the corresponding chemical potentials respectively. For our case, these

are strangeness, baryon-number, and electric charge. The mean and variances of

the partition function are then expressed in terms of the derivatives of the partition

function with respect to appropriate chemical potentials.

〈Qi〉 = T
∂

∂µi
log(Z) (3.3)

〈δQiδQj〉 = T 2 ∂2

∂µi∂µj
log(Z) ≡ V Tχi,j (3.4)

where δQi = Qi − 〈Qi〉. Here, χ is susceptibility defined by

χi,j =
T

V

∂2

∂µi∂µj
log(Z) (3.5)

which is generally a measure of (co)-variance. The diagonal susceptibilities, χi,i, are

measures for the fluctuations of the system, whereas the off-diagonal susceptibilities,

χi,j with i 6= j characterise the correlations between the conserved charges Qi & Qj.

Higher order susceptibilities can be defined by differentiating the partition function

multiple times with respect to the appropriate chemical potentials

χ
ni,nj ,nk

i,j,k =
1

V T

∂ni

∂(µi/T )ni

∂nj

∂(µj/T )nj

∂nk

∂(µk/T )nk
log(Z) (3.6)

Higher order cumulants up to sixth order [41] - [45] have been calculated in Lattice

QCD, and they provide useful information about the properties of the matter above

the critical temperature.
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3.1.1 Diagonal Cumulants and Fluctuations

The concept of “fluctuation of conserved quantities” seems contradictory, as for the

entire system, none of the conserved quantities will fluctuate. However, by studying

a smaller subsystem, we can make sense of the fluctuations of conserved quantities.

The small system may exchange conserved quanta with the rest of the system. This

is simular to the assumptions which govern a thermal system in the grand-canonical

ensemble, discussed above, and Lattice QCD calculations are carried out in this en-

semble.

In Lattice QCD, the susceptibilities are expressed in terms of the Taylor coeffi-

cients in the expansion of the dimensionless pressure (P/T 4), with respect to nor-

malised chemical potential (µi/T ). [14]. Here i can represent baryon (B), charge (q),

and strangeness (S).

P/T 4 =
1

V T 3
log[Z(V, T, µi)] (3.7)

χni (T, µi) =
∂n(P/T 4)

∂(µi/T )n

∣∣∣∣
T

(3.8)

In a grand canonical ensemble, the nth order cumulant of multiplicity distributions

are connected to the corresponding susceptibilities by

Cn,i = V T 3χnq (T, µi) (3.9)

where V denotes the volume of the system. The susceptibilities exhibit singularity

near the critical point of the system.

While relating the susceptibilities to the moments, a volume term appears (Eq.

3.9.). This makes it difficult to compare different centralities, and different systems of

collisions. However, the ratio of moments like C3

C2
, C4

C2
, are devoid of the volume term,

and it has been seen from lattice QCD calculations that these products also change
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rapidly near the critical point. Some of the relations are listed below

Sσ =
C3

C2

=
χ(3)

χ(2)
(3.10)

κσ2 =
C4

C2

=
χ(4)

χ(2)
(3.11)

κσ

S
=

C4

C3

=
χ(4)

χ(3)
(3.12)

The moments have also been shown to be directly related to the correlation length

(ξ) of the system [46]. In finite systems, the correlation length can be at most of the

size of the system, therefore, the moments do not diverge near the critical point,

instead they take large finite values. Some of the relations are listed below.

C2 ∼ V ξ2 C3 ∼ V ξ9/2 C4 ∼ V ξ7 (3.13)

The most general dependence of moments on correlation lengths is given by Cn ∼

V ξ
5
2
n−3 [47]. Hence, the higher moments of distributions of conserved quantities are

studied as they have a stronger dependence on ξ.

3.1.2 Off-diagonal Cumulants and Correlations

The correlation between the strangeness S and the baryon B is an useful diagnos-

tic for the presence of string interactions between quarks and antiquarks [20]. To

understand this, we consider a situation in which the basic degrees of freedom are

weakly interacting quarks and the strangeness is carried exclusively by s and s̄. The

baryon number they carry is in strict proportion to their strangeness Bs = −1
3
Ss,

thus establishing a strong correlation between strangeness and baryon number. This

is in strong contrast to a hadron gas in which the strangeness and baryon number

are not so strongly related, at least in high energy regimes. At small baryon chemical

potential, for example, the strangeness is carried by kaons which do not possess any

baryon number [48]. In lower energies, the situation is more complicated, owing to
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the presence of resonances. However, in general, one expects the baryon number and

strangeness to be strongly correlated in a quark gluon plasma than in a hadron gas.

Such elementary considerations suggest the introduction of the correlation coefficient

CB,S [20], given by

CB,S = −3
σB,S
σ2
S

= −3
〈BS〉 − 〈B〉〈S〉
〈S2〉 − 〈S〉2

= −3
〈BS〉
〈S2〉

(3.14)

The last expression makes use of the fact that 〈S〉 = 0. In terms of quark flavours,

CB,S can be written as

CB,S = −3
〈BS〉
〈S2〉

=
〈(u+ d+ s)(s)〉

〈s2〉
= 1 +

〈us〉+ 〈ds〉
〈s2〉

= 1 +
χus + χds

χss
(3.15)

,since the baryon number of a quark is 1
3

and the strangeness of a strange quark

is −1. Here, 〈u〉 = 〈u − ū〉 is the average of the net-up-quark number and so on.

For uncorrelated quark flavours like in a simple quark-gluon-plasma, we have 〈us〉 =

〈ds〉 = 0, and hence 〈CB,S〉 = 1.

In contrast, for a gas of uncorrelated hadron resonances, we have

CB,S ≈ 3
〈Λ〉+ 〈Λ̄〉+ ...+ 3〈Ω−〉+ 3〈Ω̄+〉
K0 + K̄0 + ...+ 9〈Ω−〉+ 9〈Ω̄+〉

(3.16)

Here, the numerator receives contributions from only strange baryons and anti baryons,

while the denominator has contributions from strange mesons too. At the relatively

high temperatures, the strange mesons significantly outnumber the strange baryons,

so that CB,S is less than 1. As µB is increased, the freezeout temperature decreases

[49], and consequently strange baryons steadily increase in number as compared to

kaons, so CB,S increases [20]. Indeed, at µB = 0 and Tc = 170 MeV, CB,S = 0.66 and

at very high µB, CB,S ≈ 3
2

[49]. This dependence of CB,S on the hadronic environ-

ment is in sharp contrast to the QGP where the correlation coefficient remains one

for all temperatures and chemical potentials. Similar behaviour is also expected for

charge-strangeness correlations [50].
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For CB,Q, at low temperatures, the correlation is dominated by protons and an-

tiprotons. Consequently, within the HRG model it rises exponentially with temper-

ature in this region. In high temperature QCD limit, however, CB,Q vanishes as the

quarks effectively become massless with respect to the temperature, and thus, the

weighted sum of the charges of up, down and strange quarks vanishes [50]. Thus,

model calculations show that these correlations are ideal candidates to probe the

transition between the de-confined states of QGP and the confined states of hadrons.

In an experiment however, it is often difficult to capture all baryons. For exam-

ple, neutrons which are almost equally produced as protons in heavy-ion collisions

go completely undetected. It thus stands to question how one can practically mea-

sure variations of net baryon number. It has been reported that the proton number

susceptibility almost completely reflects the singularity of the baryon number suscep-

tibility near the critical point, and the effect of isospin fluctuations on the shape of

net baryon distributions is small [51]. Hence the net proton multiplicity is a good

proxy for the net baryon multiplicity.

The same is also true for the measurements of strange particles. It is difficult

to perform high-purity event-by-event measurements of neutral strange baryons such

as Λ, strange mesons such as K0
S or other heavy conserved charge carrying particles

such as Ω,Σ,Ξ, etc. This is because they require reconstruction using invariant mass

spectra that reduces both the efficiency and purity of their detection [52]. Therefore,

net-kaon is used as a proxy for net-kaon multiplicity. We also expect that κm,np,k follows

the same trend as κm,nB,S , however, it is not correct to simply approximate the latter

by the former, without measuring strange-baryons.

In the next chapter, the relevant formulae for the calculations of diagonal and off-

diagonal cumulants of net-proton, net-charge, and net-kaon multiplicity distributions

are discussed. The different methods of error calculation are also touched upon.
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Chapter 4

Important formulae and Derivations

4.1 Kinematic Variables

There are certain kinematic variables which are often used in high energy physics.

They are briefly discussed in this section.

1. Center of mass energy (
√
s): This is defined as s = (p1 + p2)2 = (p3 + p4)2

for a typical 2+2 scattering with particles 1 and 2 incoming, and particles 3

and 4 outgoing, where pi denotes the 4-momentum, and mi is the mass of the

ith particle. It reduces to s = m2
1 + m2

2 + 2E1E2 − 2~p1. ~p2, where ~pi is the 3-

momentum, Ei is the energy of the ith particle, and for a fixed target experiment

like CBM, since ~p2 = 0, it finally takes the form s = m2
1 + m2

2 + 2E1m2.
√
s is

typically a measure of the total ‘energy’ available in a system.

2. Minkowski metric: It is given by gµν = diag(1,−1,−1,−1).

3. Transformation matrix: For our purposes, the incoming beam is taken to be

in z-direction, hence the matrix reduces to
(

γ −βγ
−βγ γ

)
for the t and z components

of the 4-vector only.

4. Rapidity: It is defined as follows:

y =
1

2
ln
E + pz
E − pz

=
1

2
ln

1 + β

1− β
(4.1)

Here β = p
E

.
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Rapidity is additive under boost from one frame to another, therefore ynew =

yold + 1
2

ln 1+β
1−β = yold + yboost.

5. Pseudorapidity: It is defined as follows:

η =
1

2
ln
p+ pz
p− pz

(4.2)

Using the definition cos θ = pZ
p

, we have

η = − ln(tan
θ

2
) (4.3)

When |~p| >> m, y ≈ η.

It is convenient to define rapidity for phenomenological calculations since the

mass of the desired particle is known. However, in experiments, it is more

convenient to use pseudorapidity as a typical detector or detector component

covers some well-defined θ region with respect to the beam axis.

