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Abstract

This project has two parts. First, we discuss the application of an anomaly detection technique
for data analysis of rare event search experiments. We will use a combination of t-SNE and
DBSCAN algorithms to detect anomalies in rare event search data. Second, to build a simulation
framework to generate raw pulses from particle interactions in semiconductor detectors used in
direct dark matter searches. The simulations for the detector response will allow us to build
better background models, that can be used to train and implement various machine learning

techniques for future studies.
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Chapter 1

Introduction

Several astrophysical observations and surveys [1}, [2] reveal that the total mass-energy budget
of the universe is divided as follows: baryons and leptons make up about 5% of the total, dark
energy makes up about 69%, and dark matter makes up the remaining 26 %|2|[3]. The standard
model accounts for the baryons, leptons, and bosons which constitute only 5% that makes 95%

of the mass-energy budget of the universe unknown.

ordinary matter
5%

dark energy
69%

Figure 1.1: A pie chart showing the mass-energy budget of the universe.[4]

1.1 Evidence for the existence of Dark Matter

Fritz Zwicky in 1933, observed that the velocities of galaxies bound within the Coma Cluster
exceeded those predicted by gravitation from visible objects[5]. This discrepancy is known as
the “missing mass problem” and Zwicky coined the term dark matter for this missing mass.
This section will discuss some evidence that comes from various astrophysical sources for the

existence of dark matter.
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1.1.1 Galaxy rotation curves

A galaxy is a collection of gas, dust, stars, and their star systems, all held together by gravity.
Newtonian dynamics are still valid to understand the rotational dynamics of a spiral galaxy.
The rotational velocity of an object in a spiral galaxy can be calculated using gravitational force
and centripetal force. For an object, the rotational velocity v in the galactic disk at a distance
r from the center of a galaxy with mass distribution M (r) and G is the gravitational constant

is given as,
GM (r)

r

(1.1)

The formula predicts that the velocity should fall as # but the observed rotational velocities
of galaxies were observed to be constant for values of r even beyond the luminous edge of the

galaxies|6].
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Credit: Matthew Newby, Milkyway@home
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Figure 1.2: Difference between the observed and expected rotational velocity of an object vs
distance from the center of the galaxy [7]

This behavior suggests that we are missing some mass in our calculations which is surrounding

the galaxy and this mass is from a non-radiative source.

1.1.2 Gravitational lensing

According to Einstein’s general theory of relativity any object with mass will wrap the space-
time. He also predicted that this distortion can create a lens-like effect to an observer when

light passes through space-time around a massive mass.
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Distance: 7.5 billion light years

/ 1.6 billion light years

Quasar

What the telescope sees

Distant galaxy

Gravitational lens bends the
light rays

Figure 1.3: A schematic of the gravitational lensing effect due to a massive object.[8]

Fig: [1.3] gives a schematic of the bending of light around a galaxy and how it will look to an
observer on the other side of the galaxy. Astronomers tried to deduce the mass of the galaxies
using gravitational lensing and they consistently reported an excess in the masses of the galaxies

when compared to the masses they got from their luminosity[9).

1.2 Search strategies for dark matter detection

Based on the observations we have on the dark matter we can infer some properties of dark
matter. Dark matter is not observable via any of the telescopes we have, otherwise, we would
have accounted for it in the galaxy rotation curve. This tells us that dark matter does not have
any electromagnetic interactions. However, we know that they interact through gravitational
force as they can be mapped by gravitational lensing. Other observations from large-scale

structure formations suggest that dark matter is non-relativistic and stable.

Table 1.1: Properties of dark matter we know

Properties
No color charge
No electric charge
Non-relativistic
Stable on cosmological time scales
Interacts through gravity
Almost collisonless

One of the candidates for dark matter is Weekly Interacting Massive Particles (WIMPs). They
are derived from supersymmetry theory (SUSY). WIMPs are massive and weakly interacting.

There are 3 possible ways of detecting dark matter:

1. Indirect detection: When we detect standard model particles that are produced when

dark matter particles annihilate with their anti-particles.

2. Direct detection: We directly detect dark matter when they scatter off Standard Model
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particles, producing a signal that can be detected with sensitive detectors here on earth.

3. Collider production: In collider experiments, We try to create dark matter particles by

colliding standard model particles at extremely high energies.

) Production
time <
Dark Matter Standard Model
Particles Particles GE)
=]
A
)
c
T
o)
bt
«
(@)
v
Dark Matter Standard Model
Particles Particles

> time

Annihilation

Figure 1.4: A diagram showing possible dark matter detection methods|10] .

1.3 Current status of direct dark matter searches

Multiple direct dark matter experiments have tried to detect dark matter. Some of the ex-
periments are SuperCDMS, DAMIC, LUX, and CRESST|11]. For the detection of low mass
dark matter candidates like WIMP, we use silicon and germanium in our detectors. These
experiments are situated deep underground to shield from cosmic rays and other precautions
are taken to shield all possible backgrounds. As the experiments get more sensitive they will
reach a point where neutrinos will scatter off the detector nucleus. This will be a problem as
neutrinos can not be shielded and would create an irreducible background. Fig: shows an

exclusion curve for various experiments searching for WIMPs.
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Figure 1.5: Results from various dark matter search experiments are shown as dark matter -
nucleon cross-section vs dark matter mass. The region above a solid curve corresponding to an
experiment has been excluded by it. The region below the solid curves is yet to be explored.
The shaded region below the thick dotted line at the bottom of the plot corresponds to neutrino
as an irreducible background

Aim of this project: This project is divided into two parts: First is the application of anomaly
detection techniques in data analysis of rare event search experiments. Anomaly detection (AD)
is a data analysis technique that identifies data points that deviate from a dataset’s normal
behavior. Application of anomaly detection is being investigated by experiments like CMS and
SuperCDMS. t-SNE and DBSCAN are techniques that can be used together to detect anomalies.

These are unsupervised methods i.e. they don’t need labeled data.

The second is to build a simulation framework to generate raw pulses from particle interactions in
semiconductor detectors used in direct dark matter searches. The goal is to use the simulations
for understanding the detector response to optimize an analysis. It will also help us to build a
better background model which can be used to train and implement various machine learning

techniques for our analysis.
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Detector response to particle

interaction

Experiments like Super Cryogenic Dark Matter Search Soudan experiment (SuperCDMS Soudan)
and Mitchell Institute Neutrino Experiment at Reactor (MINER) will use semiconductor de-
tectors. SuperCDMS SNOLAB is designed to search for dark matter particles with masses
< 10GeV/ . [13]. It will be located approximately 2 km underground in Sudbury. MINER is
a reactor based experiment that uses cryogenic detectors similar to those of SuperCDMS dark
matter search. It is also developing new sapphire and veto detectors. It aims to detect coherent

scattering of low energy neutrinos.

