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1 Abstract

The first few sections of this project revolves around solving the ideal Bose and Fermi gases under a
variety of conditions using statistical mechanics. This is followed by introducing non-ideality into the
system by allowing the constituents of the Bose/Fermi gases to have finite size. A direct evaluation
of the integrals in canonical ensemble lead to the famous classical and quantum cluster expansions.
We then proceed to solve the same problem using the mean-field approach (van der waals’ excluded
volume approach) which allowed us to formulate an equation of state for real gases on nuclear scale.
Using a similar approach attractive interactions are also included into the formulation. Now all the
relevant formulations (ideal gas, van der waals’ EV and van der waals’ EV+attractive interactions) are
applied to the Hadron Resonance Gas (HRG) model which gives a statistical description of hadrons.
The Grand Canonical Ensemble is used to compute the pressure, energy density, entropy density and
number density. All the approaches have been compared to the lattice QCD data of Wuppertal-
Budapest for 0 chemical potential. Using the ideal gas formulation in THERMUS model (GCE
ensemble), we have computed the chemical freeze out parameters at a variety of collision energies
and centralities. This is followed by simulating particle production in Au-Au collision for center of
mass energy of 7.7 GeV and comparing the yields obtained through AMPT model with that of the
STAR experiment. The project is ended by studying the concept of ”Flow” in relativistic high energy
collisions. This section tries to answer whether harmonic flow coefficients can be used as possible
signatures of QGP. Using the AMPT and hydro simulations, it is observed that a large elliptic flow
is a good indication for the formation of QGP like medium. Further, it is found that the presence
of NCQ scaling of elliptic flow and a modified NCQ scaling of triangular flow is characteristic of the
formation of QGP like medium during the evolution of the system produced in HIC.

1.1 Abbreviations Used

GCE: Grand Canonical Ensemble HRG: Hadron Resonance Gas EV: Excluded Volume
HI: High Energy HIC: High Energy Collisions QGP: Quark Gluon Plasma
SM: String Melting QCD: Quantum Chromodynamics EOS: Equation Of State
NR: Non-Relativistic UR: Ultra Relativistic CE: Canonical Ensemble
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2 Classification Of Sub-Atomic Particles

The sections below discuss some of the possible classifications of the sub-atomic particles. The group-
ings have been done while explicitly keeping the field of particle physics at the back of the mind.
However, some of the classifying criterion is quite general and can be easily applied to other fields of
physics. The section below discuss the classifications of only particles. After reading the definitions
one can easily extend these definitions to anti-particles (some of them directly while some of them
with a bit tweaking to maintain the visual symmetry with particles).

2.1 On The Basis Of Spin

This is an independent and complete classification of particles. This classification is based on one of
the most important theorems’ available to physicists, The Spin Statistics Theorem which says:

• Half-integer spin particles are subjected to Fermi-Dirac statistics. This implies that the wave-
function of such particles gains a ’-’ sign (can be thought as rotation by π in the space of fields)
under exchange symmetry. The consequence of this fact is that each quantum state can be
occupied by at most 1 such particle. These particles are termed as fermions. eg: e±, µ±, all
the quarks etc.

• Integer spin particles are subjected to Bose-Einstein statistics. This implies that wavefunction
is symmetric under exchange symmetry which translates to the fact that each quantum state
can be occupied by any any number of such particles. These particles are termed as bosons.
eg: nucleus of C-12, nucleus of He, photon etc.

Figure 1: Flowchart For Classification Based On Spin
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2.2 On the Basis Of Internal Composition

The particles can be divided into two categories via this decomposition:

1. Elementary Particles: The sub-atomic particles which have no known substructure or equiva-
lently are not composed of any other sub-atomic particle is called an elementary particles in
particles physics. for eg: e±, µ±, all the quarks etc.

2. Composite Particles: All the sub-atomic particles which are composed of some other elementary
particles are called composite particles. For eg: proton, neutron, pion etc.

This is again a complete and independent classification of particles. A particle being elementary or
composite has nothing to do with the fact whether it is a fermion or a boson. For eg: quark is a
fundamental particle whereas proton is a composite one, however, both are fermions.

Figure 2: Flowchart For Classification Based On Composition

2.3 On the Basis Of Fundamental Interactions

This classification is not as strong as the previous ones but is quite useful. This method takes advantage
of the fact that there are only four fundamental forces in nature and groups particles on the basis
of their affinity and interaction towards these force fields. Broadly this classification categorises the
whole particle family into two main parts (and a singleton!):

• Gauge Bosons: These elementary particles are also known as force carriers or messenger
particles. The terminology arose because the known gauge bosons are vector particles corre-
sponding the smallest quanta of some force field and when exchanged between particles give rise
to forces between those two particles. Up until now, four gauge bosons are known to exist. We
have photon for the EM field, gluon for the Strong field and W± & Z bosons for weak field.
Some believe gravitons as the force carriers for the gravitational field, however, they are yet to
be discovered.
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• Fundamental Scalar Boson: This is just a fancy name for Higgs boson. The reason that higgs is
given a category of its own is because it is fundamentally a unique particle. Higgs boson can be
though of as mediator of the higgs field hence it is definitely not a matter particles. However,
it is also not a gauge boson as higgs field is not really a force field. Further each gauge boson
corresponds to a gauge field which arises due to some local internal symmetry while higgs boson
corresponds to a gauge field which is responsible for breaking of aforementioned local internal
symmetries. Thus, higgs is awarded a unique status among the elementary particles.

• Matter Particles: All the remaining particles fall into this category. The matter particles are
further differentiated into two classes:

– If the matter particles are unable to interact via the strong force then they are labeled as
leptons.

– If the matter particles can interact via the strong forces then they are further divided into
two groups:

∗ If the matter particles are elementary then they are termed as quarks.

∗ If the matter particles are composite then they are termed as hadrons. Hadrons are
defined to be a sub-atomic composite particles made up of two or more quarks(anti-
quarks) held together in a stable configuration by the strong force. The strong force
is quite special due to which only certain configurations of fundamental particles are
allowed to come together and form a composite particle . Hence it makes sense to
further classify hadrons as:

· If the composite particles have the substructure qqq (3 quarks bound together),
then they are called baryons.

· If the composite particles possess the structure qq̄ (quark-antiquark pair) then they
are called mesons.

· If the composite particles contain the sub-structure gg (two gluons bound together),
then they are termed as gluionos. They are yet to be discovered, but they are a
definite theoretical possibility and I would like to include them here.

Sometimes one might come across the term Exotic Baryons. These are a type of
hadrons having a half-integer spin but possess a different quark structure/content than
the conventional hadrons (qqq or qq̄). An example of exotic baryon is the penta-quark
which has qqqqq̄ as its quark configuration.

10



Figure 3: Classification Based On The Basis Of Fundamental Forces[1]

2.4 Classification Of Leptons

Now that we have an idea of what leptons are, we can dive deeper into this territory. Leptons are
also characterised by flavours which form the basis of this classification. The lepton family has 3
known flavours which are electron, muon and tau flavours. Corresponding to each flavour we define
a generation consisting of the particle and its neutrino along with a lepton flavour quantum number
(which is assigned 1 for particles and -1 for anti-particles if they belong to that flavour otherwise
0). Within a generation , the particle can be differentiated from the its neutrino by noticing that
the particle must be charged while its neutrino is neutral and the particle is infinitely heavier than
its neutrino. The importance of this classification is the fact that in nearly all reactions concerning
leptons, the lepton flavour quantum number is conserved. Hence, from the muon generation if you
only have a muon in the reactant then the product must also contain a muon or its neutrino.

Figure 4: The 3 Generation Of Leptons[2]

In the recent years, lepton number violation have been found (eg: neutrino oscillation). However,
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they are extremely rare and lepton flavour number conservation is still considered as quite a good law.
Nevertheless, this weakens the above classification of leptons as a good classification.