On a side note, for a beam of particles of mass m travelling with kinetic energy

Ekin in the lab frame, Elab = Ekin +m and p =
√
E2
lab −m2.

Then, βCM = p
Elab+m

.

4.2 Cumulants

1. Cumulant generating function (CGF): For any random variable X, the

CGF is defined as G(t) = log(< etX >).

2. Cumulants: The cumulants are defined by the derivatives of the CGF. The

nth order cumulant κn is given by

κn = Gn(0) =
∂nG(t)

∂tn

∣∣∣∣
t=0

(4.4)
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Figure 4.1: Left-skewed and Right-skewed distributions respectively. The image is
shared under Creative Commons License, and hence is reproduced here [53].

3. Raw Moments: The nth order raw moment for a distribution N is defined as

mn =< Nn > where <> denotes the average.

4. Central Moments: The nth order central moment for a distribution N is

defined as follows:

µn = 〈(N− < N >)n〉 (4.5)

Central moments are related to the nth order cumulants (κn) as follows:

κn = µn −
n−2∑
m=2

(
n−1
m−1

)
κmµn−m (4.6)

For our analysis, we used the relations between raw moments and cumulants

for ease of calculation. The cumulants upto 4th order are listed below in terms

of raw moments.

κ1 = m1

κ2 = m2 −m2
1

κ3 = m3 − 3m2m1 + 2m3
1

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1 (4.7)

5. Variance: The second central moment (σ2) is used to describe the width of a

distribution.
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Figure 4.2: Value of Kurtosis for some standard distributions like Laplace Double
Exponential, Hyperbolic Secant, Logistic, Normal, Raised Cosine, Wigner Semicircle,
and Uniform. The image is shared under Creative Commons License, and hence is
reproduced here [54].

6. Skewness: Skewness, the normalised third central moment, denoted by S, is

a measure of the asymmetry of the distribution. It is defined by S = κ3

κ
3/2
2

. A

distribution can be negative or left skewed if the left tail is longer, and positive

or right skewed if the right tail is longer, as shown in Fig. 4.1.

7. Kurtosis: Kurtosis, denoted by κ, is a measure of the peakness of the distri-

bution. It is defined by κ = κ4
κ22

. A normal distribution has κ = 0. For any

arbitrary distribution, if κ < 0, it means the distribution produces fewer and

less extreme outliers than does the normal distribution. Similarly, if κ > 0, the

distribution produces more outliers than does the normal distribution. Example

of the first kind is a uniform distribution, while example of the second kind is a

laplace distribution. Some of these distributions are shown in Fig. 4.2.
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8. Mixed Cumulant: For two distributions Nα and Nβ, we can define the mo-

ments by δNi = Ni−〈Ni〉 where i ∈ (α, β). Then, the mixed cumulant of order

p and q for these two distributions is given by

κp,qα,β = 〈(δNα)p (δNβ)q〉 (4.8)

9. Properties of Cumulants:

9.1. Translationally invariant : κn(X + c) = κn(X) where X is any random

variable and c is any real number.

9.2. Homegenous : κn(cX) = cnκn(X) where X is any random variable and c

is any real number.

9.3. Additivity : For independent random variables X and Y ,

κn(X + Y ) = κn(X) + κn(Y ) (4.9)

10. Errors on Cumulants: There are several methods to find out statistical errors

in a sample and its related quantities. The most commonly used methods in

such analysis are Bootstrap, Delta Theorem, and Subgroup Method [55]. In this

analysis, we primarily use “Delta Theorem” [56] which provides us with an

analytical function to calculate the error.

Statement of Delta Theorem

Given a sequence of random variables Xn such that
√
n[Xn − θ] → N(0, σ2)

where θ, and σ are finite, and N(0, σ2) represents the standard normal distri-

bution,
√
n[g(Xn)− g(θ)]→ N(0, σ2[g′(θ)]2), where g is any function for which

g′(θ) exists and is non-zero.
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4 Important formulae and Derivations

For our case, we can take Xn to be a constant sequence X, and θ = µ. Then,

the statement simplifies to

X ∼ N(µ,
σ2

n
) =⇒ g(X) ∼ N(g(µ),

σ2

n
[g′(µ)]2) (4.10)

To find out the errors, we need to find the variances and covariances of the

central moments in the sample (µ̂i). The general formulae are given in terms of

the population central moments (µi) below.

var(µ̂r) =
1

n
(µ2r − µ2

r + r2µ2µ
2
r−1 − 2rµr−1µr+1) (4.11)

cov(µ̂r, µ̂q) =
1

n
(µr+q − µrµq + rqµ2µr−1µq+1

−rµr−1µq+1 − qµr+1µq−1) (4.12)

From Equation 4.11, we have the distribution of sample moment µ̂2 given by

µ̂2 = σ̂2 ∼ N
(
σ2,

µ4 − σ4

n

)
(4.13)

Now, consider the function g(x) =
√
x. Using Delta Theorem on σ̂2, we have

σ̂ ∼ N
(
σ,
µ4 − σ4

4σ2n

)
(4.14)

This gives the variance in µ2.

=⇒ For diagonal cumulants

Errors in κ1, κ2,& κ3 are trivial and are given by the variances of µ1, µ2,& µ3

respectively. The error in κ4 is slightly more involved and is discussed below

for completeness.

κ4 = µ4 − 3µ2
2

dκ4 = dµ4 − 6µ2dµ2

var(κ4) = var(µ4)− 12µ2cov(µ4, µ2) + 36µ2
2var(µ2)
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4 Important formulae and Derivations

=⇒ var(κ4) =
1

n
µ8 − 12µ6µ2 − 8µ5µ3 − µ2

4 + 48µ4µ
2
2 + 64µ2

3µ2 − 36µ4
2 (4.15)

=⇒ For off-diagonal cumulants

For our analysis here, we will only use mixed cumulants of order 2 i.e. κ1,1α,β.

For this, we will reduce the mixed cumulant κ1,1α,β in terms of the variances and

covariances of a bivariate distribution of α, β.

κ1,1α,β = 〈(Nα − 〈Nα〉) (Nβ − 〈Nβ〉)〉

= 〈NαNβ〉 − 〈Nα〉〈Nβ〉 (4.16)

We define moments for the bivariate distribution of α, β as µi,j = 〈N i
αN

j
β〉.

Then, Eq. 4.16 is given by

κ1,1α,β = µ1,1 − µ1,0µ0,1 (4.17)

To calculate the error, we have to define the variances and the covariances of

the moments for this bivariate distribution in the sample (µ̂i,j) . They are:

var(µ̂i,j) =
1

n

(
µ2i,2j − µ2

i,j

)
(4.18)

cov(µ̂i,j, µ̂k,l) =
1

n
(µi+k,j+l − µi,jµk,l) (4.19)

Then, variance of κ1,1α,β is given by

=⇒ var(κ1,1α,β) = var(µ̂1,1) + µ̂2
1,0var(µ̂0,1) + µ̂2

0,1var(µ̂1,0)− 2cov(µ̂1,1, µ̂0,1)µ̂1,0

−2cov(µ̂1,1, µ̂1,0)µ̂0,1 + 2cov(µ̂1,0, µ̂0,1)µ̂1,0µ̂0,1 (4.20)
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Chapter 5

Analysis and Results

5.1 UrQMD Model

UrQMD [57, 58] is an acronym for “Ultra Relativistic Quantum Molecular Dynamics”,

and was developed at the Frankfurt Institute of Advanced Studies (FIAS), Germany.

It is a many-body theory based transport model for simulating heavy ion collisions in

the low to medium energy range, like those found in SIS and RHIC. Here a sequence

of propagations of particles is simulated numerically, and the inputs include cross

sections, the two-body potentials, and decay widths. The UrQMD collision term

contains 55 different baryon species (including nucleon, delta and hyperon resonances

with masses up to 2.25 GeV/c2) and 32 different meson species (including strange

meson resonances), which are supplemented by their corresponding antiparticle and

all isospin-projected states. The states listed can either be produced in string decays,

s-channel collisions or resonance decays. For excitations with higher masses than

2 GeV/c2, a string picture is used. This model allows for an event-by-event analysis

of heavy ion reactions similar to the methods which are used for the analysis of

experimental data, and hence has been used for this analysis.

5.2 Cumulants from UrQMD at different energies

The net-proton, net-charge, and net-kaon cumulants have been calculated for 4 dif-

ferent energies Elab = 4, 6, 8, 10 AGeV from the UrQMD model. The analysis was

performed on the HPC clusters located in GSI, Darmstadt, and Garuda at NISER.

24



5 Analysis and Results

• Event Generator : UrQMD 3.3

• System : Au-Au collisions (ZAu = 79; AAu = 197)

• Impact Parameter : b ∼ 0− 14 fm

• Energies : Elab = 4, 6, 8, 10 AGeV

• Number of Events : ∼ 3 million minimum bias

5.2.1 Analysis Cuts

• Pseudorapidity : The CBM detector has a pseudorapidity (η) coverage of

1.5 < η < 3.8. Since, we will compare our results from UrQMD to the results

from simulation in the CBM setup, we have only chosen particles in this η range.

• Rapidity : The particles ((anti)protons and kaons) were chosen in the mid-

rapidity region for each energy with a rapidity window of 1. This is varied for

different energies as rapidity (y) in the lab frame is dependent on the beam

rapidity which changes with beam energy. However, we used the same range

for both (anti)protons and kaons as the midrapidity regions for both the species

were almost same, as shown in Fig. 5.1.