Coherent elastic neutrino-nucleus scattering (CEvNS) is a process in which a neutrino scatters
from a nucleus by exchanging an electrically neutral Z boson. Coherent means that in the
scattering process the neutrino interacts with the nucleus as a whole, and not with individual
nucleons. The process is elastic and kinetic energy is conserved. But still the scattering cross-
section is less compared to other standard model interactions. CEvNS and WIMPs both interact
with a standard model atom through nuclear recoil and we can use this fact to discriminate
other background events which interact through electron recoil when searching for WIMPs or
CEvNS.

I will be discussing a germanium semiconductor dark matter detector. The detector is built
of a single cylindrical crystal of germanium. Each detector has a charge and phonon readout
system both at the top and bottom of the detector. Charge electrodes at the top and bottom
of the detector generate an electric field in the detector as shown in Fig: [2.1]14].
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5 o~
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Figure 2.1: Left: Zoomed view of electrodes and phonon sensor arrays. Right: Detector divided
into 4 channels A, B, C and D.

The detectors are sensitive to charge and phonons, charges are collected using a FET (field
effect transistor) sensor while phonons are collected using a TES (transition-edge sensors). The
working principle of these two sensors will be discussed in section [2.5] The detector is divided
into 4 channels A, B, C, and D. Each channel is an array of collection sensors, each channel

produces one signal.

phonon sensors

Figure 2.2: Left: Lines containing TES sensors. Right: Cross-section diagram of the electric
field generated in the crystal by electrodes. In red rectangles, charge electrodes are shown and
phonon sensors in blue

2.1 Overview of the background sources

There are two types of background sources we need to keep an eye out for, first that come from
near the detector or from within the detector itself they are the radiogenic backgrounds. Second,
come from cosmic sources they are the cosmogenic backgrounds. Most of the background
is blocked by the shielding that surrounds the detector but others need to be identified and
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rejected in the analysis. In general, particle interactions are expected to scatter with either
an electron or a nucleus in the detector we will refer to these two types as electron recoil and
nucleus recoil|15][16]. The interaction type depends on the incoming particle, different type of
backgrounds with their interaction type is listed in Table: The total recoil energy depends
on the kinematics of the interaction but each interaction releases two types of energy into the
crystal of the detector: charge energy (from ionization of electrons in the crystal), and phonon
energy (from vibrations of nuclei in the lattice). The mechanism of energy release for each type,
and how much goes into each will be described in the next section. but the ratio of energy
differs significantly between electron and nuclear recoil and allows us to discriminate between
the two. Thus, the ionization yield, defined as the ratio of the measured charge and phonon
recoil energy, creates a clearly defined method for identifying background-like (electron) from

signal-like (nuclear) interactions.

Table 2.1: Summary of the background sources, what type of interaction they have with the
detector

Cosmogenic Backgrounds

Background Source Recoil Type
Electrons and Photons Electron Recoil
Muons Electron Recoil
Neutrons Nuclear Recoil
Neutrinos Nuclear Recoil

Radiogenic Backgrounds

Background Source Recoil Type

Ge Activation Electron Recoil
Pb Implantation Electron Recoil and Nuclear Recoil

2.2 Energy deposition in crystal

We will discuss the detector response from the particle interaction up until the waveform is
produced in the sensors. For every particle interaction in the detector, energy is deposited in
the crystal. The total energy deposited in the detector comes from two processes: first from
the incident particle and second as the charges accelerate in the crystal lattice due to the bias
voltage across the detector. The energy deposited into the crystal from the incident particle is
known as recoil energy (E,). E, is partially deposited into crystal lattice vibrations (phonons)

and ionizing electrons.
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nucleus

Figure 2.3: Ge detector used in SuperCDMS experiment and a cartoon of WIMP interacting
with a nucleus in the germanium crystal

After the initial interactions, phonons start moving in the direction based on their phase ve-
locities. While the electron and holes start drifting in the crystal due to the bias voltage, this

introduces a secondary source of energy in the crystal.

2.2.1 Primary energy

Recoil energy E,, is transferred to the crystal in two systems: phonon system and charge
system. Hence, E; is divided into two energies Epno primary Primary phonon energy and Eg
charge energy.

E, = Epnorimary + EQ (2.1)

The fraction of energy that goes in Eppo primary and Eq is governed by expected yield T¢yy,. The

expected yield is given by:
Eq
E,

Value of Ye,, depends if an interaction was an electron recoil or nuclear recoil. Since electron

Yeup = (2.2)

recoil does not produce primary phonons, all the recoil energy is converted into Fg and Y., = 1.
On the other hand, nuclear recoil goes through a complex process, and the energy is converted
into both Eg and Eppoprimary- In this case, Yey, is given by Lindhard theory which is

described by condensed matter physics and is known as Yr;ndnard- S0:

Yrindhard, Duclear recoil
Yeap = (2.3)
1, electron recoil

According to the Lindhard theory, the value Yr;ndnard Oonly depends on the crystal material

property (atomic number Z and mass A), F,, and the stopping mechanism. Y7indnarq is given

by:

_ k-g(e
1+Fk-g(e)

where € = 0.0115E,Z(-7/3) [17] (the constant also takes into account the atomic mass of Ge)

describes the amount of energy deposited per proton. k = 0.133Z(2/3) A(=1/2) describes the

YLindhard (Er) (2.4)
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amount of energy per electron/hole pair. And g(e) = 3e(01%) 4 0.7¢(06) 4 ¢ [17] [18] describes
the number of collisions with electrons in the crystal. We can fix the atomic mass and atomic

number of the detector to get Yindnard-

2.3 Number of phonon and electron-hole pairs produced

Debye model defines the maximum allowed phonon energy in any given material. This is denoted
by Epepye and depends on material density and temperature. For Ge at mK temperatures it has
a value of 8.1 eV [19, 20, [21]. We can approximate that all phonons but one have the maximum

allowed energy, Npho primary 18:

Epho,primary) +1 (25)

Nphoprimary = Quotient( 7
Debye

this gives us the maximum number of phonons possible with Epepye energy plus one with the

residual energy.

The total number of e/h pairs can be calculated using ionization energy e,. The number of e/h
N1, pair is the number of the maximum number of electrons ionized by Eg and any additional

energy is lost to the crystal and can be neglected. For Ge e, = 2.96eV.

E,
Nejp = Quotient(e—f) (2.6)

2.4 Total expected energy value

As electron and hole drift through the detector under the electric field produced by the bias
voltage, they interact with the lattice structure in a process called Neganov-Trofimov-Luke
(NTL) Gain, to produce what we call NTL phonons. The energy carried by these phonons is
called NTL phonon energy FE,;, n7r,- We can approximate that all the energy of the accelerated

electrons is converted to NTL phonon energy we can estimate Eppo NTL-

E
Epho,NTL = Ne/h : eA‘/bias = ?Q : €A‘/bias (27)
Y

where e is the charge of an electron and AV}, is bias potential in the detector.