2.5 Classification Of Quarks

This is the classification of one of the sub-categories of the material particles, quarks from section 2.3
. Quarks were categorised as the elementary particles that were capable of interacting via the strong
force. Quarks, like leptons can be also be divided into 3 generations. The basis for this classification
of quarks is isospin symmetry which is quite different from why we set the leptons into generations. So
the basic question to ask is what is isospin symmetry for quarks? The answer being that if the quarks
are only allowed to interact via the strong force then the pair of quarks which are indistinguishable
from each other have an isospin symmetry and hence fall into the same generation. A simpler version
would be that the pair of quarks which are isospin symmetric cannot be distinguished via the strong
force. (Technically isospin symmetry is not an exact symmetry. The masses of the quarks in the
same generation are not exactly equal and hence if one could devise a precise enough experiment, one
would be able to distinguish between the quarks of the same generation even by only using the strong
force.) Just like the leptons, the members of the of the same generation can be distinguished by their
interaction with the EM field.

Figure 5: Complete classification Of Quarks[2]

Another independent way of classifying quarks is to group them with flavours. Unfortunately, if we
try this then each of the 6 elementary quark is to given its own flavour along with a quantum number
(upness,downness, charmness, strangeness,topness and bottomness) which is conserved during a strong
interaction. This can also been in figure 5.

2.6 Classification Of Elementary Particles

The classifications used for elementary particles in section 2.3-2.5 can be combined to get most famous
chart available to all particle physicists. The chart is divided into two halves with the left side being
given to material particles and the right to the force carriers and higgs boson. The left part is again
divided into two parts. The top part is assigned to quarks divided into 3 pairs via generations. Within
each generation the positively charged quark is kept above the negatively charged quark. The bottom
part is assigned to leptons again arranged like quarks into 3 generations with the positively charged
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lepton kept above the neutral one. The chart is extremely important as it clearly classifies each known
elementary particle of the standard model.

Figure 6: Standard Model Of Elementary Particles[3]

2.7 On The Basis Of Life-Time Of Particles

This is not an exact classification and only applies to material particles (generally to leptons and
hadrons). I am going to provide the general rule of thumb I have empirically deduced from their usage
and known examples. The basis of this classification is life time of particles combined with the general
experimental techniques used to observe them.

• Stable Particles: All the particles that do not decay spontaneously when they are in free state
are termed as stable particles. eg: proton, electron etc.

• Unstable Particles: All the particles which possess the ability to spontaneously decay are termed
as unstable particles. eg: neutron,muon etc. Unstable particles can be further categorised into
the following sub-categories:

– Long-Lived Particles: These particles live long enough so that they can be detected by
making them leave trails in some medium (bubble chambers, cloud chambers, spark cham-
bers). It has been seen that a particle whose proper mean life time exceeds 10−11 s and is
traveling almost with the speed of light leaves a reasonable track in the detector. This can
be though of as a strict upper cut as particles in this domain generally do travel with the
speed of light. eg: muon (2.2 µs)

– Short-Lived Particles: These particles do not live long enough to leave a track and hence are
generally observed as resonances peak in the production cross section or the decay modes
of some particle. By rule of thumb their mean lifetime is less than 10−11 s. eg: π0 (8.4 *
10−17 s).
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Figure 7: Flowchart For Classification Based On Life-Time

Note that this terminology of short and long lived is not strictly used but a generally true. A very
famous example of its violation is the following example. The neutral kaon is thought of as a super-
position of a short-lived (KS) and a long-lived (KL) component. For KS , τS = 8.9 ∗ 10−11 s ≈ 10−10 s
and for KL, τL = 5.2 ∗ 10−8 s which by my above definition should both be classified as long-lived
particles. However, the reason for this terminology is that when we set to detect these components
using neutral kaon, KL on average decays much farther (in the detector chamber) and much later
when compared to KS . This is why I really don’t like this classification but it is quite widely used to
group particles coming out of high energy collisions.

2.8 As Excitations Of Some Other Elementary Particles[4]

This classification is independent of anything I have discussed earlier. This is not a widely used
classification but I have included it here because the reasoning behind this grouping is quite interesting.
The idea of this classification is to group particles by their stable end products of decay. If we think
carefully, almost all of the sub-atomic particles are generally created by collisions of stable sub-atomic
particles. These unstable particles live for some time and again decay back to the stable sub-atomic
particles. If we consider the collision as some form of interaction with some generalized gravitational
field then this process looks a lot similar to the interaction of electron of an atom with a photon field.
To draw a better parallel first consider the electron of an atom to be in ground state, interacts with
the photon field and goes to the excited state and finally falls back to the ground state after emitting
photon.
Extending the same concept to our situation, the stable sub-atomic particles can be thought of as
ground state of some new elementary particles in the generalised gravitational field. Any other particle
can be thought of as excitations of the ground states of these new elementary particles. Thus, this
classification basically reduces any particle to an allowed energy level in the generalized gravitational
field. As with de-excitations, the new fundamental particles can directly go to the ground state or
first go to a lower excited state and then to the ground state. This way of thinking elegantly explains
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the presence of various decay modes for a particle in contemporary physics.
Logic dictates, that The number of new elementary particles should be equal to the number of stable
sub-atomic particles. Indeed in the abstract the authors talk about four elementary classes: each
giving electron, proton, photon and neutrino as its ground state. The authors do not discuss how
different generations of neutrinos fit into this picture by arguing that not much is known about them.
Hence in entirety they define three elementary particles: electrons (leptons), protons (baryons) and
photons (bosons). The excited states are given by:

• Excited states of electrons are: muons, charged pions, charged kaons, τ , D and other leptons
and charged mesons.

• Excited states of protons are: Λ, Σ, ∆, Ξ and other baryons.

• Excited states of photons are: uncharged pions, neutral kaons and neutral mesons.

Further the quarks are not even considered to be particles but simply the projections of the 4-D
nuclear space onto the 3-D gravitational field space.

Figure 8: Allowed Electron Levels In Generalized Gravitational Field[4]
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Chapter 2:
Statistical Mechanics Of

Ideal Fermi Gas

16



3 Solving The Ideal Fermi Gas

In this section, I will try to compute the pressure, chemical potential and other thermodynamic prop-
erties of a system of N (macroscopically large number) particles confines in a box (cube) of volume V at
a certain temperature T. The setup screams of the Grand canonical ensemble of statistical mechanics.
Further, the system will be composed only of identical relativistic fermions which would be following
the Fermi-Dirac distribution. The system composed of only identical relativistic bosons can also be
equivalently solved by replacing the Fermi-Dirac distribution with the Bose-Einstein distribution. It
will also be assumed that there is no inter-particle potential. Basically fermions are free inside the
box but they have to obey the Pauli’s exclusion principle.

3.1 Quantum Particle In A Box

The potential for particle in a box with parameter l given by

V (x, y, z) =

{
0 if 0 ≤ x, y, z ≤ l
∞ otherwise

(3.1.1)

This leads to the condition that the wave function must vanish at the boundary points (strict boundary
conditions). The Schrodinger equation reads:

i~
∂ψ

∂t
= Ĥψ

where symbols have the usual meaning. The hamiltonian operator is given as: Ĥ = p̂2

2m = − ~∇2

2m in the
position basis. A variable separable solution is assumed for the schrodinger equation namely,

ψ(~r, t) = rx(x)ry(y)rz(z)T (t) = T (t) Π
i=x,y,z

ri(i)

The above equation solves for T(t) = e−
iEt
~ . This leads to the following form of equation for each ri

wrt to i (i={x,y,z}):
∂2ri
∂i2

= ω2ri

The above system of equations can be easily solved. After applying the boundary condition (wave
function must vanish at the end points of the box) and normalizing it, we have

ψ(~r, t) = ψ(x, y, z, t) =

√
8

l3
sin
(nxπx

l

)
sin
(nyπy

l

)
sin
(nzπz

l

)
e−

iEt
~ (3.1.2)

with eigenenergies: Enxnynz =
π2~2

2ml2
(
n2
x + n2

y + n2
z

)
(3.1.3)

The states are both orthonormal and complete which is given as:∫
d3~r ψ∗nxnynz(~r) ψmxmymz(~r) = δnxmxδnymyδnzmz (3.1.4)∑

nxnynz

ψ∗nxnynz(~r) ψnxnynz(~p) = δ3(~r − ~p) (3.1.5)

Here δ3 is the dirac-delta function in three dimensions and δnxmx represents the Kronecker delta
function.
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3.2 Basic Tools Required To Solve The Problem

3.2.1 Concept Of Density Of States

Before defining the concept of density of states, let us first define the following quantity:

N(E) =
∑

nxnynz

Θ(E − Enxnynz)

Here, Θ denotes the Heavy-side step function. This function calculates the number of available states
with energy ≤ E. Define density of states as ρ(E) which denotes the instantaneous number of states
available at energy E:

ρ(E) =
dN

dE
=

∑
nxnynz

δ(E − Enxnynz) (3.2.1)

The derivative of step function is the dirac-delta function. This is not immediately visible as they
strictly are not functions but distributions. However, they can be viewed as the limiting sequence
of the following real functions. This representation of the delta function is also known as Lorentzian
Representation wherein this relationship is easier to view.