– Elab = 4 AGeV : 0.68 < y < 1.68

– Elab = 6 AGeV : 0.85 < y < 1.85

– Elab = 8 AGeV : 0.98 < y < 1.98

– Elab = 10 AGeV : 1.1 < y < 2.1

• Transverse Momentum : We have chosen particles having transverse mo-

mentum (pT ) within 0.2 < pT ( GeV/c ) < 2. The y vs pT acceptance plots are

shown in Figs. 5.2-5.5.
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Figure 5.1: Rapidity distributions for (anti)protons and kaons for Elab = 4, 6, 8, 10
AGeV. The red lines denote the accepance region at each energy.
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Figure 5.2: Rapidity and pT acceptance
for Elab = 4 AGeV.
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Figure 5.3: Rapidity and pT acceptance
for Elab = 6 AGeV.
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Figure 5.4: Rapidity and pT acceptance
for Elab = 8 AGeV.
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Figure 5.5: Rapidity and pT acceptance
for Elab = 10 AGeV

5.2.2 Centrality Selection

Nuclei are extended objects, and hence the volume of the interacting region depends

on the impact parameter (b) of the collision. It is defined as the distance between
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5 Analysis and Results

the centres of the two colliding nuclei. For two nuclei of radii r1 and r2, the impact

parameter can range from 0 to r1 + r2. For Au-Au collision, the impact parameter

ranges from 0−14 fm. However, in a real experiment, the impact parameter is not a

measurable parameter, hence a new quantity, called centrality is defined based on the

impact parameter, and the cross-section of the interaction. The centrality is usually

defined as a percentage of the total nuclear interaction cross section σ. The centrality

percentile for a A− A collision with an impact parameter b is defined as [59, 60].

c(b) =

∫ b
0
dσ/db′db′∫∞

0
dσ/db′db′

(5.1)

Since number of particles produced in a collision is directly related to the cross-

section, in experiments, centrality classes are defined by the same. The centrality

selection is done by the multiplicity of charged particles which is referred as Reference

Multiplicity (RefMult). The refmult is chosen differently for each analysis.

5.2.3 Net-Proton Cumulants from UrQMD
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Figure 5.6: Refmult for net-proton cumu-
lants analysis for Elab = 4 AGeV.
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Figure 5.7: Refmult for net-proton cumu-
lants analysis Elab = 6 AGeV.

The RefMult for net-proton cumulants is shown in Figs. 5.6-5.9. For this analysis,

we have used charged pions and kaons within the pseudorapidity acceptance (1.5 <
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5 Analysis and Results
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Figure 5.8: Refmult for net-proton cumu-
lants analysis for Elab = 8 AGeV.
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Figure 5.9: Refmult for net-proton cumu-
lants analysis Elab = 10 AGeV.
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Figure 5.10: Net-Proton multiplicity distributions for 3 centrality classes (0 - 5 %, 30
- 40 %, and 70 - 80 %) for Elab = 4, 6, 8, 10 AGeV.

η < 3.8) to define RefMult. This is done to avoid autocorrelation effects. The

shaded regions represent the different centrality classes. The net-proton multiplicity

distributions for three different centrality classes at different energies have been shown

in Fig. 5.10. For these energies, net-proton distribution is dominated by the proton

distribution as there are few anti-protons produced. Before we can calculate the

cumulants, we have to correct the multiplicity distributions for Centrality Bin Width

Effect which is discussed below.
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5 Analysis and Results

Centrality Bin Width Effect

Particle production is dependent on the energy of collision, as well as the centrality.

Choosing the finer centrality windows become important so that we can reduce the

fluctuations arising due to the selection. The inherent fluctuations arise from the

fluctuations in number of participants within the centrality bin. Selection of narrow

centrality bins helps to get rid of these fluctuations within a centrality bin. But it

may not be always possible to present the results in such narrow bins, mainly because

of a lack of statistics. In our analysis, since multiplicity of charged particles is used for

centrality selection, the finest bin corresponds to single multiplicity bin. Bin width

correction is done by taking the weighted average of the observables [61] in these

multiplicity bins.

X =

∑
i niXi∑
i ni

=
∑
i

ωiXi (5.2)

where the index i runs over each multiplicity bin, Xi represents the moments or the

cumulants in the ith multiplicity bin, ni represents the number of particles in the ith

multiplicity bin, and
∑

i ωi = 1. All the cumulants in this report have been corrected

for this effect. The errors have been calculated using delta theorem [61].

It is also seen from Figs. 5.10 and 5.11 that the average net-proton number for

each of these centrality classes decreases with increasing beam energy. This can

be explained by the phenomenon called baryon stopping where, for lower energies,

the initial nucleons slow down to remain at midrapidity region, and thus affect the

cumulants. Since this effect is enhanced at lower energies, the first cumulant C1 shows

a decreasing trend with initial energy for all centralities.
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Figure 5.11: The first four cumulants for net-proton multiplicity distributions for
Elab = 4, 6, 8, 10 AGeV in the η range 1.5 - 3.8, and pT range 0.2 -2 GeV/c. The
rapidity windows for Elab = 4, 6, 8, 10 AGeV are 0.68 - 1.68, 0.85 - 1.85, 0.98 - 1.98
and 1.1 - 2.1 respectively. The error bars represent the statistical errors and are
within the marker size for some of the cases.

5.2.4 Net-Charge Cumulants from UrQMD

RefMult

The RefMult for net-charge cumulants is shown in Figs. 5.12-5.15. To define RefMult

for this analysis, we have used all charged particles in the pseudorapidity range 1.5 <

η < 1.8 & 2.8 < η < 3.8. For analysis, we have used charged particles in the

pseudorapidity range 1.8 < η < 2.8. This is done to avoid autocorrelation effects. The

net-charge multiplicity distributions for three different centrality classes at different
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Figure 5.12: Refmult for net-charge cu-
mulants analysis for Elab = 4 AGeV.
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Figure 5.13: Refmult for net-charge cu-
mulants analysis Elab = 6 AGeV.
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Figure 5.14: Refmult for net-charge cu-
mulants analysis for Elab = 8 AGeV.
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Figure 5.15: Refmult for net-charge cu-
mulants analysis Elab = 10 AGeV.
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Figure 5.16: Net-Charge multiplicity distributions for 3 centrality classes (0 - 5 %, 30
- 40 %, and 70 - 80 %) for Elab = 4, 6, 8, 10 AGeV.
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Figure 5.17: The first four cumulants for net-charge multiplicity distributions for
Elab = 4, 6, 8, 10 AGeV in the η range 1.8 - 2.8, and pT range 0.2 -2 GeV/c. The error
bars represent the statistical errors and are within the marker size for some of the
cases.

energies have been shown in Fig. 5.16.

It is also seen from Figs. 5.16 and 5.17 that the average net-charge number for

each of these centrality classes increases with increasing beam energy. This can be

explained by the fact that, with increasing initial energy, the number of particles

produced (π±, K± etc.) increases due to pair production and compensates for the

decreasing contribution of net-proton to net-charge multiplicity distribution.
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5.2.5 Net-Kaon Cumulants from UrQMD
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Figure 5.18: Refmult for net-kaon cumu-
lants analysis for Elab = 4 AGeV.
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Figure 5.19: Refmult for net-kaon cumu-
lants analysis Elab = 6 AGeV.
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Figure 5.20: Refmult for net-kaon cumu-
lants analysis for Elab = 8 AGeV.
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Figure 5.21: Refmult for net-kaon cumu-
lants analysis Elab = 10 AGeV.

The RefMult for net-kaon cumulants is shown in Figs. 5.18-5.21. For this analy-

sis, we have used charged pions, protons and antiprotons in the rapidity acceptance

region to define RefMult. The particles for the RefMult have been chosen in the pseu-

dorapidity acceptance range (1.5 < η < 3.8). This is done to avoid autocorrelation

effects. The net-kaon multiplicity distributions for three different centrality classes at

different energies have been shown in Fig. 5.22.

33



5 Analysis and Results

Net-Kaon
10− 0 10 20

C
ou

nt
s

1

210

410
10 GeV

8 GeV

6 GeV

4 GeV

Centrality 0-5

Net-Kaon
10− 0 10

C
ou

nt
s

1

210

410

510 10 GeV

8 GeV

6 GeV

4 GeV

Centrality 30-40

Net-Kaon
10− 5− 0 5 10 15

C
ou

nt
s

210

410

510
10 GeV

8 GeV

6 GeV

4 GeV

Centrality 70-80

Figure 5.22: Net-Kaon multiplicity distributions for 3 centrality classes (0 - 5 %, 30
- 40 %, and 70 - 80 %) for Elab = 4, 6, 8, 10 AGeV.

Centrality (%)
0 20 40 60 80

1
C

0

2

4

6

10 GeV

8 GeV

6 GeV

4 GeV

Cumulant 1

Centrality (%)
0 20 40 60 80

2
C

0

5

10 GeV

8 GeV

6 GeV

4 GeV

Cumulant 2

Centrality (%)
0 20 40 60 80

3
C

0

2

4

6

10 GeV

8 GeV

6 GeV

4 GeV

Cumulant 3

Centrality (%)
0 20 40 60 80

4
C

0

2

4

6

10 GeV

8 GeV

6 GeV

4 GeV

Cumulant 4

Figure 5.23: The first four cumulants for net-kaon multiplicity distributions for Elab =
4, 6, 8, 10 AGeV in the η range 1.5 - 3.8, and pT range 0.2 -2 GeV/c. The rapidity
windows for Elab = 4, 6, 8, 10 AGeV are 0.68 - 1.68, 0.85 - 1.85, 0.98 - 1.98 and 1.1
- 2.1 respectively. The error bars represent the statistical errors and are within the
marker size for some of the cases.
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It is also seen from Figs. 5.22 and 5.23 that the average net-kaon number for

each of these centrality classes increases with increasing beam energy. This can be

explained by the fact that, with increasing initial energy, the number of kaons pro-

duced increases due to pair production as there is more energy for creation of new

particles. Furthermore, due to the associated production of K+ with Λ hyperon

(pp → pΛ(1115)K+) [63] which is pertinent at lower energies, the yield of K+ is

greater than the yield of K−, therefore the average net-kaon number is positive.

5.2.6 Net-Proton and Net-Kaon Mixed Cumulant from UrQMD
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Figure 5.24: Refmult for mixed cumulant
analysis for net-proton and net-kaon mul-
tiplicity distributions for Elab = 4 AGeV.
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Figure 5.25: Refmult for mixed cumulant
analysis for net-proton and net-kaon mul-
tiplicity distributions for Elab = 6 AGeV.

The RefMult for net-proton and net-kaon mixed cumulants is shown in Figs. 5.18-

5.21. For this analysis, we have used charged pions within the pseudorapidity accep-

tance range 1.5 < η < 3.8 to define RefMult. This is done to avoid autocorrelation

effects.