To summarize, we can calculate the total charge and phonon energies.

Epho = Epho,pm’mary + Epho,NTL (29)
eAV

— E(1+ Vi (28 1)) (2.10)

€y

10
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2.5 Charge and phonon measurement

Charge measurement: To collect the electrons and holes drifting in the detector, a potential
difference V}, is applied across the crystal. In response to the electron and holes in the detector,
image charges are generated in the electrodes, the amount of image charge created is given by

Ramo theory [22] [14][23],
Q@ = q¢o(x) (2.11)

where Q is the image charge, q is the drifting charge, and ¢g(x) is the weighting potential at
position x. Weighting potential is used to weight the induced charge by the distance the charge
travels through the lattice.

Vi Cy

Ry Ry

2

—o V5

Ca —— I O

Figure 2.4: Read out circuit for ionization measurement|11]

A simplified readout circuit for ionization measurement is shown in Fig: the detector is
approximated as a capacitor Cy; which is biased by V; through a resistance R;. Feedback
capacitor Cy collects the charges induced in the detector, which increases the voltage at V,, our
output voltage. C¢ is a coupling capacitor and Cy is any stray capacitance. The capacitor then
drains out through R; with a time constant 7 = R;Cy. The amplitude of the charge pulse is
proportional to the image charge and can be used to calculate N/, and Eg|11].

Phonon measurement: The phonon sensor is known as Transition-edge-sensors (TES). These
sensors are placed on the flat surface on both sides of the detector. The sensor consist of
aluminum fins mounted on germanium using photo-lithography. The sensor also consists of
tungsten strips (W) and is cooled down to superconducting state of aluminum (7, = 1.2K) and
tungsten (7. = 80mK). If a phonon in the detector hits the surface where an aluminum fin is
placed, it enters the fin. If the energy of the phonon is greater than the superconducting gap
energy of aluminum 2A 45, = 340ueV, the phonon will break up a cooper pair. If the phonon
energy is less than 2A 4;, they can not break any more cooper pairs and they are returned to

the detector. Here the energy in them is lost to the sensor[14].

11
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Figure 2.5: Cartoon depicting the cross-section of a TES module

As shown in Fig: the Al fins overlap with the W strip, this is called the bi-layer. The energy
required to break up cooper pair in W is lower than that of Al, hence the quasi-particle created
in Al diffuses through the bi-layer into W. Once the particles are inside W they scatter and lose
energy. W has the smallest gap energy (2Aw < 2Ap; < 2A4;) the particles can not go back
and are trapped in W. The phonon energy is then converted into the electrical signal. W is held

at the edge of its critical temperature, the phonons scattering in W increases the temperature
of the W just enough to cross its T, and have normal resistance.

R,

(}%Lﬂ)

Figure 2.6: Readout circuit for phonon measurement

Fig: shows a simplified readout circuit for phonon measurement, the resistance in TES is
depicted with a variable resistor Rrgg. Any change in Rrpg changes the current in the circuit.
This changes the current through the inductor L; which is coupled with a superconducting
quantum interference devices (SQUID). SQUID can measure small changes in magnetic field
and the array detects the change in magnetic flux from L;. This change in the magnetic field

changes the current in the feedback inductor Ly, which is then amplified and read out through
Vo.
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Chapter 3

Anomaly detection

3.1 Introduction to machine learning

Machine learning (ML) is a branch of artificial intelligence. ML can be defined as a field of
study that gives computers the ability to learn without being explicitly programmed [24]. It
can perform tasks that involve recognition, diagnosis, planning, robot control, prediction, etc
[25].

Machine learning is the automated process that extracts patterns from data and is then used
to perform a specific task without using explicit instructions. In machine learning, a model is
defined as an algorithm that has been tailored to recognize certain types of patterns. A neural

network to predict the next few words of an incomplete sentence is an example of a model.
Advantages of ML are

e Identifies trends and patterns better and faster than a human

e No human intervention needed (automation)

e Can handle multidimensional and multi-variety data

e Scope of continuous improvement

3.2 Anomaly Detection

Anomaly detection (AD) is the identification of events and observations that differ significantly
from the majority of data [26]. AD can be used to detect simulation/analysis bugs or unknown
events which we may have missed in our modeling. The aim of this project is to investigate
the application of AD techniques in the data analysis of dark matter search data. AD is an
unsupervised ML algorithm, which means we do not need to train our model using a labeled
dataset. This is particularly useful in cases where we don’t have true or simulated data that
can be used for training, given a dataset AD tries to differentiate between the events on basses

of their similarity/dissimilarity with other events. In other words, unsupervised ML allows the

13



3.8. t-SNE Chapter 38

system to identify patterns within the system on its own. Unsupervised ML techniques do not
understand what that pattern/cluster represents and after we have successfully extracted the

pattern usually a human is needed to understand the context of these patterns.

For this project, we will use a combination of two algorithms to cluster our data, t-SNE and
DBSCAN.

3.3 t-SNE

t-SNE stands for t - distributed Stochastic Neighbour Embedding [27]. It is a stochastic al-
gorithm that is a process that has some randomness involved in it. Every time we run the
algorithm, the results will be similar but not exactly the same. and the aim is to embed
the data from a high-dimensional space to a lower-dimensional space. Before understanding
the algorithm let us define some symbols: set of n points in our higher dimensional space
is denoted by X = {Xj, X2, X3,..., X;,} and the set of points in two dimensional space by
Y ={¥1,Y2,Ys,....Y,}. Given the set X with n points, we want to embed the data in set Y (in

two dimensions) on n points, such that similarities between the points are conserved.
The first step is to calculate a similarity matrix p using the points in set X.

Pl TP

Dij o where (3.1)

_eap(—lmi — al?/202)
S s cxpl(—|[zi — ar]/20%)

pjji is the probability that the point X; will take the point X; as a neighbor under a Gaussian

Pji (3.2)

centered at X;. Elements of the matrix p;; will be higher values if they are closer than if they
are far away. We don’t need the probability of a point to be a neighbor of itself hence, we set
z;; = 0. This also allows us to make sure, the sum of all possibilities for a point is 1. But this
creates another problem, now p;; # p;|; due to the difference in denominator. To overcome this

problem we calculate p;; (a symmetric matrix) to make sure that for any point p;; = pj;.

The variance o; of the Gaussian is selected for each individual point using a user-defined pa-
rameter perplexity. We need this because in the dense region a smaller value of o; is required
than in sparser regions. To overcome this the user-defined variable perplexity is chosen which
depends on the entropy of the probability distribution of p;. If the points are close by the

entropy increases and with that the value of o;.

perplexity = 2(7 225 Pililog2p;1i) (3.3)

The second step is to randomly generate n, two-dimensional points in set Y, we then calculate

a similarity matrix ¢ using these points.