θ(x) = lim
h→0

1

π

[
tan−1

(x
h

)
− 1

2

]

δ(x) = lim
h→0

1

π

[
h

x2 + h2

]
Note that both N(E) and ρ(E) can only take integer values and hence are really not differentiable.
However for macroscopically large N (and hence E), these functions can be very well approximated by
some other continuously differentiable function which will be actually used to perform the calculations.
Since we are solving the fermion system for a box, it will be quite useful to compute these quantities
for this case. To compute the number of states, we are going to use equation 3.1.3.

Clearly at an energy E, N(E) = # states contained within the sphere of radius, r =
√

2ml2E
π2~2 in the

nxnynz space. Further each available states occupies unit volume in this space. Hence

Npb(E) =

(
1

8

)
4π

3

[
2ml2E

π2~2

] 3
2

=
V

6π2~3
[2mE]

3
2 (3.2.2)

Here V = l3 which is the volume of the box and the factor of 1/8 is because we only consider states
in the positive octant of the nxnynz space. The reason for this is 3.1.2. Replacing nx → −nx does
nothing except introduce a negative sign in the wavefunction which is not really a new state for the
N particle fermion system as we have already imposed the permutation symmetry by introducing the
Fermi-Dirac statistics at the beginning of the problem. Now

ρpb(E) =
V

4π2~3
(2m)

3
2

√
E ∝

√
E (3.2.3)
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Hence in three spatial dimensions, the density of states is proportional to
√
E. Often a variable k is

introduced. Generally, k ≡ p
~ =

√
2mE
~ . In terms of this new variable:

ρpb(k) ≡ dN

dk
= ρpb(E)

dE

dk
=

4πk2V

2π3
(3.2.4)

The above equation suggests a generalization: dN = d3x d3k
(2π)3

= d3x d3p
(2π~)3

. The generalization makes sense

on a lot of grounds. Firstly it makes N dimensionless and hence now it properly represents numbers.
Secondly the volume element is phase space volume element with a measure of 1/h3 which basically
says that there is 1 available state per h3 unit volume of phase space which makes us remember the
uncertainty relation.

3.2.2 Attacking The Problem Via Grand Canonical Ensemble (GCE)[5]

The construction of the problem might make one think that canonical ensemble is best to tackle this
problem. That would have been true if the particles were not obeying the Pauli’s exclusion principle.
Due to this, there is an extra density function (Fermi-Dirac distribution) related to phase space volume
in the canonical ensemble. To see how the Fermi-Dirac statistics naturally emerge one must take a
dive into the grand canonical ensemble.
Define the GCE partition function

Z =
∑
N

∑
ν

e
µN−Eν
kT

Here symbols have their usual meaning. The summand can be thought of as the relative probability of
finding the system with N particles and an energy Eν . In our case there are no interactions between the
fermions and hence the whole quantum system can be completely defined by the occupation number
of the quantum particles in each available quantum state. A system with N particles with occupation
number nj for quantum level j can be completely described as:

N =
∑
j

nj

E =
∑
j

nj Ej

As our system in hand decomposes so beautifully, each quantum level can be thought of as an inde-
pendent system parameterized by the occupation number. The GCE for our system simply becomes
the Cartesian product of all the independent systems. Mathematically the following function is the
generating function for GCE partition function of our system:

Z = Π
j

∑
nj

enj
µ−Ej
kT

 (3.2.5)

As fermions can only have 0 or 1 as their occupation number, we have:

Z = Π
j
Zj = Π

j

(
1 + e

µ−Ej
kT

)
(3.2.6)
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To connect to thermodynamics one defines the GCE potential function as:

Ω = −kT lnZ (3.2.7)

Ω = Σ
j

Ωj = −kT Σ
j
ln

(
1 + e

µ−Ej
kT

)
= kT Σ

j
ln

(
1− 1

1 + e
Ej−µ
kT

)
= kT Σ

j
ln (1− f(Ej)) (3.2.8)

f(Ej) =
1

1 + e
Ej−µ
kT

(3.2.9)

It can be argued that the GCE potential function is the Legendre transform of the Helmholtz energy
(potential function of the canonical ensemble) wrt the variables N and µ. Hence

Ω(V, T, µ) = A(V, T,N)− µN

where A(V,T,N) is the Helmholtz energy of the system. The advantage of doing this is in GCE is that
we can finally connect to macroscopic thermodynamic parameter via the following relation:

dΩ = −PdV − TdS −Ndµ (3.2.10)

Thus, the ensemble average for the number of particles is by:

N̄ = −
(
∂Ω

∂µ

)
V,T

(3.2.11)

N̄ = Σ
j

e
µ−Ej
kT

1 + e
µ=Ej
kT

= Σ
j
f(Ej) (3.2.12)

Doing a similar calculation for the ensemble average energy (internal energy) on simplifying gives:

U ≡
∑
N

eµN
∑
ν

Eν e
−Eν
kT

U =
∑
j

Ejf(Ej) (3.2.13)

Hence the final form of basic thermodynamic quantities becomes the sum of some function of Ej
over all possible values of Ej . As the number of particles becomes macroscopically large, the discrete
energy spectrum mimics a continuous energy spectrum. In that case the sum can be replaced with an
integral. To find the thermodynamic parameters in the continuous case one can make the following
transformation: ∑

j

h(Ej) =⇒
∫ ∞

0
dE ρ(E) h(E) (3.2.14)

ρ(E) is the density of states which is given bu 3.2.3 for our problem.
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3.3 Solution At Zero Temperature, T=0

At 0 temperature, the second law of thermodynamics forces the system to go to the ground state and
the system of N fermions will occupy all single particle levels upto some maximum energy, Ef called
fermi energy. This suggests the fermi-distribution function to be:

f(E) =

{
1 if E < Ef
0 if E > Ef

(3.3.1)

Introduce fermi momentum as the momentum corresponding to the fermi energy, i.e. pf =
√

2mEf =
~kf . The two can be instantly related using:

dN = g
d3x d3k

(2π)3
=
d3x d3p

(2π~)3
.

The MCE definitions are easier and smoother to use for T=0 case. The above equation introduces ’g’
as the degeneracy factor which is 2s+1 for a particle of spin s. Hence 2 for fermion.

N = V g

∫ pf

0

4πp2

(2π~)3
dp =

gp3
f

6π2~3
V =

gp3
f

6π2~3
V (3.3.2)

n =
N

V
=

gp3
f

6π2~3
(3.3.3)

dN

dpf
=

gp2
f

2π2~3
V (3.3.4)

Here, n is the number density. Now differentiating 4.1.3 on both sides

dn =
gp2

f

2π2~3
dpf =

1

V
dN +

(
− N
V 2

)
dV

Hence the partial derivatives can be read of as:

∂pf
∂N

=
2π2~3

gp2
f

1

V
(3.3.5)

∂pf
∂V

= −2π2~3

gp2
f

N

V 2
(3.3.6)

3.3.1 Extremely Relativistic Case: E=|~pc|

The calculation of internal energy U is again done using the MCE analysis:

U =

∫
EdN =

∫ pf

0
E(p)

dN

dp
dp
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The above equation solves to give:

U =
gcp4

f

8π2~3
V (3.3.7)

u =
U

V
=

gcp4
f

8π2~3
(3.3.8)

The chemical potential can be computed as:

µ =
∂U

∂N
= cpf = Ef (3.3.9)

This indeed looks like the correct answer as in the limit T → 0 and µ = Ef , the distribution function
f(E) as defined by 3.2.9 mimics the function 4.1.1. The pressure can be computed using:

P = −∂U
∂V

=

∂U
∂pf
∂V
∂pf

=
u

3
(3.3.10)

Another thing which is useful to calculate the Inverse compressibility(dP/dn) and adiabatic(γ) index
defined as:

dP

dn
=

1

3

du

dn
=
pf
3

(3.3.11)