The mixed cumulant of second order, κpk is presented in Fig. 5.28. There is

an interesting trend in the most central collisions as a function of energy. Firstly,

the proton-kaon correlation is enhanced at lower energies and decreases at higher
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Figure 5.26: Refmult for mixed cumulant
analysis for net-proton and net-kaon mul-
tiplicity distributions for Elab = 8 AGeV.
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Figure 5.27: Refmult for mixed cumu-
lant analysis for net-proton and net-kaon
multiplicity distributions for Elab = 10
AGeV.
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Figure 5.28: Mixed cumulant of second order for net-proton and net-kaon multiplicity
distributions for Elab = 4, 6, 8, 10 AGeV in the η range 1.5 - 3.8, and pT range 0.2 -2
GeV/c. The rapidity windows for Elab = 4, 6, 8, 10 AGeV are 0.68 - 1.68, 0.85 - 1.85,
0.98 - 1.98 and 1.1 - 2.1 respectively. The error bars represent the statistical errors
and are within the marker size for most of the cases.

energies, eventually picking up a small negative value for Elab = 10 AGeV. This can be

explained by an interplay of two competing effects. The decay of resonance Λ(1520)→

p+K− with a branching ratio of (22.5±0.5%) [64] contributes to the anti-correlation
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as such a process increases the net-proton and decreases the net-kaon in the system.

This effect is expected to dominate at higher energies, since more energy is available

for production of such resonances. Another source of correlation between net-proton

and net-kaon arises at lower energies from the associated production process (pp →

pΛ(1115)K+), mentioned earlier. Such a hadronic scattering process dominates owing

to the abundance of protons and leads to an increase in the fraction of net-kaon (and

also net-lambda) at lower energies [65]. This associated production is followed by the

resonance decay Λ→ p+π− with a branching ratio of 63.9%. Since the decay proton

from this channel is strongly correlated with the K+ from the associated production,

one expects a further increase in the net-proton to net-kaon correlation as energy

decreases. Since UrQMD already includes associated production [66], the energy

dependence of the correlation between net-proton and net-kaon can be explained.

5.2.7 Net-Charge and Net-Kaon Mixed Cumulant from UrQMD
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Figure 5.29: Mixed cumulant of second order for net-charge and net-kaon multiplicity
distributions for Elab = 4, 6, 8, 10 AGeV in the η range 1.8 - 2.8, and pT range 0.2 -2
GeV/c. The rapidity windows to select kaons for Elab = 4, 6, 8, 10 AGeV are 0.68 -
1.68, 0.85 - 1.85, 0.98 - 1.98 and 1.1 - 2.1 respectively. The error bars represent the
statistical errors and are within the marker size.
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5.2.8 Net-Charge and Net-Proton Mixed Cumulant from UrQMD
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Figure 5.30: Mixed cumulant of second order for net-charge and net-proton multiplic-
ity distributions for Elab = 4, 6, 8, 10 AGeV in the η range 1.8 - 2.8, and pT range 0.2
-2 GeV/c. The rapidity windows to select (anti)protons for Elab = 4, 6, 8, 10 AGeV
are 0.68 - 1.68, 0.85 - 1.85, 0.98 - 1.98 and 1.1 - 2.1 respectively. The error bars
represent the statistical errors and are within the marker size.

The RefMult for the analysis of net-charge, net-kaon and net-charge, net-proton

correlations are the same as that used in the analysis of the net-charge cumulants,

shown in Figs. 5.12-5.15.

The mixed cumulants κQk and κQp are presented in Figs. 5.29 and 5.30 respec-

tively. Both of these cumulants are significantly larger than κpk, which can be at-

tributed to the fact that κQk and κQp has contributions from self-correlations. κpk,

on the other hand, has no trivial self correlations. Both κQk and κQp show increasing

trends with energy. Unlike κp,k, many resonances are expected to contribute to κQk

and κQp which might explain why their values increase with energy.

In the following section, we will report the same cumulants from a simulation

through the CBM detector setup for Elab = 10 AGeV.
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5.3 Simulation

We have performed simulation for net-proton, net-charge and net-kaon fluctuations

in the CBM framework. The tools used for the simulation are CBMROOT, FairSoft,

and FairRoot [67]. The Monte-Carlo generator used for generating the events is

Ultra-Relativistic Quantum Molecular Dynamics (UrQMD) [57, 58]. For our analysis,

UrQMD v3.3 has been used. UrQMD produces the data in ASCII format, which

is then converted to a “.root” file using the sofware UNIGEN (United Generators).

This file serves as the input to CBM detector setup in GEANT. The simulation chain

is as follows.

The UrQMD data file is passed through the CBM detector setup in GEANT, using

the routine ‘run mc.C, and a root file containing the detector response, generated

using monte-carlo methods is the output. The output file, which we name as ‘mc.root ’

is used as an input to the routine ‘run reco.C ’ for reconstructing the tracks. The

output file after reconstruction, named as ‘reco.root ’ is finally used for the analysis.

Fig 5.32 shows a typical event display simulated for Au − Au collision at Elab = 10

AGeV .

Figure 5.31: Block diagram of the simulation chain for the analysis.

5.3.1 Analysis Tools

The analysis has been done using CBMROOT and some associated softwares which

are listed below. The CBM electron setup for SIS100 energies has been used as the
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detector setup for this analysis. The SIS100 electron setup consists of MVD, STS,

RICH, TRD, and TOF detectors. Nearly 3 million events of Au-Au collisions at

Elab = 10 AGeV have been used for the analysis. The entire simulation and analysis

was performed on the HPC cluster located in GSI, Darmstadt. Some important

details about the analysis tools are listed below:

Figure 5.32: Simulation of a central collision of two gold nuclei at a beam energy of
10A GeV. This figure has been reproduced from [68].

1. Event Generator : UrQMD 3.3

2. Versions of CBMROOT & associated software

2.1. CBMROOT - MAY2018

2.2. FairSoft - Mar17

2.3. FairRoot - v-17.03a
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3. Detector Setup: sis100 electron .

4. System: Au-Au collisions (ZAu = 79; AAu = 197)

5. Impact Parameter: b ∼ 0− 14fm

6. Energy: Elab = 10 AGeV =⇒ √
sNN = 4.72 GeV.

7. Number of events: ∼ 3 million minimum bias

5.3.2 Analysis Cuts

To select the charged particle tracks with better reconstruction, and to avoid secon-

daries, various cuts are applied. These cuts are common for the cumulants of all the

distributions.

1. Hits in STS: The STS detector has 8 consecutive panels, located along the

beam axis. To ensure that the momentum of the track is correctly estimated,

we have chosen tracks which have more than 6 hits in the STS detector system.

This is shown in Fig 5.33.
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Figure 5.33: The distribution of number of hits in STS detector. Tracks having more
than 6 hits out of 8 in the detector have been selected for analysis.
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2. Hits in MVD: The MVD detector has 4 consecutive panels, located along the

beam axis. Along with STS, MVD helps in reconstructing the track vertex.

We have chosen tracks which have a minimum of 2 hits in the MVD detector

system. This is shown in Fig. 5.34.
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Figure 5.34: The distribution of number of hits in MVD detector. Tracks having
more than 2 hits out of 4 in the detector have been selected for analysis.

3. Distance of Closest Approach (DCA): The position of every collision (in

cartesian coordinates) is recorded by MVD and STS. After reconstruction, every

track is also assigned a position, which denotes the point where it originated.

All primary tracks in an event should essentially originate from the event vertex.

Distance of closest approach, or DCA refers to the minimum distance of a track

from the vertex of the event they belong to. For our analysis, we have selected

tracks for which the z-component of the DCA (dcaz) is less than 0.2 cm, and

the transverse component (dcat =
√
dca2x + dca2y) is less than 1 cm. as shown

in Fig. 5.35. This helps us in getting rid of secondary tracks.

4. Pseudorapidity: The CBM detector setup has a polar angle coverage of 2.5 deg

to 25 deg. Using Equation 4.3, we thus have set a limit of η ' 1.5 corresponding
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Figure 5.35: The distance of closest approach in transverse plane (dcat). A dcat cut
is applied at 1 cm (dcat < 1 cm).

to θ = 25 deg and η ' 3.8 corresponding to θ = 2.5 deg, as shown in Fig. 5.36.
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Figure 5.36: The pseudorapidity distribution of all charged particles. The particles
in the region 1.5 < η < 3.8 have been chosen for analysis, based on the coverage of
the detector.

5. Hits in TOF: The Time-of-Flight detector is further downstream as compared

to the STS and MVD. Since we have to identify protons, antiprotons and kaons

in this analysis, we have only chosen tracks that have at least one hit in TOF.
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5.3.3 Net-Proton Fluctuations

Particle Identification

Particle identification in CBM is done using time-of-flight measurements available

from the TOF detector. TOF records the length(l) a track has covered before it is

detected in TOF, and the time taken (tflight) to reach the TOF detector from the

micro-strip detector which measures the start time near the vertex.

β =
l

tflight
=

p

E
(5.3)

β =
p√

p2 +m2

∴ m2 = p2
(

1− 1

β2

)
(5.4)
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Figure 5.37: 1
β

vs momentum multiplied
by charge. The three bands on the pos-
itive axis (from bottom) belong to π+,
K+, and protons respectively. The two
bands on the negative axis (from bot-
tom) belong to π− and K− respectively.
There are very few antiprotons produced
at Elab = 10 AGeV, as is clearly seen
from the absence of a band opposite to
that of protons.
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Figure 5.38: Transverse momentum (pT )
vs Rapidity(y) for (anti)protons. In this
analysis, we have chosen (anti)protons in
the region 1.1 < y < 2.1 in the rapidity
range and 0.2 < pT < 2.0 GeV/c in the
momentum range, shown by the rectan-
gular region.

Equations 5.3 and 5.4, in conjunction, give the m2 which we use to identify the

particle species. Fig. 5.37 shows 1/β vs momentum multiplied by charge (q ∗ p) for
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charged hadrons in Au-Au collision at Elab = 10 AGeV. The bands correspond to π,

K and protons (from bottom) respectively, and are well separated for p < 3 GeV/c.