P € |17 —yll*)!
=
T k(U My — w1

(3.4)
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Chapter 3 3.8. t-SNE

We want the matrix q to be the same as matrix p, that is we want points y to show the same
neighbor relationships as x. But in ¢ we have used t-distribution with a single degree of freedom
f(t) instead of Gaussian as in p. This is done to solve the crowding problem we face during

embedding.
(3.5)

The Crowding Problem: Let us start with a case where we have equidistant 11 data points
in a 10-dimensional space, but there is no way to plot 11 equidistant points in a 2 d space.
Other than that volume of a sphere scales as ™ where r is the radius of the square and m is the
number of dimensions. We have fewer data in 2d and this creates a crowding of points. We use
t-distribution as it has a heavier tail than Gaussian and this causes the points with moderate
similarity to be mapped further apart in a lower dimension.

7.[.n/2

mr” (3.6)

volume of n ball or radius r =

Normal distribution | vs. t-distribution

4 2 0 2 4

Figure 3.1: Comparison of Gaussian (Normal) distribution with a t-student distribution.

After we have got the matrix ¢ from randomly generated set Y, we want matrix ¢ to be equal
to matrix q, for that we create a cost function as defined below:
Dii
C=2.2 pilog * (3.7)
- : iJ
i
Then minimization of the cost function is performed using gradient descent method. We will

use points in set Y as the variables. The form of gradient descent for a point y; replacing

t-distribution in q with a Gaussian for simplicity is given by:

oC

oy 2Z(pj|z' — @i +pij; — %15)Yi — Yj) (3.8)
J
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Physically this can be interpreted as a net force created by a set of springs between point y; and
all other points y;. All the springs exert a net force in the direction y; — y;, and the force for
spring between y; and y; will be attractive or repulsive depending on if the probability p;; —g;;

is greater than or less than p;; — ¢;;. The variable update formula is given by:

4
YD) ) n%ﬁ +am)(Y(n—1)—Y(n—2) (3.9)

where Y'(n) indicates the solution at iteration n, 7 indicates the learning rate, and «(n) repre-
sents the momentum at iteration n. To make sure that gradient descent does not get stuck in

a local minimum we add a large momentum term is added to the gradient.

3.4 DBSCAN

Density-based spatial clustering of application with noise (DBSCAN) is a clustering method.
Clustering is a technique that separates the data points into specific bunches or groups. DB-
SCAN uses spatial information and groups data based on a distance measurement and a mini-
mum number of points|2§|. It can divide the data into clusters and also separate noise points
which are in low-density regions. The advantage of DBSCAN is we don’t need to specify the
number of clusters in the data a priori. It can also find arbitrary-shaped clusters unlike some

other clustering algorithms like k-mean clustering.
There are two parameters we need to define:
1. minPts: Minimum number of points in a neighborhood to be called a cluster.

2. eps (€): A distance measure to define if a point is a neighbor.

Core point

Noise point Border point

_____

Figure 3.2: Cartoon describing different types of points in DBSCAN.

There are three types of points that are used in DBSCAN algorithm:

1. Core points: If a point has minPts number of points under € distance from itself it is a

core point.

2. Border points: If a point has at least one core point under e distance from itself it is a

border point.
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3. Noise points: If a point has no core points or minPts of points under € distance from

itself it is a noise point.

The algorithm starts by picking a point randomly from the data set. Then it figures out if the
point is a core, border, or noise point. Depending on this classification next step is taken. If
the point is a core point, all the points are considered part of the cluster belonging to the first

point and then start the process again with each point in the neighborhood.

if the point is a border point, the algorithm picks another point in the neighborhood of the
last core point. If there are no points left in the neighborhood of the last cluster point it picks

another point randomly from the set of unclassified points and starts the process over again.

If the point is a noise point, the algorithm jumps to a new point randomly chosen from the set

of unclassified points.

3.5 Dataset

The dataset used for this analysis was taken from a sapphire scintillator detector which was
fabricated at Texas A&M University, and used in the MINER experiment. It is made up of
Al203 cylindrical crystal with a diameter of 7.6 cm and width of 0.4 cm with a mass of 73 gm.
It produces phonons and photons, photons are produced through scintillation, and phonons are
produced in the same manner as in the Ge detector described in section 2.2} To collect phonons
Al fins are connected to the detector and they are collected using a TES module. There are 4
phonon channels (A, B, C, and D) as seen in Fig: Aluminum has a lower mass than Silicon

and hence can be used to search for low-energy neutrino.

Figure 3.3: Sapphire detector with different channels.

The detector is placed in a dilution refrigerator approximately 4 meters away from a reactor core.
The reactor is kept inside a pool which is covered with a concrete wall to prevent backgrounds

like v neutrons and cosmic muon. We want to observe the neutrinos from the reactor core and
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3.5. Dataset Chapter 38

measure phonon energy due to it. The reactor power is 1 MW and neutrino flux at 1 m from

core is approximately 102ecm 2571,

Figure 3.4: Example of bad pulses
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Figure 3.9: Example of a good pulse.

The pulses recorded can be good pulses or those consistent with noise Fig. For measuring

an event this weak, we need to make sure we use only the good pulses in our analysis. In our

analysis, we considered 105250 events each with 4 channels in the sapphire detector. We further

defined 10 variables for each pulse in an event which is 40 variables per event plus one variable

which is calculated using all four pulses. The variables were:

1.

10.

Prepulse STD: Standard deviation of the first 400 bins of the pulse. Standard deviation
(o) is given by
o= (@i —p)? (3.10)

where p is the mean of the sample and N is the size of the sample.

. Postpulse STD: Standard deviation of the last 256 bins of the pulse
. Max content: Bin with the maximum amplitude of the pulse
. Min content: Bin with minimum amplitude of the pulse

. Max tail: Maximum amplitude in the last 512 bins of the pulse

Rise time: Time taken by the pulse to rise from 10% to 90% of its maximum amplitude
Fall time: Time taken by the pulse to fall from 90% to 10% of its maximum amplitude

Full-Width Half Maximum(FWHM): Width of the pulse at 50% of its maximum

amplitude

. Full-Width 90% Maximum(FW90M): Width of the pulse at 90% of its maximum

amplitude

Full-Width 10% Maximum(FWHM): Width of the pulse at 10% of its maximum

amplitude
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11. Amplitude bin STD: standard deviation of bin number containing maximum amplitude

of pulses from the 4 channels.

3.6 Result

3.6.1 t-SNE + DBSCAN on sapphire detector data

We started by converting the triggered data from 105250 events, each containing 4 pulses of
length 2000 ps to a 41-dimensional feature vector with features described in the previous section.
Then these 105250 vectors of 41 dimensions are emended to a two-dimensional space using t-
SNE. After that, the data in the two-dimensional space was clustered using DBSCAN. The
scripts for t-SNE and clustering can be found in Appendix [A]

20 t-SNE + DBSCAN response
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Figure 3.10: Result of t-SNE + DBSCAN on data taken from Sapphire detector.