γ =
n

P

dP

dn
=

4

3
(3.3.12)

Since the adiabatic index is a constant, the above differential equation can be integrated to give the
equation of state as

P

(
V

N

) 4
3

= constant (3.3.13)

The entropy of the system can be computed using the MCE definition of the entropy. The degeneracy
of the ground state is upper bounded by the density of states at E = Ef . Hence:

S = kln(ρ(Ef )) = k ln

(
gV

2π2~3
E2
F

)
(3.3.14)

This is simply an O(log N) term which can be neglected for all macroscopical purposes. The entropy

per molecule is Sf ∝ log(N)
N which goes to 0 as N −→ 0. Hence we have completely solved the free

fermi gas at 0 temperature for extremely relativistic case. All the macroscopic parameters are defined
via the equations 4.1.2 - 4.1.13.
Now it’s time to plot some graphs. In each case, I will try to keep the leading coefficient of the
dependent variable to be 1. This is equivalent to resizing (contracting or expanding) the y-axis which
would affect the absolute values of the function but wont change the nature of the graph. I am doing
this because I am only interested in the nature of graph and not the absolute value of the functions.
The constants are really daunting to keep in the equation and it’s just easier to set them to 1.
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(a) Graph of Energy density vs Fermi Mo-
mentum

(b) Graph of Number density vs Fermi Mo-
mentum

(c) Graph of Energy density vs Number den-
sity

(d) Graph of Pressure vs Energy density

Figure 9: Graphs Of Some Important Parameters For A Highly Relativistic Fermi Gas At T=0

3.3.2 General Relativistic Case: E=
√
~p2c2 +m2c4

For convenience, I am going to work in the natural units ~ = c = 1 The calculation of internal energy
U is again done using the GCE analysis:

U =

∫
EdN =

∫ pf

0
E(p)

dN

dp
dp =

∫ pf

0

√
p2 +m2

gp2

2π2
V dp =

gV

2π2

∫ pf

0

√
p2 +m2 p2 dp

∫
p2
√
p2 +m2 dp =

1

8

[
(2p2 +m2)p

√
p2 +m2 −m4ln

(
p+

√
p2 +m2

)]
+ C

The above solution can be made to look better by making the substitution: x = p
m∫

p2
√
p2 +m2 dp = f

(
x =

p

m

)
+ C =

m4

8

[
(2x2 + 1)x

√
x2 + 1− ln

(
x+

√
1 + x2

)]
+ C

(3.3.15)

This gives the following equations:
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U =
gV m4

2π2
f(xf ) (3.3.16)

u =
U

V
=
gm4

2π2
f(xf ) (3.3.17)

The chemical potential can be computed as:

µ =
∂U

∂N
=

∂U
∂pf
∂N
∂pf

=
√
p2
f +m2 = Ef (3.3.18)

This indeed looks like the correct answer as in the limit T → 0 and µ = Ef , the distribution function
f(E) as defined by 3.2.9 mimics the function 4.1.1. The pressure can be computed using:

P = −∂U
∂V

=

∂U
∂pf
∂V
∂pf

=
gm4

6π2
x3
f

√
1 + x2

f −
gm4

2π2
f(xf ) (3.3.19)

P =
gm4

48

[
(2x2

f − 3)xf

√
1 + x2

f + 3 ln
(
xf +

√
1 + x2

f

)]
(3.3.20)

Another thing which is useful to calculate the Inverse compressibility(dP/dn) and adiabatic(γ) index
defined as:

dP

dn
=

dP
∂pf
dn
dpf

=
1

3

p2
f√

m2 + p2
f

(3.3.21)

γ =
n

P

dP

dn
=

n

3P

p2
f√

m2 + p2
f

(3.3.22)

The inverse compressibility factor gives both the non-relativistic case, i.e.
(
dP
dn

)
p�m =

p2f
3m and the

ultra relativistic case, i.e.
(
dP
dn

)
m�p =

pf
3 . Thus, the adiabatic index also varies from 5/3 → 4/3 as pf

varies from 0→∞.

The entropy of the system can again be computed using the MCE definition and will be exactly equal
to the expression given by 4.1.14. Hence:

S = kln(ρ(Ef )) = k ln

(
gV

2π2~3
Ef

√
E2
f −m2

)
(3.3.23)

All the same arguments follow as before.Now it’s time to plot some graphs. In each case, I will
try to keep the leading coefficient of the dependent variable to be 1. This is equivalent to resizing
(contracting or expanding) the y-axis which would affect the absolute values of the function but wont
change the nature of the graph. I am doing this because I am only interested in the nature of graph
and not the absolute value of the functions. Further the particle will be assumed to have unit mass
unless explicitly stated otherwise.
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(a) Plot For Variation Of Inverse Compress-
ibility

(b) Variation Of Pressure and Volume (fixed
N) For A Non-Relativistic (NR,red) And
Ultra-Relativistic(UR,blue) Free Fermi gas

(c) Plot For Variation Of Pressure

(d) Graph of Pressure vs Energy density

Figure 10: Plots Depicting Relation Between Some Parameters For A General Relativistic Fermi Gas
At T=0

The plots from fig 10(a),10(b) suggest that the relativistic fermi gas is much more compressible than
the non-relativistic counterpart provided other conditions remain the same. As expected dP/dn is
linear all throughout the contour which is close to m=0 ( m � Pf ) region. However the m=600
contour, the increase first looks like a polynomial one (basically quadratic as pf → 0 in this region)
and later becomes close to linear (pf ≡ m region). Pressure (fig 10(c)) has a polynomial growth in all
the regions, however the degree of that polynomial seems to change uniformly throughout the graph.
The one thing one can easily notice is that in the NR region (pf → 0 contour) the growth is much
higher than the UR region (m→ 0), Although both look like polynomial growth but the degree of the
polynomial higher in the NR case.
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3.3.3 Non Relativistic Case (NR): E= p2

2m

It is quite simple to reproduce the calculations of section 4.2.1 for this case. I will not reproduce these
calculations but simply state the final solutions.

U =
gcp5

f

20mπ2~3
V (3.3.24)

u =
U

V
=

gp5
f

20mπ2~3
(3.3.25)

µ =
∂U

∂N
=

p2
f

2m
= Ef (3.3.26)

P = −∂U
∂V

=

∂U
∂pf
∂V
∂pf

=
2u

3
(3.3.27)

dP

dn
=

1

3

du

dn
=

2µ

3
=

p2
f

3m
(3.3.28)

γ =
n

P

dP

dn
=

5

3
(3.3.29)

P

(
V

N

) 5
3

= constant (3.3.30)

S = kln(ρ(Ef )) = k ln

(
gV

4π2~3
(2m)

3
2

√
Ef

)
= k ln

(
gmV

2π2~3
pf

)
(3.3.31)

Note that pf denotes the fermi momentum which has the relation to the upper energy bound as

Ef =
p2f
2m .

3.4 Solution At T 6= 0:Finite Temperature Effects

Using 3.2.14, we write the continuous version for all the thermodynamic parameters as:

N̄ =

∫ ∞
0

dE ρ(E) f(E) (3.4.1)

U =

∫ ∞
0

dE E ρ(E) f(E) (3.4.2)

Ω = kT

∫ ∞
0

dE ρ(E) ln(1− f(E)) (3.4.3)

Here ρ(E) is the density of states and f(E) is Fermi-Dirac distribution as defined by 3.2.3 and 3.2.9
respectively. The equation of state is quite easy to find in the GCE and can be calculated using the
formula:

PV

kT
= lnZ = −Ω (3.4.4)

The above integrals are incredibly complex and cannot really be solved. They can be decomposed into
some type of L functions but they are another class of unsolvable analytic number theory problems.
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So, what can we really do. Well, we approximate. The previous section completely solves for T=0
and we will use those results to approximate near this region and finally argue when and where this
approximation is decent.