In top panel of Fig. 5.39, m2 is plotted as a function of momentum multiplied by

charge (q ∗ p) and in the bottom panel, 1D projection of m2 is shown in the analysed

momentum range of 0.2 < pT < 2 GeV/c. The protons and antiprotons are selected

using m2 cut of 0.6 < m2 < 1.2 GeV2/c4, in the rapidity range 1.1 < y < 2.1 and

momentum range 0.2 < pT < 2.0 GeV/c. The y − pT acceptance of proton and

antiproton is shown in Fig 5.38, and the box in the plot shows the region of analysis.
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Figure 5.39: (Left Panel) Mass-squared vs Momentum/Charge. Protons(Antiprotons)
are chosen using the cut 0.6 < m2 < 1.2 GeV2/c4. (Right Panel) 1D projection of m2

in momentum range 0.2 < pT < 2 GeV/c.

RefMult

To avoid the autocorrelation, RefMult is measured using charged tracks with m2 <

0.4 GeV2/c4 within the pseudorapidity acceptance range (1.5 < η < 3.8). Fig 5.40

shows the RefMult distribution for the net-proton analysis for Elab = 10 AGeV. The

analysis is performed in 9 centrality classes : 0 - 5 %, 5 - 10 %, 10 - 20 %, 20 - 30 %,

30 - 40 %, 40 - 50 %, 50 - 60 %, 60 - 70 %, and 70 - 80 %. The number of events in

each centrality class are listed in Table 5.1.
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Figure 5.40: RefMult distribution in Net-proton analysis. The different coloured
bands correspond to the different centrality classes. 0 − 5% represents the most
central collisions, while 70−80% represents the most peripheral collisions used in our
analysis.

Table 5.1: Number of events in each centrality class in net-proton analysis in Au-Au
collision at Elab = 10 AGeV.

Centrality (%) No. of Events
0 - 5 110.4k
5- 10 105.8k

10 - 20 203.6k
20 - 30 223.5k
30 - 40 205.3k
40 - 50 226.7k
50 -60 212.1k
60 -70 227.6k
70 - 80 156.4k

5.3.4 Cumulants

Once the centrality classes are determined, the proton and antiproton distributions

for each centrality class are measured. The multiplicity distribution of protons and

antiprotons are shown in Fig. 5.41. The net-proton multiplicity distributions for all

the centrality classes are shown in Fig. 5.42. The cumulants and central moments
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upto 4th order are calculated for net-proton multiplicity distributions using Eqn. 4.7.

The first cumulant C1 of net-proton distribution decreases as we go from central to

peripheral.
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Figure 5.41: Multiplicity distribution of protons and antiprotons in different centrality
classes in the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2 GeV/c and Elab = 10
AGeV.
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Figure 5.42: Multiplicity distribution of net-proton in different centrality classes in
the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2 GeV/c and Elab = 10 AGeV.

Efficiency Correction Using Binomial Distribution

In real detectors, we don’t have 100% efficiency of detection, which implies we lose

out on the information from the actual collision. Thus, we need to estimate the effect

of detector efficiency on the observable. Generally, the effect of efficiency (ε) can

be modelled by a binomial distribution B(N, ε). The binomial distribution B(N, ε)
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is a discrete probability distribution of the number of successes in a sequence of N

independent experiments for which the outcomes are success with probability ε and

failure with probability 1− ε.

Let the actual number of particles of a certain species produced event-by-event,

N , have a distribution Ñ . Let the efficiency of the detector be ε, and let the detector

acceptance be modelled by B(N, ε). The distribution of the number of particles of

that species which are detected, n is then given by:

P (n) = B(N, ε)Ñ (5.5)

The Moment-Generating function is then given by

M(t) = (1 + (et − 1)ε)N (5.6)

The moments can thus be calculated by evaluating the derivatives of M(t) at t =

0. By inverting the equations for the moments of the distribution of the detected

particles, we can thus get the moments of the distribution of the actual particles.

The first four moments are listed below:

〈N〉 =
〈n〉
ε

〈N2〉 =
〈n2〉 − 〈n〉(1− ε)

ε2
(5.7)

〈N3〉 =
〈n3〉 − 3〈n2〉(1− ε) + 〈n〉(1− ε)(2− ε)

ε3

〈N4〉 =
〈n4〉 − 6〈n3〉(1− ε) + 〈n2〉(1− ε)(11− 7ε)− 〈n〉(1− ε)(6− (6− ε)ε)

ε4

where < ni > is the ith order raw moment for the distribution of detected particles,

and < N i > is the ith order raw moment for the distribution of incident particles.

The new cumulants defined using these moments, should in principle give us the

actual cumulants of (anti) proton multiplicity distributions. From Eqn. 4.9, we know

that cumulants of independent distributions add up. Therefore, using the above
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Figure 5.43: Efficiency of reconstruction of (anti)-protons vs transverse momentum
(pT ) in different centrality bins in the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2
GeV/c and Elab = 10 AGeV. The error bars represent the statistical errors and are
within the marker sizes for most cases.

formalism on both protons and antiprotons, we get the individual cumulants which

are then subtracted to get the cumulants of net-proton.

For our analysis, we have defined efficiency in the following manner.

Efficiency =
Number of detected (anti)protons which are true (anti)protons

Number of Incident (anti)protons
(5.8)

This definition also takes into account the purity of reconstruction of (anti)protons,

however in our analysis, the purity is found to be over 90% in the centrality bins.

Fig 5.43 shows the efficiency of reconstruction of (anti)-protons as a function of

the transverse momentum in the range 0.2 < pT < 2 GeV/c, for different centrality

classes. The efficiency correctionn for the cumulants is done in each multiplicity bin,

before it is bin width corrected. The efficiency corrected cumulants have been com-

pared with the cumulants of the incident net-proton distribution in Fig. 5.44. There

are visible disagreements between the incident and measured net proton cumulants,

which suggests that this method might not be suited for our analysis.
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Figure 5.44: Net proton cumulants in various centrality classes efficiency correction
using binomial distribution in the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2
GeV/c and Elab = 10 AGeV. For comparision, the cumulants of the incident net-
proton distribution are also shown. The error bars represent the statistical errors and
are within the marker size for most of the cases.

Efficiency Correction Using Unfolding

Since the modelling of the detector response using binomial distribution could not

correct the cumulants obtained from simulation, a new method called unfolding has

been used to correct for the detector responses. The unfolding algorithm has been

implemented using the RooUnfold package [69]. There are two major algorithms

for unfolding - Bayesian unfolding [69] and Singular Value Decomposition [70]. The

Bayesian unfolding algorithm is descibed below [71]:

51



5 Analysis and Results

The procedure of Bayes unfolding can be explained by the causes C and the effects

E. For our case, causes correspond to the true multiplicity values and effects to the

measured multiplicity values which are affected by the inefficiencies. For n(E) events

with effect E due to several independent causes (Ci, i = 1, 2, ..., nC), the expected

number of events assignable to each of the causes is given by the Bayes Theorem.

n̂(Ci) = n(E)P (Ci|E) (5.9)

where

P (Ci|E) =
P (E|Ci)P (Ci)∑nC

l=1 P (E|Cl)P (Cl)
(5.10)

Now if we observe that the outcome of a measurement has several possible effects

Ej(j = 1, 2, ..., nE) for a given cause Ci, then the expected number of events to be

assigned to each of the causes and only due to the observed events can be calculated

to each effect by:

n̂(Ci) =

nE∑
j=1

n(Ej)P (Ci|E) (5.11)

P (Ci|Ej) is the probability that different causes Ci were responsible for the observed

effect Ej and is calculated by Bayes theorem as:

P (Ci|Ej) =
P (Ej|Ci)P0(Ci)∑nC

l=1 P (Ej|Cl)P0(Cl)
(5.12)

where P0(Ci) are the initial probabilities.

If we take into account the inefficiency then the best estimate of the true number

of events is given by

n̂(Ci) =
1

εi

nE∑
j=1

n(Ej)P (Ci|E); εi 6= 0 (5.13)

where εi is the efficiency of detecting the cause Ci in any of the possible effects. If

εi = 0, then n̂(Ci) is set to zero, since the experiment is not sensitive to the cause Ci.

52



5 Analysis and Results

Net-Proton
0 50 100

C
ou

nt
s

1

210

410
Measured

True

Output

 0 -5 % 

Figure 5.45: Measured, True, and Unfolded (using RooUnfold) distributions of net-
proton multiplicity for 0 - 5 % centrality bin at Elab = 10 AGeV. The error bars
represent the statistical errors.

The above equation can be written in terms of unfolding or response matrix Mij as

n̂(Ci) =

nE∑
j=1

Mijn(Ej) (5.14)

The response matrix Mij is constructed using the number of detected net-proton and

number of incident net-proton generated from a high statistics Monte Carlo sample.

In SVD method, the response matrix is constructed using the equation
∑

jMijCj =

Ei, where C and E are the same causes and effects as above. One then factorises

an m× n dimensional Mij into M = USV T where U is an n× n orthogonal matrix,

V is an n × n orthogonal matrix, while S is an m × n matrix with non-negative

diagonal elements and Sij = 0 for i 6= j. This makes inverting Mij easier as

M−1 = (USV T )−1 = V S−1UT , and one needs to only invert a diagonal matrix

S. Thus, by inverting the first equation, one gets the matrix Ci, which is the true

distribution.
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Figure 5.46: Net proton cumulants in various centrality classes after efficiency correc-
tion using unfolding in the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2 GeV/c and
Elab = 10 AGeV. For comparision, the cumulants of the incident net-proton distribu-
tion are also shown. The error bars represent the statistical errors and are within the
marker size for most cases.

We have used the Bayesian Unfolding technique for our analysis as it is the only

method in the RooUnfold package which can unfold 2D distributions.

A result of unfolding net-proton distribution is presented in Fig. 5.45 for the

most central (0 - 5 %) centrality class. Using unfolding, the calculated cumulants are

presented in Fig. 5.46. This method is clearly better than efficiency correction using

binomial acceptance, and the cumulants from the simulation match the cumulants

from the model for C1, C2,&C3. C4 from the simulation slightly deviates from the
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real value for two centrality values, however, this may be removed by increasing

statistics.