We see that we were able to collect our data into 36 different clusters as shown in Fig: [3.10
The next step is to manually examine the contents of each cluster and determine what kind
of pulse they correspond to. We also notice that cluster number 0 is a lot bigger than other

clusters and we may need to divide that cluster.
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Table 3.1: cluster content

Cluster Remark Cluster Remark
-1 Un-clustered 17 Noise
0 Mixed 18 Noise
1 Noise 19 Noise
2 Saturated 20 Noise
3 Noise 21 Noise
4 Noise 22 Noise
5 Noise 23 Noise
6 Mixed 24 Pile up
7 Noise 25 signal
8 Noise 26 Noise
9 Noise 27 Noise
10 Noise 28 Noise
11 Noise 29 Noise
12 Noise 30 Noise
13 signal 31 signal
14 Pile up 32 Saturated
15 Noise 33 Noise
16 Noise 34 Saturated

Table lists the types of pulses in the clusters, next we will try to examine these clusters to
get signals.
Pileups

While examining clusters 14 and 24 we notice that all the pulses in this cluster were pile-ups.
Fig: shows a sample pulse from cluster 24. We can see in Fig: that all the pulses with
pile-up were detected by the t-SNE algorithm and separated from the other pulses.
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20 t-SNE + DBSCAN response
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Figure 3.11: Clusters 14 and 24 containing pile up pulses marked by a red loop.
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Figure 3.12: A piled-up pulse example from cluster 24.
Saturated pulses

t-SNE was also able to detect pulses that were saturated and separate them into different

clusters.
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20 t-SNE + DBSCAN response
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Figure 3.13: Clusters 2 containing saturated pulses marked by a red loop.

It is also noteworthy that t-SNE was even able to understand different types of saturated pulses

as shown in Fig: [3.14] 3.15] and [3.16]
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Figure 3.14: A saturated pulse example from cluster 2.
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Figure 3.15: A saturated pulse example from cluster 32.
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Figure 3.16: A saturated pulse example from cluster 34.

Noise

While examining the clusters, cluster number -1, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18,
19, 20, 21, 22, 23, 26, 27, 28, 29, 30 and 33 all contained noise pulses. The location of these

clusters are shown in Fig: [3.1
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t-SNE + DBSCAN response

2001
1001 .
y |, S
0 i ﬁﬁws ’
| 0 e — ) .
4
>_ .
—1001
PO
—2001 7 <+ e
e 8 e 19 e 30
-200 —-150 -100 -50 0 50 100 150
Xt - SNE

Figure 3.17: Clusters containing noise pulses.
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Figure 3.18: A noise event example from cluster 3.

Fig: shows a pulse from cluster 3, all the pulses from the above-mentioned clusters were

similar to this pulse.
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Signal

Analyzing clusters 13, 25, and 31 revealed that they contained only signal pulses but there were
two clusters 0 and 6 where there were mixed-signal and noise pulses in the cluster. Cluster 6
as seen in Fig: [3.19] is actually two clusters very close by less than 5 units. The € used for

DBSCAN algorithm is 5 units and it was not able to resolve the into two clusters.

Motivated by this observation, I tried to separate them using a linear cut in the t-SNE phase
space. The straight-line Y = g - X — 80 was chosen which is shown in Fig: here X is tsne-
2d-one variable and Y is tsne-2d-two variable. Using this line as a cut I was able to determine
that pulses below this line were signals. I tried to extend the same idea on the much larger
cluster 0 and most of the pulses below this line were signal events. Other clusters which were

previously determined to be signal clusters also lie below this line, while noise above this line.

t-SNE + DBSCAN response
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Figure 3.19: Clusters containing signal pulses with a linear cut shown in red (Y;_syp =
SXi—snE — 80).
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3.6. Result
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Figure 3.20: A signal pulse example from cluster 13.
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Figure 3.21: A signal pulse in cluster 6 below the line.
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Figure 3.22: A signal pulse in cluster 0 below the line.

3.6.2 Quality of separation with number of events

Even though t-SNE + DBSCAN were able to cluster the data into different pulses, but it
struggled to completely distinguish some noise from the signal which we see as cluster 0 in Sec.
3.6.1L A filtration at this point was done such that clusters that contain only the bad pulses
were removed and clusters with good pulses or mixed pulses were kept. We used the anomaly

detection algorithm again on this filtered data which gave us a much better result this time.
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Figure 3.23: Result of t-SNE + DBSCAN on dataset taken from sapphire detector with 105250
events and perplexity 100.
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In the first filtration step data was divided into 31 clusters out of which we again see similar
results as in the last section. There were clusters with pure Noise and pure signal pulses but

cluster 2 still was not been able to fully separate and there was a mix of pulses in this cluster.
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Figure 3.24: Pulse example from cluster 2.
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Figure 3.25: Noise pulse example from cluster 2.

We performed a filtration at this step by removing any cluster which contained all noise pulses
and tried to perform t-SNE + DBSCAN again on the filtered dataset. The results from this

process are shown in [3.26
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t-SNE + DBSCAN response
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Figure 3.26: Result of t-SNE + DBSCAN on filtered data from Fig: with 57648 events
and perplexity 100

One of the probable reasons that the same algorithm when used again on the same dataset,
just filtered, gave us a much better result might have to do with the number of events in our
dataset. While filtering we decreased the number of events the algorithm had to go through

and hence provide a better result. We will try to check this in the next section.

3.6.3 Quality of separation with perplexity

Perplexity is a hyper-parameter that the user has to provide to the t-SNE algorithm. The value
of perplexity is used to define the variance o; of the Gaussian function for each individual point.
We need this because in the dense region a smaller value of o; is required than in sparser regions.
To overcome this the user-defined variable perplexity is chosen which depends on the entropy
of the probability distribution of p;. If the points are close by the entropy increases and with
that the value of ;. Perplexity is defined as:

perplexity = 2(~ 22 Pililogp;is) (3.11)

For our problem the events lie in approximately the same space and increasing or decreasing
the number of points in each dataset changes the density of these points. As perplexity is the
value that helps us to tune the algorithm for event density, we decided to run a computational
experiment to try to understand the relationship between the number of points and perplexity

for our dataset.

We decided to use our algorithm for a range of the number of points over a range of perplexity
and then check the results for each trial. There were 4 samples taken from our complete dataset
with 25000, 50000, 75000, and 100000 events. For all 4 samples, we ran the algorithm for 5
values of perplexity: 50, 75, 100, 150, and 175.
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Perplexity vs number of event
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Figure 3.27: Perplexity vs Number of events.

In Fig: we see a plot of perplexity vs the number of points. Dashed lines show the range
of perplexity for the same number of points in the dataset where the algorithm was able to
separate the noise and bad pulses from good pulses and the blue line joins the points of best

separability. This check was done manually by looking at pulses in each cluster.