3.4.1 Scheme For Low Temperature Expansion Of The Fermi-Integrals

The motivation for this scheme is the observation that the boundary term produced by doing integra-
tion by parts vanishes if f(E) is chosen to be the function to be differentiated. Hence our aim is to
solve the integrals of the type:

I =

∫ ∞
0

dE h(E) f ′(E)

Since, this is a low temperature expansion, we want our answer of the integral to be in some form of
power series of T. Now the fermi-distribution at T=0 is simply f(E)=Θ(µ−Ef ), where Θ(x) is the step
function. The derivative of this distribution is f’(E)=−δ(µ−Ef ). Now at finite temperatures close to
0, the derivative of the fermi distribution varies violently around the chemical potential (mimicking
the delta function) and dies quickly. Hence the above type of integrals become easier to approximate
when h(E) is a normal smooth continuous function. Integrals like I, can be approximated solely by the
values of the function h(E) and its’ derivatives computed near the region E=µ. The idea is to replace
f’(E) with the delta function and its’ derivatives. Keeping our observations in mind, the following
form is quite apt:

f ′(E) = −δ(µ− E) +
∞∑
n=1

an (kT )n δn(µ− E) (3.4.5)

Here δn is the n-th derivative of the delta function. The following property which can be easily proved
by integration by parts was the reason for such an expansion:∫ ∞

0
dxf(x)δn(x) = (−1)nfn(0) = (−1)n

(
dnf

dx

)
x=0

Another way to compute f’(E) is to directly use the definition 3.2.9 and differentiate it. The result is:

f ′(E) = − 1

kT

e
E−µ
kT

[1 + e
E−µ
kT ]2

(3.4.6)

The constants an can be calculated using:

an =
1

n!(kT )n

∫ ∞
0

dE f ′(E) (µ− E)n (3.4.7)

Now consider the following integral with O being an odd function in the variable (t=E-µ). Our func-
tion f’(E) is an even function in the variable (t=E-µ). Consider the following integral:∫ i∞

0
dE f ′(E)O(E) =

∫ 2µ

0
dE f ′(E)O(E) +

∫ ∞
2µ

dE f ′(E)O(E)
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Due to the odd-even symmetry about E = µ, the first integral vanishes, Further:∫ ∞
2µ

dE f ′(E)O(E) ≈ eµ/kT
∫ ∞

2µ
dE

1

kT
e−E/kT ≈ e−µ/kT → 0

Hence if e−µ/kT is small enough to be ignored then a2k+1 = 0. All odd terms are essentially zero.
Generally this is a valid approximation and works quite well in the region we are trying to produce a
scheme. Now computing the remaining coefficients (here n is even):

an = − 1

n!(kT )n

∫ ∞
0

dE
1

kT

e
E−µ
kT

[1 + e
E−µ
kT ]2

(µ− E)n

Make the following substitution, x≡ E−µ
kT

an = − 1

n!

∫ ∞
−µ/kT

dx
xnex

[1 + ex]2

Again via the same sorcery as before, we can make an insignificant error of e−µ/kT to send the lower
limit to −∞. Since the integral is even in x (n is even), and making the substitution x→ −x,hence:

an = − 2

n!

∫ ∞
0

dx
xne−x

[1 + e−x]2

Expanding 1
[1+e−x]2

into its’ power series to get:

an = − 2

n!

∫ ∞
0

dx

∞∑
α=1

(−1)α+1αxne−αx

Using Dominated Convergence Theorem to interchange the order of sum and the integral

an = − 2

n!

∞∑
α=1

(−1)α+1α

∫ ∞
0

dx xne−αx

Now make the substitution for the integral u≡ αx to get:

an = − 2

n!

∞∑
α=1

(−1)α+1 1

αn

∫ ∞
0

du une−u

Recognize the integral to be the generalized factorial function Γ(n) = n! for integers. This solves to
give:

an = −2
∞∑
α=1

(−1)α+1 1

αn

This looks like the Riemann-Zeta function with alternating signs. This can be easily computed in
terms of the Riemann-Zeta function as:

an = −2
(
1− 21−n) ζ(n)
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Our approxillator scheme is now ready. The definition is given by 4.2.5 and the coefficients are given
by:

an =

{
−2
(
1− 21−n) ζ(n) if n ∼= 0 mod(2)

0 if n ∼= 1 mod(2)
(3.4.8)

Lets finally comment on the validity of this approximation scheme. The approximation is good iff the
errors are small. Mathematically:

0 ≤ e−µ/kT ≪ 1

Now define µ ≡ Ef ≡ kTf as the corresponding energy or associated temperature where the probability
of finding the fermion is 1/2. For the approximation to work well the equation becomes:

Tf
T
≫ 1 =⇒ Tf ≫ T (3.4.9)

3.4.2 Deriving The Thermodynamics Using The Low Temperature Expansion(NR)

Let us compute average particle number using 4.2.1. Applying integration by parts:

N̄ = [f(E)N(E)]∞0 −
∫ ∞

0
dE N(E)f ′(E)

The boundary term simply vanishes. Now using our previous scheme upto first non trivial term (n=2),

a2 = −π2

6 gives

N̄ ≈ N(µ) +
π2k2T 2

6
N ′′(µ) (3.4.10)

Now using 3.2.2-3.2.4, relate:

N(µ) =
gV

6π2
(2mµ)3/2 (3.4.11)

N ′′(µ) =
d2N

dµ2
=
gV

8π2
(2m)3/2 1

√
µ

(3.4.12)

N̄ ≈
√

2m
mgV

3π2

(
µ3/2 +

π2k2T 2

8

1
√
µ

)
(3.4.13)

The relation 4.2.12 can be inverted by expanding µ as a power series in T and comparing the coefficients
of T on both sides. Since we only introduced the first term from our approxillator, it makes sense to
expand only upto T 2 to get:

µ(T ) ≈ µ(0)− π2k2T 2

12

1

µ(0)
(3.4.14)

µ(0) ≡ kTf ≡ Ef =
1

2m

(
6π2N̄

gV

)2/3

(3.4.15)
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The energy Ef is now the energy where the probability of finding the fermion is 1/2.
Now let us determine the internal energy using 4.2.2. Before starting that calculation define:

β(E) = Eρ(E) =
V

4π2
(2mE)3/2

β1(E) =

∫
dE β(E) =

gV

10π2
(2m)3/2E5/2 (3.4.16)

Now:

U = [f(E)β1(E)]∞0 −
∫ ∞

0
dE β1(E)f ′(E)

The boundary term simply vanishes. Now using our previous scheme upto first non trivial term (n=2),

a2 = −π2

6 gives

U ≈ β1(µ) +
π2k2T 2

6
β′′1 (µ) (3.4.17)

Now using using our approxillator scheme, relate:

β1(µ) =
gV

10π2
(2m)3/2µ5/2 (3.4.18)

β′′1 (µ) =
d2β1

dµ2
=

gV

10π2
(2m)3/2 15

√
µ

4
(3.4.19)

U ≈ (2m)3/2 gV

4π2

[
2

5
µ5/2 +

π2k2T 2

4

√
µ

]
(3.4.20)

Now use 4.2.13 to expand µ as a power series in T and ignore O(T 3) and higher terms. Now the
expression becomes:

U = (2m)3/2 gV

4π2

[
2

5
[µ(0)]5/2 +

π2k2T 2

6

√
µ(0)

]
(3.4.21)

To compute the entropy, we first calculate the specific heat at constant volume:

CV =

(
∂U

∂T

)
N̄,V

= (2m)3/2 gV

4π2

√
µ(0)

π2k2T

3

Using 4.2.14, this can be reduces to a more known form:

CV =
N̄π2k2

2

T

µ(0)
=
N̄π2k

2

T

Tf
(3.4.22)

Now the entropy can be calculated easily. Note that Tf is a constant at a process where Q=CV dT as
both N̄andV are conserved during the process. Hence

S =

∫ T

0

CV
T
dT (3.4.23)

S =
N̄π2k

2

T

Tf
(3.4.24)
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Note unlike the classical limit, the specific heat goes to 0 as T → 0. Finally, lets calculate the pressure
in the low temperature expansion. For this we need to compute the GCE potential function first.