5.3.5 Net-Charge Fluctuation
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Figure 5.47: The distribution of pseudorapidity with transverse momentum pT for all
charged particles in the η range 1.5-3.8, pT range 0.2 -2 GeV/c and Elab = 10 AGeV.
The tracks within the rectangular region have been chosen for analysis.

Particle Identification and Centrality Selection

The cuts used for the analysis of net-charge distribution have been discussed in sec-

tion 5.3.2. Since all the charged particles in the pseudorapidity acceptance region

are selected for analysis, we divide the pseudorapidity distribution into two distinct

regions for analysis, and reference multiplicity (RefMult) selection. The RefMult is

chosen in the range 1.5 < η < 1.8 & 2.8 < η < 3.8, while the particles in the range

1.8 < η < 2.8 are used for net-charge fluctuation measurements. The relevant regions

are shown in Fig. 5.48.

The RefMult is shown in Fig. 5.49. The number of events in each centrality class

is listed in Table 5.2. The multiplicity distribution of positive and negative charges
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Figure 5.48: Pseudorapidity distribution of all charged particles in the η range 1.5-
3.8, pT range 0.2 -2 GeV/c, and Elab = 10 AGeV. The Refmult region is used for
constructing centrality classes.
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Figure 5.49: RefMult distribution for net-charge analysis in the η range 1.5-3.8, y
range 1.1-2.1, pT range 0.2 -2 GeV/c, and Elab = 10 AGeV. 0 − 5% represents the
most central collisions, while 70− 80% represents the most peripheral collisions used
in our analysis.

in every centrality bin is shown in Fig. 5.50. The net-charge multiplicity in every

centrality bin is shown in Fig. 5.51. The efficiency corrected cumulants are shown

in Fig. 5.52. There is excellent agreement between the cumulants calculated from

simulation and those calculated from UrQMD.
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Figure 5.50: Multiplicity distribution of protons and antiprotons in different centrality
classes in the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2 GeV/c and Elab = 10
AGeV.
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Figure 5.51: Multiplicity distribution of net-charge in different centrality classes in
the η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2 GeV/c and Elab = 10 AGeV.
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Table 5.2: Number of events in each centrality bin in net-charge analysis for 2.78
million events of Au-Au collision at Elab = 10 AGeV

.

Centrality (%) No. of Events
0 - 5 102.6k
5- 10 95.6k

10 - 20 178.3k
20 - 30 187.8k
30 - 40 239.2k
40 - 50 148.0k
50 -60 177.4k
60 -70 227.6k
70 - 80 334.8k
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Figure 5.52: Net-charge fluctuations in various centrality classes before and after
efficiency correction in the η range 1.5-3.8, y range 1.2-2.2, pT range 0.2 -2 GeV/c,
and Elab = 10 AGeV. The error bars represent the statistical errors and are within
the marker size.
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5.3.6 Net-Kaon Fluctuations

Particle Identification

The kaons are selected using a m2 cut of 0.18 < m2 < 0.32 GeV2/c4, in the rapidity

range 1.1 < y < 2.1 and momentum range 0.2 < pT < 2.0 GeV/c. The m2 cut for

identification of kaon is shown in Fig. 5.53.

Figure 5.53: 1D projection of m2 in the momentum range 0.2 < pT < 2 GeV/c. The
m2 cut for identifying kaons is shown.

Centrality Selection

To avoid autocorrelation, particles which have m2 < 0.15 GeV2/c4 were chosen for

RefMult. The RefMult distribution is shown in Fig. 5.54.

Table 5.3 contains the information about the number of particles in each centrality

class. The net-kaon distribution at different centralities are shown in Fig. 5.55. The

efficiency corrected cumulants are shown in Fig. 5.56. For C3 and C4, there is a small

disagreement between the true value of C3, C4, and the ones obtained from unfolding

for the most central collisions. This may be removed with increased statistics.
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Figure 5.54: RefMult distribution for net-kaon analysis in the η range 1.5-3.8, y range
1.1-2.1, pT range 0.2 -2 GeV/c, and Elab = 10 AGeV. 0 − 5% represents the most
central collisions, while 70−80% represents the most peripheral collisions used in our
analysis.

.

Table 5.3: Number of events in each centrality bin in net-charge analysis for 2.78
million events of Au-Au collision at Elab = 10 AGeV

.

Centrality (%) No. of Events
0 - 5 113.8k
5- 10 115.0k

10 - 20 236.4k
20 - 30 223.0k
30 - 40 238.1k
40 - 50 225.2k
50 -60 249.1k
60 -70 203.9k
70 - 80 229.7k
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Figure 5.55: Multiplicity distribution of net-kaon in different centrality classes in the
η range 1.5-3.8, y range 1.1-2.1, pT range 0.2 -2 GeV/c and Elab = 10 AGeV.
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Figure 5.56: Net-kaon fluctuations in various centrality classes after efficiency correc-
tion using unfolding in the η range 1.5-3.8, y range 1.2-2.2, pT range 0.2 -2 GeV/c,
and Elab = 10 AGeV. The error bars represent the statistical errors and are within
the marker size for most cases.

5.3.7 Mixed Cumulants

For the mixed cumulants, the RefMults have already been defined. For net-proton,

net-kaon mixed cumulants, we used the same RefMult as the one used for the anal-

ysis of net-kaon fluctuations, shown in Fig. 5.54. For mixed cumulants involving

net-charge, we used the same RefMult as the one for the analysis of net-charge fluc-

tuations, shown in Fig. 5.49.
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Unfolding a 2D distribution

To calculate the efficiency-corrected mixed cumulants, we unfolded 2D-distributions

for each pair of the conserved charges. This task is computationally intensive, as the

algorithm used for unfolding scales as O(N4), where N is the number of bins of the

distribution to be unfolded.
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Figure 5.57: Unfolding of two 2D distributions for the most central (0 - 5%) centrality
class. (a) Net-Proton, Net-Kaon 2D distribution. (b) Net-Charge, Net-Kaon 2D
distribution. Left panel contains the measured distribution, middle panel contains
the corresponding true distribution, and last panel contains the unfolded distribution.

In Fig. 5.57, we have shown the unfolding of 2 two-dimensional distributions. The

first one is for calculating the mixed cumulant of net-proton and net-kaon distributions

and the second one is for calculating the mixed cumulant of net-charge and net-kaon

distributions. The second order mixed cumulants for net-proton, net-charge, and net-

strangeness multiplicity distributions are shown in Figs. 5.58 - 5.60. There is excellent

agreement between the cumulants dervied from UrQMD and the simulation.
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Figure 5.58: κp,k as a function of central-
ity in the η range 1.5-3.8, y range 1.1-2.1,
pT range 0.2 -2 GeV/c, and Elab = 10
AGeV. The error bars represent the sta-
tistical errors and are within the marker
size.
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Figure 5.59: κQ,k as a function of central-
ity in the η range 1.5-3.8, y range 1.1-2.1
(for kaons), pT range 0.2 -2 GeV/c, and
Elab = 10 AGeV. The error bars repre-
sent the statistical errors and are within
the marker size.
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Figure 5.60: κQ,k as a function of central-
ity in the η range 1.5-3.8, y range 1.1-
2.1 (for (anti)protons), pT range 0.2 -2
GeV/c, and Elab = 10 AGeV. The error
bars represent the statistical errors and
are within the marker size.
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Chapter 6

Summary and Outlook

In heavy-ion collision experiments, the study of event-by-event fluctuations is a pow-

erful tool to characterize the thermodynamic properties of the hot and dense QCD

matter. Experimentally, fluctuations of conserved quantities have been applied to

probe the signature of the QCD phase transition and critical point in heavy-ion col-

lisions. To understand the dependencies of these obervables, we have thus looked at

the the first four cumulants of the net-proton, net-charge, and net-kaon multiplic-

ity distributions at SIS energies (Elab = 4, 6, 8, 10 AGeV), using a non-CP transport

model UrQMD. Additionally, we have also looked at the second order mixed cumu-

lants which are related to observables expected to show a rapid change during the

transition of the system from de-confined to confined state.

We also studied the dependence of cumulants on centrality within the CBM de-

tector setup. One aspect would be to look at these cumulants as function of varying

rapidity acceptances. The challenge at the detector level is to get back the original

particle distributions. To do that, we have looked at various effects which distort

the original distributions like centrality bin width effect, and detector inefficiencies.

We have used two methods for addressing detector inefficiencies, and pointed out the

shortcoming of using the binomial acceptance to correct for such effects. We have

also set up the unfolding method, and have used it to correct both diagonal and off-

diagonal cumulants. Unfolding for the off-diagonal cumulants has its own challenges -

the algorithm takes extremely long times to unfold distributions with many particles.

Another step would be to figure out an efficient way to unfold 2D distributions.
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Appendix A

(run mc.C )
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//
// Macro f o r s tandard t ran spo r t s imu la t i on us ing UrQMD input and GEANT3
//
// V. Fr ie se 22/02/2007
//
// Version 2016−02−05
//
// For the se tup ( geometry and f i e l d ) , p r ede f ined se tup s can be chosen
// by the second argument . A l i s t o f a v a i l a b l e s e tups i s g i ven below .
// The input f i l e can be de f ined e x p l i c i t l y in t h i s macro or by the
// t h i r d argument . I f none o f t h e s e op t i ons are chosen , a d e f a u l t
// input f i l e d i s t r i b u t e d wi th the source code i s s e l e c t e d .
//
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void run mc ( I n t t nEvents = 2 ,
const char∗ setupName = ” s i s 1 0 0 e l e c t r o n ” ,
// const char∗ setupName = ” s i s100 debug ” ,
// const char∗ setupName = ” s i s100 hadron ” ,
// const char∗ setupName = ” s i s100 muon jps i ” ,
// cons t char∗ setupName = ”sis100 muon lmvm” ,
const char∗ i npu tF i l e = ”” )
{

// ========================================================================
// Adjust t h i s par t accord ing to your requirements