3.6.4 Measure of the quality of separation

Finally, we run this algorithm with all the events i.e. 10500 and perplexity 150. This divided
our dataset into 24 clusters.
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Figure 3.28: Result of t-SNE 4+ DBSCAN on dataset taken from sapphire detector with 105250
events and perplexity 150.
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Table 3.2: cluster contents

Cluster Remark Cluster Remark
-1 Un-clustered 12 Noise
0 Noise 13 Noise
1 Saturated 14 Noise
2 Noise 15 Saturated
3 Saturated 16 Saturated
4 Noise 17 Good
5 Noise 18 Noise
6 Noise 19 Pile up
7 Pile up 20 Noise
8 Noise 21 Good pulse
9 Noise 22 Good pulse
10 Noise 23 Noise
11 Noise - -
t-SNE + DBSCAN response
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Figure 3.29: Showing t-SNE + DBSCAN response of sapphire detector from Fig: with

labeled clusters.

From Table: [3.2] we can see that all the good pulses were only in clusters 17, 21, and 22, this
is also plotted in Fig: Out of which cluster 17 comprising of events that have made very
clear pulses in all three internal channels Fig: [3.30] Cluster 21 had all the pulses with very

small amplitude. Other properties of the pulses in cluster 21 were that the amplitude of all

three inner channels (B, C, and D) are very close and channel A has negative peaks Fig: [3.31

Cluster 22 had pulses with very high amplitudes reaching near 14 V which tells us that this

cluster has pulses from high energy particles Fig: [3.32
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Figure 3.30: Sample pulse from cluster 17.
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Figure 3.31: Sample pulse from cluster 21.
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Figure 3.32: Sample pulse from cluster 22.

For checking the accuracy of this algorithm we had to manually check the clusters and count
all the wrong classifications as there is no absolute true value given to us. I took 10% events
from each cluster and plotted them which was around 10000 plots and then checked each one
of them for miss classification. The results from them were that we had 50 misclassifications
out of 3024 classified good pulses and 53 good pulses out of 7455 classified bad pulses. Hence
using the above numbers we can calculate that the algorithm found 98.2 % of the good pulses

with only 50 false positives. The confusion matrix for this classification is given below:

Table 3.3: Confusion Matrix

Prediction
Pulse Noise Total
Actual value | Pulse 2974 50 2974 + 50
Noise 53 7491 53 + 7491

Total 2974 +53 50 + 7491 10568

3.6.5 Optimum filter analysis

The optimum filter method tries to fit the pulse using a template to get the amplitude of the
pulse, this provides us with the energy on each phonon and can also help us to triangulate the
position of energy deposition in the detector [11]. The optimum filter is done by transforming
the signal from a time domain to the frequency domain this helps in distinguishing the noisy
part from the true signal in the data. If our signal has two components, a pulse template A(t)

and Gaussian noise n(t). The signal can be written as,

S(t) = aA(t) + n(t) (3.12)
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here a is the factor by which we scale the template to get the pulse amplitude. Using Fourier
transform we convert the signal and noise to is frequency space , S(v), A(v), and A(r). We
can then minimize the x? of the pulse-template fit to get the best fit value for a. There might
be a time difference between the template and the pulse, and to accommodate that we add an

additional feature tg such that:

S(t) = aA(t — to) +n(t) (3.13)

Partition plot

Once we have the amplitudes of pulses in all four channels we can try to position the source.
We assume that a signal in a channel came from the center of the channel sector, using the

amplitudes we can find approximate x and y coordinates using this formula [11]:

_ Borcos(150)° 4 Corcos(270)° 4 Do reos(30)°

X
Bor + Cor + Dor

(3.14)

_ Bopsin(150)° + Copsin(270)° + Dopsin(30)°
Bor + Cor + Dor
where BDop, Cor and Bpp are OF amplitude of the pulse in the D, C, and B channels

Y (3.15)

respectively. X and Y coordinates calculated from the above formula can be now plotted to

understand the position of a source.

Figure 3.33: Detector configuration for partition plot.

The amplitude distribution of pulses in the dataset before and after filtration using t-SNE +
DBSCAN is plotted in Fig: and We can see major differences in the distribution of
filtered data and unfiltered data in the high amplitude and low amplitude regions. In the high
amplitude region, a lot of pulses were saturated which were removed in the filtration step and
in the low amplitude region there were noise pulses as shown in Fig: The black histogram
in Fig: m shows the pulse amplitude distribution for filtration using x? cut. From Fig: |3.34

35



3.6. Result Chapter 38

and we can see that using x? cut removes more events from the set than anomaly detection
techniques. False negative rate calculated in section is «~ 2% for our method. We need to

inspect the pulses which are included in anomaly detection but not in x? cut in future studies.
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Figure 3.34: Pulse amplitude distribution for filtered and unfiltered data. The plot also includes
pulse amplitude distribution using a cut on y? values in black.
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Figure 3.35: Pulse amplitude distribution for filtered and unfiltered data in the low amplitude
region.The plot also includes pulse amplitude distribution using a cut on x? values in black.

We can also see the difference in the x? plot shown for unfiltered pulses Fig: and filtered
pulses in Fig: The red line we see in the plot is a cut on x? to remove bad pulses, this
depends on the amplitude and we get this by eye estimation. We see a lot of pulses above the
cut which are removed in the filtered pulses. We see the partition plot in Fig: (a) for
unfiltered data, we can see a black area and some pulses outside the triangle which is where a
lot of saturated pulses are collected, as seen in the Fig: (b) almost all pulses from these
regions have been removed which were saturated leaving only good pulses. One more point
to consider is if there is a noise pulse the amplitude will be similar in all three channels and
according to the formula we have used this pulse will be located at (0,0). We do see a cluster
at the origin in the unfiltered data plot at origin Fig: (b), and a considerable decrease in
filtered plot Fig: (b), but some points still remain. This is due to the pulses in cluster
21 as shown in Fig The pulses in this cluster are small pulses and have almost similar
amplitudes in all three channels. They contribute to the bright spot at the origin. We can see
in Fig: (c) that is the same plot as Fig: just without pulses in cluster 21, and we see

that the spot at origin is almost gone.
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Figure 3.36: Amplitude Vs x? for unfiltered data
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Figure 3.41: Amplitude Vs x? for filtered data
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Figure 3.46: Partition plot for filtered and unfiltered data
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Figure 3.47: Partition plot for unfiltered data. Figure 3.48: Partition plot for filtered data.
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Chapter 4

Detector Simulation

4.1 Detector simulation

To simulate phonon pulses in a semiconductor detector we need to simulate:
1. Energy deposition mechanism in the crystal
2. Creation of primary phonon and electron/hole pairs
3. Propagation of charge and phonons through the crystal medium
4. Creation of secondary phonons due to charge propagation
5. TES readout

The first step in this simulation has already been implemented using Geant4 [29] which simulates
a source and its interaction with the detector.  particles are simulated as incoming particles
with an energy distribution expected from U and Th background. A cylindrical Ge detector
was used with a radius of 38 mm and a depth of 25 mm. It returns particle interactions in
the detector crystal (whether electron or nuclear recoils), the amount of energy deposited, and
the location where the interaction occurred. We have discussed how to get Epnoprimary, £Q,
Npho primary and N p, in section Given the recoil energy from this simulation and eq We
calculated the Eppoprimary and Eg. Next using eq and Nphoprimary and N, /h Were also

calculated.