Ω = −kT
∫ ∞

0
dE ρ(E) ln(1 + e

µ−E
kT )

Performing integration by parts and realizing that the boundary terms vanish we have:

Ω = −
∫ ∞

0
dE N(E) f(E)

Applying integration by parts again to get:

Ω =

∫ ∞
0

dE β2(E) f ′(E) (3.4.25)

Where

β2(E) =

∫
dE N(E) =

gV

15π2
(2m)3/2E5/2

Now:

−Ω ≈ β2(µ) +
π2k2T 2

6
β′′2 (µ) (3.4.26)

Now using using our approxillator scheme, relate:

β2(µ) =
gV

15π2
(2m)3/2µ5/2 (3.4.27)

β′′2 (µ) =
d2β2

dµ2
=

gV

15π2
(2m)3/2 15

√
µ

4
(3.4.28)

−Ω ≈ (2m)3/2 gV

15π2

[
µ5/2 +

15π2k2T 2

24

√
µ

]
(3.4.29)

Now use 4.2.13 to expand µ as a power series in T and ignore O(T 3) and higher terms. Now the
expression becomes:

−Ω = (2m)3/2 gV

15π2

[
[µ(0)]5/2 +

5

12
π2k2T 2

√
µ(0)

]
(3.4.30)

Rearranging, to get to a familiar form:

−Ω = (2m)3/2 gV

15π2
[µ(0)]5/2

[
1 +

5

12
π2k2T 2 1

[µ(0)]2

]
=

{
2

3

gp5
f

20π2m

}
V

[
1 +

5

12
π2k2T 2 1

E2
f

]
Recognizing that the first term in the { } brackets is simply the pressure exerted by the NR Fermi
gas at T=0. Making this final substitution gives:

−Ω = P0V

[
1 +

5

12
π2k2T 2 1

E2
f

]
(3.4.31)

Using the equation 4.2.4 to finally get the pressure:

P = P0V

[
1 +

5

12
π2k2T 2 1

E2
f

]
(3.4.32)

All the above formulae reduce to the ones obtained in section 4.1.3 as T→ 0.
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3.4.3 Deriving The Thermodynamics Using The Low Temperature Expansion(UR)

The only difference in this section will be the fact that we will use the highly relativistic formula for
the energy and then redo the calculations. I will be using the natural units (~ = c = 1). Hence:

Non−Relativistic Regime→ Ultra Relativistic Regime

pf =
√

2mEf → pf = Ef (3.4.33)

Since the calculations are simple reproductions of section 4.2.2, hence I will skip a few steps this time
around. The major difference is the functional form of density of the density of states. In section 4.2.2
it was given by equation 3.2.3. However this time around it is given by 4.1.4 as

dN

dE
=
gV

2π2
E2 (3.4.34)

The number density is given by:

N̄ ≈ N(µ) +
π2k2T 2

6
N ′′(µ) (3.4.35)

Now using equation 4.2.35, relate:

N(µ) =
gV

6π2
µ3 (3.4.36)

N ′′(µ) =
d2N

dµ2
=
gV

6π2
6µ (3.4.37)

N̄ =
gV

6π2

(
µ3 + π2k2T 2µ

)
=
gV

6π2
µ3

(
1 +

π2k2T 2

µ2

)
= N0

(
1 +

π2k2T 2

E2
f

)
(3.4.38)

The factor N0 is exactly equal to the number of particles at T=0 with fermi energy Ef . The relation
4.2.12 can be inverted by expanding µ as a power series in T and comparing the coefficients of T on
both sides. Since we only introduced the first term from our approxillator, it makes sense to expand
only upto T 2 to get:

µ(0) ≡ kTf ≡ Ef =

(
6π2N̄

gV

)1/3

(3.4.39)

µ(T ) ≈ µ(0)− π2k2T 2

3

1

µ(0)
= Ef

[
1− π2k2T 2

3E2
f

]
(3.4.40)

The energy Ef is now the energy where the probability of finding the fermion is 1/2.
The calculation of internal energy leads to:

U = [f(E)β1(E)]∞0 −
∫ ∞

0
dE β1(E)f ′(E)
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The boundary term simply vanishes. Now using our previous scheme upto first non trivial term (n=2),

a2 = −π2

6 gives

U ≈ β1(µ) +
π2k2T 2

6
β′′1 (µ) (3.4.41)

Now using using our approxillator scheme, relate:

β1(µ) =
gV

8π2
(2m)µ4 (3.4.42)

β′′1 (µ) =
d2β1

dµ2
=
gV

8π2
12µ2 (3.4.43)

U ≈ gV

8π2

[
µ4 + 2π2k2T 2µ2

]
(3.4.44)

Now use 4.2.39 to expand µ as a power series in T and ignore O(T 3) and higher terms. Now the
expression becomes:

U =
gV

8π2

[
[µ(0)]4 +

2π2k2T 2

3
[µ(0)]2

]
=
gV

8π2
E4
f

[
1 +

2π2k2T 2

3E2
f

]
= U0

[
1 +

2π2k2T 2

3E2
f

]
(3.4.45)

The preceding factor is exactly equal to the energy computed at T=0 To compute the entropy, we
first calculate the specific heat at constant volume:

CV =

(
∂U

∂T

)
N̄,V

=
gV µ(0)3

6π2

π2k2T

3µ

CV = N̄π2k
T

Tf
(3.4.46)

The specific heat in the UR region is double than that of the NR region. Now the entropy can be
calculated easily. Note that Tf is a constant at a process where Q=CV dT as both N̄ and V are
conserved during the process. Hence

S =

∫ T

0

CV
T
dT (3.4.47)

S = N̄π2k
T

Tf
(3.4.48)

The GCE potential function is given by:

Ω =

∫ ∞
0

dE β2(E) f ′(E) (3.4.49)

Now:

−Ω ≈ β2(µ) +
π2k2T 2

6
β′′2 (µ) (3.4.50)
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Now using using our approxillator scheme, relate:

β2(µ) =
gV

24π2
µ4 (3.4.51)

β′′2 (µ) =
d2β2

dµ2
=

gV

24π2
12µ2 (3.4.52)

−Ω ≈ gV

24π2

[
µ4 + 2π2k2T 2µ2

]
(3.4.53)

Now use 4.2.39 to expand µ as a power series in T and ignore O(T 3) and higher terms. Now the
expression becomes:

−Ω =
gV

24π2

[
[µ(0)]4 +

2

3
π2k2T 2[µ(0)]2

]
(3.4.54)

This can be re-arranged to get:

−Ω = P0

[
1 +

2

3

π2k2T 2

E2
f

]
(3.4.55)

P0 =
1

3

gV

8π2
E4
f (3.4.56)

Note that P0 is the same pressure as exerted in the UR case at T=0. Now the pressure is given by:

P = P0

[
1 +

2

3

π2k2T 2

E2
f

]
(3.4.57)

34



3.4.4 Analysis Of The Results Obtained

The NR and UR analysis covers the extreme ends of the relation of energy with mass and momentum.
If we closely look at our equations (this is much more apparent in the UR results), we find that upto
the lowest vanishing order of the power series expansion in temperature all computed thermodynamic
quantities have the following relation for relative error in both the extremes:

∆Q

Q0
= α

(
T

Tf

)2

(3.4.58)

Here α ∈ [1, 10] and hence is an O(1) constant and Q is some thermodynamic quantity. This formula
should work well even in the general relativistic region as in physics the values of any thermodynamic
function smoothly varies as we go from NR to UR region wherein this formula is valid. The important
thing to notice is that the growth is quadratic.

(a) Quadratic Variation In Relative Error

(b) Plot For Electrons In Metals

Figure 11: Temperature Range In Which Our Scheme Works

Graph 11(a) suggests that if 1% is an acceptable error then we stretch our approxillator scheme to
roughly t/tf → .1. To put into perspective what this actually means, we have plotted 11(b). This
plot is for electrons in metals. The fermi temperature is connected with the number density which is
why we have set it as a parameter. Typical densities of electrons in metals vary from 2-10 * 1028/m3

which correspond to a fermi temperature of 1-10 *105 K. As we can see that percentage error is 0.25%
even at 20000K for the metal with lower electron density. This is well beyond the room temperature.
Of course this assumes that the metal retains its form at the temperature else there will be serious
density fluctuations. Although, it might not look like that but we have developed a good scheme to
approximate the basic thermodynamic functions.
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Chapter 3:
Statistical Mechanics Of

Ideal Bose Gas
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4 Solving The Ideal Bose Gas

Unfortunately, this section will be quite similar to my previous one. The major difference would be that
I would be trying to solve the system of bosons. I will try to compute the pressure, chemical potential
and other thermodynamic properties of a system of N (macroscopically large number) particles confines
in a box (cube) of volume V at a certain temperature T with periodic boundary conditions. I will
mainly be using the Canonical or the Grand Canonical Ensemble to solve the problem. The system
is composed of bosons and hence will be following a Bose distribution and the aim of this exercise is
to solve the free boson gas for various cases and interpret the results.
This section is mainly divided into two parts: one to solve the highly relativistic limit (massless limit)
in terms of known massless bosons. I have used photons in a black body and phonons in solids
to show the massless limit behaviour of the ideal bose gas. The second part solves heavy bosons
in the classical/non-relativistic limit. I have not solved the general relativistic version as it is a
repetition of the classical limit with a more complex formula for the energy-momentum relation and
is computationally tedious.