// −−−−− Environment −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TString myName = ”run mc” ; // t h i s macro ’ s name fo r screen output
TString s r cD i r = gSystem−>Getenv ( ”VMCWORKDIR” ) ; // top source d i r e c t o r y
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− In− and output f i l e names −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TString i nF i l e = ”” ; // g i v e here or as argument ; o the rw i s e d e f a u l t i s taken
TString outDir = ”data/” ;
TString ou tF i l e = outDir + setupName + ” t e s t .mc . root ” ;
TString pa rF i l e = outDir + setupName + ” params . root ” ;
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TString geoF i l e = outDir + setupName + ” g e o f i l e f u l l . root ” ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−− Logger s e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TString l ogLeve l = ”INFO” ;
TString logVerbos i ty = ”LOW” ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−− Define the t a r g e t geometry −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//
// The t a r g e t i s not par t o f the setup , s ince one and the same se tup can
// and w i l l be used wi th d i f f e r e n t t a r g e t s .
// The t a r g e t i s cons t ruc t ed as a tube in z d i r e c t i o n wi th the s p e c i f i e d
// diameter ( in x and y ) and t h i c kn e s s ( in z ) . I t w i l l be p laced at the
// s p e c i f i e d p o s i t i o n as daughter volume o f the volume presen t t h e r e . I t i s
// in the r e s p o n s i b i l i t y o f the user t ha t no ove r l ap s or e x t r u s i on s are
// crea t ed by the placement o f the t a r g e t .
//
TString targetElement = ”Gold” ;
Double t ta rge tTh icknes s = 0 . 0 2 5 ; // f u l l t h i c kn e s s in cm
Double t targetDiameter = 2 . 5 ; // diameter in cm
Double t targetPosX = 0 . ; // t a r g e t x p o s i t i o n in g l o b a l c . s . [ cm]
Double t targetPosY = 0 . ; // t a r g e t y p o s i t i o n in g l o b a l c . s . [ cm]
Double t targetPosZ = 0 . ; // t a r g e t z p o s i t i o n in g l o b a l c . s . [ cm]
Double t targetRotY = 0 . ; // t a r g e t r o t a t i on ang le around the y ax i s [ deg ]
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−− Define the c r ea t i on o f the primary v e r t e x −−−−−−−−−−−−−−−−−−−−−−−−
//
// By de f au l t , the primary v e r t e x po in t i s sampled from a Gaussian
// d i s t r i b u t i o n in both x and y wi th the s p e c i f i e d beam p r o f i l e width ,
// and from a f l a t d i s t r i b u t i o n in z over the ex t ens i on o f the t a r g e t .
// By s e t t i n g the r e s p e c t i v e f l a g s to kFALSE, the primary v e r t e x w i l l a lways
// at the ( 0 . , 0 . ) in x and y and in the z cen t re o f the t a r ge t , r e s p e c t i v e l y .
//
Bool t smearVertexXY = kTRUE;
Boo l t smearVertexZ = kTRUE;
Double t beamWidthX = 0 . 1 ; // Gaussian sigma o f the beam p r o f i l e in x [cm]
Double t beamWidthY = 0 . 1 ; // Gaussian sigma o f the beam p r o f i l e in y [cm]
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// In genera l , the f o l l ow i n g par t s need not be touched
// ========================================================================

// −−−−− Timer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TStopwatch t imer ;
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t imer . S ta r t ( ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−− Debug opt ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
gDebug = 0 ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Remove o ld CTest runtime dependency f i l e −−−−−−−−−−−−−−−−−−−−−
TString depFi l e = Remove CTest Dependency File ( outDir , ”run mc” , setupName ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Create s imu la t i on run −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FairRunSim∗ run = new FairRunSim ( ) ;
run−>SetName( ”TGeant3” ) ; // Transport engine
run−>SetOutputFi le ( ou tF i l e ) ; // Output f i l e
run−>SetGenerateRunInfo (kTRUE) ; // Create FairRunInfo f i l e
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Logger s e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FairLogger : : GetLogger()−>SetLogScreenLevel ( l ogLeve l . Data ( ) ) ;
FairLogger : : GetLogger()−>SetLogVerbos i tyLeve l ( l ogVerbos i ty . Data ( ) ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Load the geometry se tup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
TString s e tupF i l e = s r cD i r + ”/geometry/ setup / se tup ” + setupName + ” .C” ;
TString setupFunct = ” se tup ” ;
setupFunct = setupFunct + setupName + ” ( ) ” ;
std : : cout << ”−I− ” << myName << ” : Loading macro ” << s e tupF i l e << std : : endl ;
gROOT−>LoadMacro ( s e tupF i l e ) ;
gROOT−>ProcessL ine ( setupFunct ) ;
// You can modify the pre−de f ined se tup by us ing
// CbmSetup : : Ins tance()−>RemoveModule ( ESystemId ) or
// CbmSetup : : Ins tance()−>SetModule (ESystemId , cons t char ∗ , Boo l t ) or
// CbmSetup : : Ins tance()−>Se tAc t i ve (ESystemId , Boo l t )
// See the c l a s s documentation o f CbmSetup .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Input f i l e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
TString d e f au l t I npu tF i l e = s r cD i r + ”/ input /urqmd . auau .10 gev . cent r . root ” ;
i f ( i nF i l e . I sNu l l ( ) ) { // Not de f ined in the macro e x p l i c i t l y
i f ( strcmp ( inputF i l e , ”” ) == 0 ) { // not g i ven as argument to the macro
i nF i l e = de f au l t I npu tF i l e ;
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}
else i nF i l e = inpu tF i l e ;
}
std : : cout << ”−I− ” << myName << ” : Using input f i l e ” << i nF i l e << std : : endl ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Create media −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : Se t t i ng media f i l e ” << std : : endl ;
run−>SetMate r i a l s ( ”media . geo” ) ; // Mater ia l s
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Create and r e g i s t e r modules −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
TString macroName = gSystem−>Getenv ( ”VMCWORKDIR” ) ;
macroName += ”/macro/run/modules/ r e g i s t e r S e tup .C” ;
std : : cout << ”Loading macro ” << macroName << std : : endl ;
gROOT−>LoadMacro (macroName ) ;
gROOT−>ProcessL ine ( ” r e g i s t e r S e tup ( ) ” ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Create and r e g i s t e r the t a r g e t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : Reg i s t e r i ng t a r g e t ” << std : : endl ;
CbmTarget∗ t a r g e t = new CbmTarget ( targetElement . Data ( ) ,
targetThickness ,
targetDiameter ) ;
ta rget−>Se tPos i t i on ( targetPosX , targetPosY , targetPosZ ) ;
target−>SetRotat ion ( targetRotY ) ;
target−>Print ( ) ;
run−>AddModule ( t a r g e t ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Create magnetic f i e l d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : Reg i s t e r i ng magnetic f i e l d ” << std : : endl ;
CbmFieldMap∗ magField = CbmSetup : : In s tance ()−>CreateFieldMap ( ) ;
i f ( ! magField ) {
std : : cout << ”−E− run sim new : No va l i d f i e l d ! ” ;
return ;
}
run−>SetF i e ld ( magField ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Create PrimaryGenerator −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
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std : : cout << ”−I− ” << myName << ” : Reg i s t e r i ng event gene ra to r s ” << std : : endl ;
FairPrimaryGenerator ∗ primGen = new FairPrimaryGenerator ( ) ;
// −−− Uniform d i s t r i b u t i o n o f event p lane ang le
primGen−>SetEventPlane ( 0 . , 2 . ∗ TMath : : Pi ( ) ) ;
// −−− Get t a r g e t parameters
Double t tX = 0 . ;
Double t tY = 0 . ;
Double t tZ = 0 . ;
Double t tDz = 0 . ;
i f ( t a r g e t ) {
target−>GetPos i t ion (tX , tY , tZ ) ;
tDz = target−>GetThickness ( ) ;
}
primGen−>SetTarget ( tZ , tDz ) ;
primGen−>SetBeam ( 0 . , 0 . , beamWidthX , beamWidthY ) ;
primGen−>SmearGausVertexXY( smearVertexXY ) ;
primGen−>SmearVertexZ ( smearVertexZ ) ;
//
// TODO: Current ly , t h e r e i s no guaranteed cons i s t ency o f the beam p r o f i l e
// and the t r a n s v e r s a l t a r g e t dimension , i . e . , t h a t the sampled primary
// v e r t e x f a l l s i n t o the t a r g e t volume . This would r e qu i r e changes
// in the FairPrimaryGenerator c l a s s .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Use the CbmUnigenGenrator f o r the input
CbmUnigenGenerator∗ uniGen = new CbmUnigenGenerator ( i nF i l e ) ;
primGen−>AddGenerator ( uniGen ) ;
run−>SetGenerator ( primGen ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Run i n i t i a l i s a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : I n i t i a l i s e run” << std : : endl ;
run−>I n i t ( ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Runtime database −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : Set runtime DB” << std : : endl ;
FairRuntimeDb∗ rtdb = run−>GetRuntimeDb ( ) ;
CbmFieldPar∗ f i e l dPa r = (CbmFieldPar ∗) rtdb−>getConta iner ( ”CbmFieldPar” ) ;
f i e l dPar−>SetParameters ( magField ) ;
f i e l dPar−>setChanged ( ) ;
f i e l dPar−>s e t InputVer s i on ( run−>GetRunId ( ) , 1 ) ;
Boo l t kParameterMerged = kTRUE;
Fai rParRootFi l e Io ∗ parOut = new FairParRootFi l e Io ( kParameterMerged ) ;
parOut−>open ( pa rF i l e . Data ( ) ) ;
rtdb−>setOutput ( parOut ) ;
rtdb−>saveOutput ( ) ;
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rtdb−>pr in t ( ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− S ta r t run −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : S ta r t i ng run” << std : : endl ;
run−>Run( nEvents ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Finish −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
run−>CreateGeometryFile ( g eoF i l e ) ;
t imer . Stop ( ) ;
Double t rt ime = timer . RealTime ( ) ;
Double t ctime = timer . CpuTime ( ) ;
s td : : cout << std : : endl << std : : endl ;
s td : : cout << ”Macro f i n i s h e d s u c c e s s f u l l y . ” << std : : endl ;
s td : : cout << ”Output f i l e i s ” << ou tF i l e << std : : endl ;
s td : : cout << ”Parameter f i l e i s ” << pa rF i l e << std : : endl ;
s td : : cout << ”Geometry f i l e i s ” << geoF i l e << std : : endl ;
s td : : cout << ”Real time ” << rt ime << ” s , CPU time ” << ctime
<< ” s ” << std : : endl << std : : endl ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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(run reco.C )
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//
// Macro f o r d i g i t i s a t i o n and r e con s t ru c t i on o f MC even t s wi th s tandard s e t t i n g s
//
// ” o ld ” , event−by−event s imu la t i on and r e con s t ru c t i on chain .
// For time−based s imula t ion , l ook at r u n d i g i t b .C
// and r u n r e c o t b d i g i .C and r un r e c o t b t r a c k .C.
//
// This macro combines d i g i t i s a t i o n and r e con s t ru c t i on by us ing the
// macro modules d i g i t i z e .C and r e con s t ru c t .C.
//
// The input f i l e ( . . . mc. roo t ) can be chosen d i r e c t l y in the macro ( l i n e 42) .
// or through the t h i r d argument to the macro c a l l .
// I f n e i t h e r i s done , the s tandard input f o r the r e gu l a r t e s t s i s used .
//
// V. Fr ie se 24/02/2006
// Version 18/03/2017 (V. Fr ie se )
//
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void run reco ( I n t t nEvents = 2 ,
const char∗ setupName = ” s i s 1 0 0 e l e c t r o n ” ,
const char∗ i npu tF i l e = ”” )
{