4.2 Motion of phonons in the Crystal

After the creation of phonons in the detector, the path a phonon will take depends on its group
velocity and impurities in the detector. The principle of propagation of phonons will be the
same for primary and secondary phonons created due to the movement of electron-hole pairs
in the lattice. We will consider two processes that will define the trajectory of a phonon: (a)

scattering in the lattice due to mass defects and (b) a decay process.
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(i)Impurity Scattering : The detector lattice can have impurities, for example, an isotope of the
same material as the detector. A phonon can scatter off these impurities due to mass differences.
The phonon could propagate in the lattice in one of the three modes in the germanium lattice
: (i) longitudinal, (ii) slow-transverse, and (iii) fast-transverse. The fraction of phonons prop-
agating in these modes fluctuates around the measured proportions of 10% longitudinal, 35%
fast-transverse, and 55% slow-transverse [30] |14]. (ii)Phonon decay The phonon decays into
two lower energy phonons. The decay process is called anharmonic decay and is only applicable

to phonons with the longitudinal mode of propagation.

We find the isotope scattering rate of phonons in a germanium lattice from the results from [30]
which depends on the frequency of a phonon and not its modes. From the rate, we calculate the
next time step at which a scattering happens. During path calculation of the phonons, isotope
scattering changes the direction of the phonons and their modes. We have approximated the
wavelength to be in the order of pum, which is motivated by the calculation in [31]. First, a
random phonon is picked at the pre-calculated time of scattering, the mode is changed such that
the population fluctuates under 2% difference around the expected population of modes. The
propagation direction for this phonon is now randomly chosen. A random direction is chosen
by generating three random numbers and normalizing them to get a unit vector.

The decay process will create two phonons of lower energies from the incident phonons. The
lifetime of this process is taken from [32]. A similar approach is implemented as scattering
calculations to calculate the output of a phonon decay, first, the modes of outgoing phonons are
selected randomly, making sure that the population fluctuates under a 2% difference around
the expected population. Then for each phonon, a random propagation direction is selected
preserving the momentum and energy of the interaction.

These phonons will keep on propagating in the lattice until either (i) they get absorbed by the
TES sensors on the surface, or (ii) down converts to such low energies that the sensors can no
longer detect, 340 micro eV in the case of detector discussed in Chapter [2| Finally, for all the
outgoing phonons we check their coordinates and energies for absorption and repeat the process

until there are no phonons left.

4.3 Results

In the plots of phonon energy Vs time, we do see a pulse where all the energy is deposited. But
the pulse has a lot of fluctuations when compared to experimental data, even though we have
not introduced any source of noise in our simulations. Another issue is that the width of the
pulse is too small for the Ge detector typically the width of the pulse is of few 100 ©.S as seen in
Fig: Reasons for this might be that we are not simulating TES response for our absorbed

phonons.
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4.3. Results

Figure 4.1:
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Figure 4.2: Sample pulse from a Ge detector.

We discussed how a phonon is measured using a TES sensor in section [2.5] TES sensors consist

of a tungsten strip (W) n the TES sensor which is cooled to a superconducting state. When

a phonon enters W it scatters and losses energy, increasing the temperature of W to cross its
critical point and have normal resistance. This process is shown in Fig: . In the figure,

color represents the temperature of the strip with red indicating higher temperature. After

this, the strip begins to cool again (Fig: [4.3| (¢)). If there is no other contribution then TES

would return to its initial state with an exponential time constant . We get the tail of the

pulse in this phase of phonon measurement. As we are not simulating the TES response for
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our absorbed phonons we do not see the full tail. The fluctuations we saw in our simulation

will also be smoothed out as we will not be measuring phonon energy but voltage from TES

module.
(a) (b) (c) (d)
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Figure 4.3: The response of the TES circuit to an event. Column (a), (b), (¢) and (d) shows
the stages of phonon detection. Column (c) shows the cooling of the W strip after phonon
absorption when the tail of a pulse is formed. .
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Conclusion and Outlook

5.1 Anomaly detection

We tried to use t-SNE + DBSCAN to separate the good and bad pulses from a dataset taken
using a sapphire detector. We saw that the combination of these two algorithms was able to
cluster the data into different pulses without using labeled good and bad pulse data. They were
very good at detecting pile-ups, saturated pulses, and noise. We measured that the separability
of the algorithm depends on the number of points in the dataset. It was also verified in the work
that this can be corrected by changing the perplexity parameter in the algorithm. We also saw
that we can extract events in the mixed and pure signal clusters and run t-SNE and DBSCAN
on them again, this gives us an improvement in the separability as the number of points in
the dataset is decreased. We filtered the good pulses detected by the t-SNE + DBSCAN
algorithm and compared them to the unfiltered dataset. We found that there were significant
improvements in decreasing the number of saturated pulses and noise pulses as shown in Fig:
and The accuracy was manually measured for the algorithm and it was found
that it detects approximately 98.2% of the good pulses. It is needed to study the different signal
clusters we have got and why t-SNE divided them into different clusters.

5.2 Detector Simulation

Using the energy deposition and coordinates of an event in the detector we have calculated the
number of phonons and electron/hole pairs that will be generated for an event. We studied
the propagation of phonons in the lattice using the number of phonons and their energy. Two
physical processes have been considered and implemented while calculating phonon propagation
in the lattice : (i) scattering in the lattice due to mass defects, and (ii) phonon decay. This
same propagation steps can be used to propagate type of phonons.

We obtained the absorbed phonon energy vs time plot for each event. The shape of this plot
match with the pulses we have seen experimentally from the detector readout. But the pulse
which we have obtained has fluctuations and lacks the smoothly decreasing trend compared to

experimental data. Potential reason for this observation could be that we have not simulated
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the TES response for the absorbed phonons.