4.1 Quantum Particle In A Box

The solution for particle in a cubical box with length parameter L given by:

Ψ(x, y, z, t) = N exkx+yky+zkz−ωt (4.1.1)

Here, N is the normalization constant. The periodic boundary conditions reads:

Ψ(x, y, z, t) = Ψ(x+ L, y, z, t) = Ψ(x, y + L, z, t) = Ψ(x, y, z + L, t) (4.1.2)

This leads to the following solution:

ki =
2π

L
ni where i ∈ {x, y, z} and ni ∈ Z (4.1.3)

Here all values of ni lead to new solution.This happens because the repeated boundary conditions
allow the presence of waves moving in both forward and backward directions with respect to an axis
which is in contrast with the strict box boundary conditions where only the standing waves survived.
In shorthand, the above equation is written in vector form as:

~k =
2π

L
~n (4.1.4)

Here ~k − kxî + ky ĵ + kzk̂ and ~n − nxî + ny ĵ + nzk̂. Equation 3.1.4 suggests that in the k-space each

allowed state has a volume of (2π)3

V with V being the volume of the cubical box. In contrast with the
strict boundary conditions, each allowed state has twice the volume. The states are both orthonormal
and complete which is given as:∫

d3~r ψ∗nxnynz(~r) ψmxmymz(~r) = δnxmxδnymyδnzmz (4.1.5)∑
nxnynz

ψ∗nxnynz(~r) ψnxnynz(~p) = δ3(~r − ~p) (4.1.6)

Here δ3 is the dirac-delta function in three dimensions and δnxmx represents the Kronecker delta
function.
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4.2 Basic Tools Required To Solve The Problem

4.2.1 Concept Of Density Of States

The concept remains the same as in the previous draft, however a will be showing a second method
to compute density of states which is often more useful. To jog up the memory, here are the relevant
definitions. Before defining the concept of density of states, let us first define the following quantity:

N(E) =
∑

nxnynz

Θ(E − Enxnynz)

Here, Θ denotes the step function. This function N(E) calculates the number of available states
with energy ≤ E. Define density of states as ρ(E) which denotes the instantaneous number of states
available at energy E:

ρ(E) =
dN

dE
=

∑
nxnynz

δ(E − Enxnynz) (4.2.1)

The derivative of step function is the dirac-delta function. Now, let us begin to compute this important
parameter for our periodic boundary conditions. The total number of available states (N) in the k
space within appropriate boundaries are:

N =
∑
~k

(4.2.2)

Now using 3.1.4, if V → ∞ then essentially we have a continuum of states in the k-space. Hence
within a k-space volume of dkxdkydkz we have:

N =
∑
~k

→ V

(2π)3

∫
dkxdkydkz

Now we just have to integrate over the volume contained within the appropriate boundary. Switch-
ing over to polar coordinates (boundary is generally spherical due to symmetry of the problem and
solution) we have:

N =
4πV

(2π)3

∫
k2dk =

∫ [
V

(2π)3
4πk2 dk

dE

]
dE

Compare this to the well-known formula:

N =

∫ [
dN

dE

]
dE

And voila we get the formula for density of states as:

dN

dE
=

V

(2π)3
4πk2 dk

dE
(4.2.3)

Of course, the relation between k and E will depend on the nature of the problem (eg:Non-Relativistic,
Ultra-Relativistic etc) and hence would finally affect the expression for the density of states. The only
assumption made during this process is that E = E(|~k|)=E(k). This is quite a reasonable assumption
since we will be working with systems which are isotropic in space (the system has no preferred sense
of direction).
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4.2.2 Attacking The Problem Via Grand Canonical Ensemble (GCE)

In this section, we will be deriving the Bose distribution which is simply the average occupation
number of a particular quantum state for free bosons energy spectrum. All the other formulae will
follow the fermion case with fermi distribution being replaced by bose distribution (See my May draft
for more details). In the non-interacting case each individual quantum state can be labeled by (~k, s)
denoting quantum numbers for momentum and spin respectively. Each micro-state can be described
as a collection of all occupation numbers {n~k,s = 0, 1, 2...} ≡ {n~k,s} A system with N particles with

occupation number n~k,s for quantum level (~k, s) can be completely described as:

N{~k,s} =
∑
~k,s

n~k,s

E{~k,s} =
∑
~k,s

n~k,s ε~k,s

Using the above decomposition the partition function in the GCE for bosons can be derived using the
following generating function:

Z =
∏
~k,s

 ∞∑
n~k,s=0

e
n~k,s

µ−ε~k,s
kT

 (4.2.4)

Since bosons can have any occupation number in each state, Thus, the sum goes to infinity. 3.2.4 can
be reduced to:

Z =
∏
~k,s

(
1

1− e−β(ε~k,s−µ)

)
(4.2.5)

log(Z) = −
∑
~k,s

log(1− e−β(ε~k,s−µ)
) (4.2.6)

Here β = 1/(kT ). Formula 3.2.5 is conditioned upon the fact:

ε~k,s − µ ≥ 0 ∀ ~k =⇒ µ ≤ 0 (∵ εgs = 0) (4.2.7)

The ensemble average occupation number for a state labeled by (~p, s′) is:

〈~p, s′〉 =
1

Z

∞∑
N=0

∑
{~k,s}

n~k,s=N∑
{~k,s}

n~p,s′e

∑
~k,s

−β(ε~k,s−µ)

= − 1

β

∂

∂ε~p,s′
log(Z)

Now, all that is left is to substitute to get the famous bose distribution:

〈~k, s〉 =
1

e
β(ε~k,s−µ) − 1

(4.2.8)
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4.3 Photons

Problem Setup - Consider EM radiation enclosed within a cavity of volume V and an equilibrium
temperature T. The cavity is assumed to be sufficiently large so that the equilibrium thermodynamic
properties are independent of the nature of the nature of the wall and other boundary conditions. Of
as explained earlier, we always presume repeated boundary conditions.
The quantum theory of radiation says that a photon corresponding to a plane-wave of electromagnetic
radiation with electric field vector E(r,t)

E(r, t) = εei(k·r−ωt) (4.3.1)

has a frequency ω with the following properties:

Energy = ~ω (4.3.2)

Momentum = ~k, |k| = ω

c
(4.3.3)

Polarization vector = ε, |ε| = 1, k · ε = 0 (4.3.4)

Here c is the speed of light. The polarization vector (ε) has only two degrees of freedom due to the
Maxwell equation for divergence of electric field. This is reflected in the fact that photon must always
move with a constant speed of ’c’. The energy for a state of EM field having nk,ε photons of momentum
vector k and polarization vector ε is:

E {nk,ε} =
∑
k,ε

~ωnk,ε

ω = c|k|
nk,ε = 0, 1, 2, . . .