// ========================================================================
// Adjust t h i s par t accord ing to your requirements

// −−− Logger s e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TString l ogLeve l = ”INFO” ;
TString logVerbos i ty = ”LOW” ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Environment −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TString myName = ” run reco ” ; // t h i s macro ’ s name fo r screen output
TString s r cD i r = gSystem−>Getenv ( ”VMCWORKDIR” ) ; // top source d i r e c t o r y
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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// −−−−− In− and output f i l e names −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TString i nF i l e = ”” ; // g i v e here or as argument ; o the rw i s e d e f a u l t i s taken
TString outDir = ”data/” ;
TString ou tF i l e = outDir + setupName + ” t e s t . eds . root ” ; // Output f i l e ( reco )
TString pa rF i l e = outDir + setupName + ” params . root ” ; // Parameter f i l e
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Remove o ld CTest runtime dependency f i l e −−−−−−−−−−−−−−−−−−−−−−
TString depFi l e = Remove CTest Dependency File ( outDir , ” run reco ” , setupName ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Load the geometry se tup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
TString s e tupF i l e = s r cD i r + ”/geometry/ setup / se tup ” + setupName + ” .C” ;
TString setupFunct = ” se tup ” ;
setupFunct = setupFunct + setupName + ” ( ) ” ;
std : : cout << ”−I− ” << myName << ” : Loading macro ” << s e tupF i l e << std : : endl ;
gROOT−>LoadMacro ( s e tupF i l e ) ;
gROOT−>ProcessL ine ( setupFunct ) ;
// You can modify the pre−de f ined se tup by us ing
// CbmSetup : : Ins tance()−>RemoveModule ( ESystemId ) or
// CbmSetup : : Ins tance()−>SetModule (ESystemId , cons t char ∗ , Boo l t ) or
// CbmSetup : : Ins tance()−>Se tAc t i ve (ESystemId , Boo l t )
// See the c l a s s documentation o f CbmSetup .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Parameter f i l e s as input to the runtime database −−−−−−−−−−−−−
std : : cout << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : De f in ing parameter f i l e s ” << std : : endl ;
TList ∗ pa rF i l eL i s t = new TList ( ) ;
TString geoTag ;

// − TRD d i g i t i s a t i o n parameters
i f ( CbmSetup : : In s tance ()−>GetGeoTag (kTrd , geoTag ) ) {
TObjString∗ t r dF i l e = new TObjString ( s r cD i r + ”/parameters / trd / t rd ” + geoTag + ” . d i g i . par” ) ;
pa rF i l eL i s t−>Add( t r dF i l e ) ;
s td : : cout << ”−I− ” << myName << ” : Using parameter f i l e ”
<< t rdF i l e−>GetStr ing ( ) << std : : endl ;
}

// − TOF d i g i t i s a t i o n parameters
i f ( CbmSetup : : In s tance ()−>GetGeoTag ( kTof , geoTag ) ) {
TObjString∗ t o f F i l e = new TObjString ( s r cD i r + ”/parameters / t o f / t o f ” + geoTag + ” . d i g i . par” ) ;
pa rF i l eL i s t−>Add( t o f F i l e ) ;
s td : : cout << ”−I− ” << myName << ” : Using parameter f i l e ”
<< t o fF i l e−>GetStr ing ( ) << std : : endl ;
TObjString∗ t o fBd fF i l e = new TObjString ( s r cD i r + ”/parameters / t o f / t o f ” + geoTag + ” . d i g i bd f . par” ) ;
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pa rF i l eL i s t−>Add( t o fBd fF i l e ) ;
s td : : cout << ”−I− ” << myName << ” : Using parameter f i l e ”
<< to fBd fF i l e−>GetStr ing ( ) << std : : endl ;
}
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// In genera l , the f o l l ow i n g par t s need not be touched
// ========================================================================

// −−−−− Timer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TStopwatch t imer ;
t imer . S ta r t ( ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−− Debug opt ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
gDebug = 0 ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Input f i l e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
TString d e f au l t I npu tF i l e = ”data/” ;
d e f au l t I npu tF i l e = de f au l t I npu tF i l e + setupName + ” t e s t .mc . root ” ;
i f ( i nF i l e . I sNu l l ( ) ) { // Not de f ined in the macro e x p l i c i t l y
i f ( strcmp ( inputF i l e , ”” ) == 0 ) { // not g i ven as argument to the macro
i nF i l e = de f au l t I npu tF i l e ;
}
else i nF i l e = inpu tF i l e ;
}
std : : cout << ”−I− ” << myName << ” : Using input f i l e ” << i nF i l e << std : : endl ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− FairRunAna −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FairRunAna ∗ run = new FairRunAna ( ) ;
Fa i rF i l eSour c e ∗ inputSource = new Fa i rF i l eSourc e ( i nF i l e ) ;
run−>SetSource ( inputSource ) ;
run−>SetOutputFi le ( ou tF i l e ) ;
run−>SetGenerateRunInfo (kTRUE) ;
run−>SetGenerateRunInfo (kTRUE) ;
Boo l t hasFairMonitor = Has Fair Monitor ( ) ;
i f ( hasFairMonitor ) FairMonitor : : GetMonitor()−>EnableMonitor (kTRUE) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Logger s e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FairLogger : : GetLogger()−>SetLogScreenLevel ( l ogLeve l . Data ( ) ) ;
FairLogger : : GetLogger()−>SetLogVerbos i tyLeve l ( l ogVerbos i ty . Data ( ) ) ;
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// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Mc Data Manager −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CbmMCDataManager∗ mcManager=new CbmMCDataManager( ”MCManager” , 1 ) ;
mcManager−>AddFile ( i nF i l e ) ;
run−>AddTask(mcManager ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− D i g i t i s e r s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
TString macroName = gSystem−>Getenv ( ”VMCWORKDIR” ) ;
macroName += ”/macro/run/modules/ d i g i t i z e .C” ;
std : : cout << ”Loading macro ” << macroName << std : : endl ;
gROOT−>LoadMacro (macroName ) ;
gROOT−>ProcessL ine ( ” d i g i t i z e ( ) ” ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Reconstruc t ion t a s k s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
macroName = srcD i r + ”/macro/run/modules/ r e c on s t ru c t .C” ;
std : : cout << ”Loading macro ” << macroName << std : : endl ;
gROOT−>LoadMacro (macroName ) ;
Boo l t r e coSucce s s = gROOT−>ProcessL ine ( ” r e c on s t ru c t ( ) ” ) ;
i f ( ! r e coSucce s s ) {
std : : c e r r << ”−E−” << myName << ” : e r r o r in execut ing ” << macroName
<< std : : endl ;
return ;
}
std : : cout << ”−I−” << myName << ” : ” << macroName << ” excuted s u c c e s s f u l l y ”
<< std : : endl ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Parameter database −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : Set runtime DB” << std : : endl ;
FairRuntimeDb∗ rtdb = run−>GetRuntimeDb ( ) ;
Fa i rParRootFi l e Io ∗ parIo1 = new FairParRootFi l e Io ( ) ;
Fa i rPa rAs c i iF i l e I o ∗ parIo2 = new Fa i rPa rAs c i iF i l e I o ( ) ;
parIo1−>open ( pa rF i l e . Data ( ) , ”UPDATE” ) ;
rtdb−>s e tF i r s t I npu t ( parIo1 ) ;
i f ( ! pa rF i l eL i s t−>IsEmpty ( ) ) {
parIo2−>open ( pa rF i l eL i s t , ” in ” ) ;
rtdb−>setSecondInput ( parIo2 ) ;
}
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Run i n i t i a l i s a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl ;
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std : : cout << ”−I− ” << myName << ” : I n i t i a l i s e run” << std : : endl ;
run−>I n i t ( ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rtdb−>setOutput ( parIo1 ) ;
rtdb−>saveOutput ( ) ;
rtdb−>pr in t ( ) ;

// −−−−− S ta r t run −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
std : : cout << std : : endl << std : : endl ;
s td : : cout << ”−I− ” << myName << ” : S ta r t i ng run” << std : : endl ;
run−>Run(0 , nEvents ) ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// −−−−− Finish −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t imer . Stop ( ) ;
Double t rt ime = timer . RealTime ( ) ;
Double t ctime = timer . CpuTime ( ) ;
s td : : cout << std : : endl << std : : endl ;
s td : : cout << ”Macro f i n i s h e d s u c c e s f u l l y . ” << std : : endl ;
s td : : cout << ”Output f i l e i s ” << ou tF i l e << std : : endl ;
s td : : cout << ”Parameter f i l e i s ” << pa rF i l e << std : : endl ;
s td : : cout << ”Real time ” << rt ime << ” s , CPU time ” << ctime << ” s ”
<< std : : endl ;
s td : : cout << std : : endl ;
s td : : cout << ” Test passed ” << std : : endl ;
s td : : cout << ” Al l ok ” << std : : endl ;
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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