Study of spin polarization in simulated high energy pp and heavy ion collisions Diptanil Roy

Overview

- \star In heavy ion non-central collisions, a large orbital angular momentum is present. It has been shown in [1] that the quarks produced in these collisions are polarized due to the presence of this initial angular momentum.
- \star The presence of this polarisation can be explained using Thomas Precession.
- \star We study the spin polarization in a pp collision at $\sqrt{s} = 13$ TeV using data generated by PYTHIA. We look at the decay $\Phi \to K^+ + K^-$ and find out the angular distribution of the decay products.

Thomas Precession

- ★ Relativistic effect arising due to spin orbit coupling.
- *Present because successive Lorentz transformations don't commute.
- \star Explains anomalous Zeeman effect and fine structure splitting.
- *Causes precession of the rotating frame with frequency

$$\vec{\omega_T} = \frac{\gamma}{\gamma + 1} \frac{\vec{F} \times \vec{\beta}}{m_0} \tag{4}$$

 \star Energy associated $U = -\vec{s}.\omega_T$.

School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar

Resonance

Total scattering cross section involving all processes 1S

$$\sigma_{tot} = \sum_{l=0}^{\infty} \frac{\lambda^2}{2} (2l+1)(1 - Re(\eta_l))$$
(1)

Resonance \rightarrow For $\eta_l = -1$ i.e. $- \rightarrow$ Maximum Cross Section Scattering cross section for resonance becomes

$$\sigma_{sc} = \frac{\pi}{k^2} (2l+1) \frac{\Gamma/2}{(E-E_R)^2 + \Gamma^2/4}$$
(2)

This is the **Breit Wigner function**. Γ is the width, E_R is the resonance peak and the coefficient is the yield.

$$+\cos^2\theta\left(3\rho_{0,0}-1\right)\right]$$

Polarisation

- * Polarisation $P = \frac{|A_+|^2 |A_-|^2}{|A_+|^2 + |A_-|^2} = -\frac{\omega_T}{\Delta E_0}$
- \star Recombination of a fast and a slow quark to form hadron.
- \star Density matrix element $\rho_{0,0}$ related to the polarisations of the slow and the fast quarks by [2], [3]

$$\rho_{0,0} = \frac{1 - P_{q^s} P_{q^f}}{3 + P_{q^s} P_{q^f}} \tag{5}$$

 $\star \rho = \frac{1}{3}$ if there is no polarisation

Inferences

 \star For pp collisions, there is no polarisation for Φ as the value of $\rho_{0,0}$ is almost equal to $\frac{1}{3}$. \star The data here is generated from PYTHIA from which we don't expect any initial angular momentum. Hence, our result is justified.

[1]	ZT 1023(
[2]	A. A <u>y</u> Mont
[3]	Т.А. 2419.

References

- T Liang, X.-N Wang, Physical Review Letters, 94, 2301 (2005).
- Ayala, E. Cuautle, G.H. Corral, J. Magnin and L.M. ontano, Physics Letters B 682 (2010) 408âĂŞ412.
- A. DeGrand, H.I. Miettinen, Phys. Rev. D 24 (1981)