In the future it can be tried to simulate the creation of secondary phonons, and relaxation
phonons. To understand the creation of secondary phonons, the trajectory of the electron/hole
pair has to be determined. This will require obtaining the path of least resistance for electrons
and holes by solving for potential in the lattice. Consequently, the TES response of the absorbed

phonons could be simulated to get the detector readout.
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Appendix A

t-SNE +DBSCAN

Listing A.1: Data Generation Script V:1.0

from multiprocessing import Pool
from nptdms import TdmsFile as tdms
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import numpy as np

import time

import os

#does work

perplex = 35#@param {type:” number”}
niter = 5000#@param {type:” number”}
Ir = 250 #Qparam {type:” number”}
ee = 170#@param {type:” number”}

perplex = 40#Qparam {type:” number”}
niter = 60004Cparam {type:” number”}
Ir = 250 #Q@param {type:” number”}

ee = 200#Qparam {type:” number”}

perplex = 30#@param {type:” number”}
niter = 2500#@param {type:” number”}

Ir = 200 #Qparam {type:” number”}
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ee = 150#@param {type:” number”}

# read ”data” pandas dataframe

data = pd.read_pickle (”dataframe/ogdata.pkl”)

data_subset =
— data.drop ([ "label ’, ’slno’, ’file_name ', ’group_name’], axis=1)
#print (data_subset) #sanity check

data_subset_array = data_subset.to_numpy ()

time_start = time.time ()

tsne = TSNE(n_components=2, verbose=1, perplexity=perplex, /
— n_iter=niter, early_exaggeration=ee,learning_rate=Ilr,
— n_jobs=-1)

print (data_subset_array)

tsne_results = tsne.fit_transform (data_subset_array)

print ( 't-SNE done! Time elapsed: {}

< seconds’.format (time.time ()—time_start))

data| tsne 2d-one’] = tsne_results[:,0]

data| 'tsne—2d—two’] = tsne_results[:,1]

plt . figure(figsize=(16,10))

sns.scatterplot (
x="tsne —2d-—one”, y="tsne 2d-two”,
hue="1label” ,
palette=sns.color_palette (” bright”, 2),
data=data ,
legend="full”,
alpha=0.7

)

plt.savefig(’plots/t—sne/t—SNEl.png’)

data_subset = data.drop ([”slno”,’ file_.name’, prepulse_stdl’,
— ’'prepulse_std2’, ’prepulse_std3’, ’'prepulse_stdd’,
— ’'postpulse_stdl’, ’postpulse_std2’, ’'postpulse_std3’,

— ’'postpulse_std4’, 'max_contentl’, 'max_content2’,
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— ’“max_content3’, 'max_content4’, 'min_contentl’,

— ’'min_content2’, 'min_content3’, 'min_contentd’,

— ’“max_taill’, 'max_tail2’, ’max_tail3’, 'max_taild’,

— ’'rise_timel’, ’'rise_time2’, 'rise_timed’, ’'rise_timed’,

— “fall_timel’, ’"fall_time2’, ’fall_time3d’, ’fall_timed’, /

— ’fwhml’, ’fwhm2’, ’fwhm3’, ’fwhm4’, "fw90ml’, ’fw90m2’,

— fw90m3’, 'fw90m4’, ’'fwlOml’, ’fwlOm2’, ’fwlOm3’, ’fwlOm4’,
— ’max_time_std ’,” group_name” , 7label” ] axis=1)

#print (data_subset) #sanity check

data_subset_array = data_subset.to_numpy ()

clustering = DBSCAN(eps=5, min_samples=4). fit (data_subset_array)

data[’clustering ’] = clustering.labels_[:]

data[”legend”] = data[”label”] + data[” clustering”|.astype(str)

print (data)
a_set = set(data[ clustering’])

num_cluster = len(a_set)

plt.figure(figsize=(16,10))

sns.scatterplot (
x="tsne —2d—one” ; y="tsne —-2d—two” ,
hue="clustering”,
palette=sns.color_palette (”bright”, num_cluster),
data=data ,
legend="brief” |
alpha=0.7

)

plt.savefig(’'plots/t—sne/DBSCANIL. png’)

data.to_pickle (”dataframe/t_SNE4+DBSCAN_1. pkl”)
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Appendix B

Pulse Simulation

il

Listing B.1: Training Script

import outputX.root
assign variables to edep, postion and type of particle
make function for yield

save edep, position, type, e Q, E_ph_pri, N_ph_pri, N_eh

import ROOT
from array import array

from tqdm import tqdm

def epsilon(e_r):
return 0.0115%xe_1x32x*(—7/3)

def g e(eps):
return 3x(epsx*(0.15))4+0.7«(eps*%(0.6) )+eps

def k() :
return 0.133%(32%%(2/3))*72.64%x(—0.5)

def Yield(type_c, e_r):
if (type_c==0):
return 1

else:

return ((k()*g-e(epsilon(e_r)))/(1+k()*g_e(epsilon(e_-r))))
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inFileName = "DRU_output/outputl.root”
inFile = ROOT. TFile.Open(inFileName ,”READ")
inTree = inFile.Get(”EDTree”)

outFileName = "sim_output/outputl.root”
outFile = ROOT. TFile.Open(outFileName ,”"RECREATE”)

Edep = array(’d’, [0.])
x = array(’'d’, [0.])
y = array(’'d’, [0.])
z = array(’d’, [0.])
type_c = array(’d’, [0.])

EQ = array(’'d’, [0.])
E_Ph_pri = array(’d’, [0.])
N_Ph_pri = array(’d’, [0.])
N_eh = array(’d’, [0.])

outTree = ROOT.TTree(”sim_output”,”sim_output”)

outTree.Branch (”Edep”, Edep, ”"Edep/D”);

outTree.Branch("x”, x, "x/D”);

outTree.Branch("y”, y, "y/D”);

outTree.Branch(”z”, y, "z/D");

outTree.Branch(” type_c¢”, type.c, "type_c/D”); #change when you

— get type

"EQ, BEQ, "EQ/D");

"E_Ph_pri”, E_Ph_pri, "E_Ph_pri/D”);
"N_Ph_pri”, N_Ph_pri, "N_Ph_pri/D”);
"N_eh”, N_eh, "N_eh/D”);

outTree.Branch
outTree.Branch

outTree.Branch

~—~ ~ —~

outTree.Branch

for entryNum in tqdm(range(0,inTree.GetEntries())):
inTree.GetEntry (entryNum )

#print (getattr (inTree,” DepEnergy”) ,getattr (inTree ,”x”) ,getattr (inTree,”y”

Edep[0] = getattr (inTree,” DepEnergy”)
x[0] = getattr (inTree,”x”)

y[0] = getattr (inTree,”y”)

z[0] = getattr(inTree,”z”)
#type_c[0] = getattr (inTree,” type_c”)
type_c[0] = 1.0

EQ[0] = /
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— getattr (inTree,” DepEnergy” )« Yield (1,getattr (inTree ,” DepEnergy”))

E_Ph_pri[0] = /

— getattr (inTree,” DepEnergy” )*(1—Yield (1, getattr (inTree,” DepEnergy”)))
N_Ph_pri[0] = E_Ph_pri[0]//(8.1/1000)~+1

N_eh[0] = E.Q[0]//(2.96/1000)
outTree. Fill ()

inFile . Close ()
outFile.cd()
outTree. Write ()
outFile. Close ()
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