(4.3.5)

Since atoms at the boundary can emit/absorb photons freely, the total number of photons is not a
conserved quantity. Hence the number of photons is indefinite which is equivalent to the statement
that chemical potential µ=0 for photons. Hence the partition function of the CE and the GCE will
be the same. The CE partition function is given as:

Q =
∑
{nk,ε}

e−βE{nk,ε} (4.3.6)

This can be solved as:

Q =
∑
{nk,ε}

exp

−β∑
k,ε

~ωnk,ε

 =
∏
k,ε

∞∑
n=0

e−β~ωn =
∏
k,ε

1

1− e−β~ω (4.3.7)

logQ = −
∑
k,ε

log
(

1− e−β~ω
)

= −2
∑
k

log
(

1− e−β~ω
)

(4.3.8)
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Here the factor of 2 comes from summing up the ε variable (each polarization provided 2 degrees of
freedom). The average occupation number for photons of momentum k, independent of polarization
is:

〈nk〉 = − 1

β

∂

∂(~ω)
logQ =

2

eβ~ω − 1
(4.3.9)

After 4.3.8, the job of calculating thermodynamic parameters becomes mechanical. The internal
energy is given by:

U = − ∂

∂β
logQ =

∑
k

~ω 〈nk〉 (4.3.10)

The pressure can be calculated by using the formula:

P =
1

β

∂

∂V
logQ(V, β)

The formula of log Q as given by 4.3.8 is not in the correct form to take the partial derivative with
respect to V. Hence, we must first change it into appropriate form. This can be done using 4.3.5 and
4.3.4 to arrive at:

logQ = −2
∑
n

log
(

1− e−β~c2π|n|V −1/3
)

Now, the pressure of the system can be computed and it comes out to be:

P =
1

3V

∑
k

~ωk 〈nk〉 (4.3.11)

Combining 4.3.11 and 4.3.10, we get the equation of state:

PV =
1

3
U (4.3.12)

Now this is an excellent opportunity to derive the Stephan-Boltzmann law and the Wien’s displacement
Law for black bodies. To arrive to these classical laws we must first take the V →∞ limit to change
the sum into the integrals. Using:

As V →∞
∑
k

→
∫ ∞

0

V

(2π)3
4πk2dk

and equations 4.3.5, 4.3.8 and 4.3.9, we now arrive at the integral version of U:

U =
2V

(2π)3

∫ ∞
0

dk4πk2 ~ck
eβ~ck − 1

=
V ~
π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
(4.3.13)

Using 4.3.13, define the internal energy per unit volume:

U

V
=

∫ ∞
0

dω u(ω, T ) (4.3.14)

u(ω, T ) =
~

π2c3

ω3

eβ~ω − 1
(4.3.15)
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The above equations can be solved (see Appendix A1 for explicit solution) to give the internal energy
per unit volume and specific heat per unit volume:

U

V
=
π2

15

(kT )4

(~c)3
(4.3.16)

cV =
4π2k4T 3

15(~c)3
(4.3.17)

Equation 4.3.15 might trouble you as the specific heat per unit volume blows up at temperature goes
to infinity. This is however not a problem as in addition to indefinite number of photons we have also
allowed for all possible photon modes (frequencies). As T → ∞, the average occupation number in
each mode becomes finite and in some sense the ensemble average for number of photons blows up to
infinity. Looking at 4.3.15 and carefully understanding the description of the problem solved, one can
loosely argue the number of available modes to photon at any temperature T is O(T 3).
Now assume that the black body is allowed to interact with the surroundings through an exit window.
The intensity of the radiation in form of photons with frequency ω is:

I(ω, T ) = c

∫
u(ω, T ) cos θ

dΩ

4π
=
cu(ω, T )

4π

∫ 2π

0

∫ 0

π/2
[−cos(θ)] d(−cos(θ)) dφ =

c

4
u(ω, T ) (4.3.18)

The intensity of radiation radiated by a black body at temperature T can be found using:

I(T ) =

∫ ∞
0

dω I(ω, T ) = σT 4

σ =
π2k4

60~3c3

(4.3.19)

Equation 4.3.19 (See Appendix A1 for solution) gives the famous Stephan-Boltzmann Law. The peak
of the I(ω,T) at a certain temperature T can be found by setting the partial derivative with ω → 0.
Using: 4.3.18 and 4.3.15 we have:

∂I(ω, T )

∂ω
=

~
4π2c2

1

(eβ~ω)2
ω2
[
eβ~ω(β~ω − 3) + 3

]
(4.3.20)

∂I(ω, T )

∂ω
= 0 =⇒ eβ~ω(β~ω − 3) + 3 = 0 (4.3.21)

Equation 4.3.21 can be solved (See Appendix A2 for solution) to give

β~ω = 2.82144 = Constant (4.3.22)

The above equation can be written in terms of wavelength of radiation λ and temperature T as:

λT = C ′ =
h

2.82144 ∗ kB
= Constant (4.3.23)

λ ∝ 1

T
(4.3.24)

Equation 4.3.24 gives the famous Wien’s displacement law. It says that the peak intensity of radiation
by a black body changes as its temperature changes and the wavelengths corresponding to those peaks
is inversely proportional to the temperature. The graph in Figure 12 shows this explicitly:
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Figure 12: (1)The area under the curve ∝ T 4 by Stephan-Boltzmann Law and (2)The peak shifts
towards higher frequency or lower wavelength with increasing temperature by Wien’s Displacement
Law[5]

4.4 Phonons In Solids

Problem Setup: For low-lying excitations in the solids (no anharmonic terms in the hamiltonian), the
Hamiltonian can be expresses as a sum of simple harmonic oscillators with frequency ω where each
frequency corresponds to a normal mode of lattice oscillation. Assuming, the number of atoms to be
N in the lattice; the maximum number of available modes is 3N.
In quantum theory every single of these normal modes give rise to a quanta called phonon. At low
temperatures, the quantum state of the lattice can expressed by enumerating all the phonons present
in the lattice. A small change of perspective and the statement becomes that at low temperatures a
solid can be thought of as a gas of non-interacting phonons. A phonon with a characteristic frequency
ω has the following properties:

Energy = ~ω (4.4.1)

Momentum = ~k, |k| = ω

c
(4.4.2)

Here c is the speed of the sound wave propagating in solid and not the speed of light. Although
phonons are massless, they are not bounded to move with a particular velocity, c. This is further
reflected in the polarization vector which has 3 degrees of freedom for phonons (unlike photon which
had only 2) Thus, possessing both transverse and longitudinal modes of oscillation. To make the
problem easier, we assume an isotropic medium which means that the speed ’c’ of sound wave is
independent of the polarization vector. A single phonon of frequency ω corresponds to pressure wave,
generally called a sound wave of the form:

P(r, t) = εei(k·r−ωt) (4.4.3)
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Here ε is the polarization vector. Since any allowed mode may occupy number of quanta, the Bose
statistics is followed by the bosons. Further the atoms of the lattice can freely absorb or emit phonons.
Hence we don’t have any conservation of number of phonons equivalently, the chemical potential is 0
(µ = 0). However, the maximum number of allowed modes in 3N with N being the number of atoms
in the lattice.
Now, we cam begin to work on our problem. Before starting it, let us first find the transformation for
going from discrete sums to continuous integrals for phonons. To develop this scheme we will be using
the Debye model where one considers the solid to be an elastic continuum of volume V. The frequencies
are then taken to be the lowest 3N normal frequencies of the system. The boundary conditions here
are again the periodic boundary conditions.

∑
k,ε

= 3
∑
k

→ 3V

(2π)3

∫
4πk2 dk

=⇒
∫ [

3V

(2π)3
4πk2 dk

dω

]
dω =

∫
f(ω) dω

Now, we can define the density of modes using 4.4.2 as:

f(ω)dω = V
3ω2

2π2c3
dω (4.4.4)

The cut-off frequency can be computed using the fact that only the lowest 3N modes are available:∫ ωm

0
f(ω) dω = 3N =

3N∑
wi=1

(4.4.5)

Equation 4.4.5 gives the formulation for conversion from the discrete to the continuous limit. This
solves to give the cut-off frequency ωm and the wavelength corresponding to it as:

ωm = c

(
6π2N

V

)1/3

(4.4.6)

λ. =
2πc

ωm
=

(
4πV

3N

)1/3

≈ inter − particle distance (4.4.7)

Equation 4.4.6 makes a lot of sense as it suggests the displacements of the order of inter-particle
distance produces sound waves in the lattice. Finally, we can really begin to solve. Consider the
energy of a lattice state consisting of ni phonons of the ith type.

E {ni} =
3N∑
i=1

ni~ωi (4.4.8)

The CE partition function is:

Q =
∑
{ni}

e−βE{nt} =

3N∏
i=1

1

1− e−β~ωt
(4.4.9)

logQ = −
3N∑
i=1

log
(

1− e−β~ωt
)

(4.4.10)
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The average occupation number for each state is (same logic as for photons):

〈ni〉 = − 1

β

∂

∂ (~ωi)
logQ =

1

eβhωi − 1
(4.4.11)

As expected, this is the Bose statistics. The internal energy can be computed as:

U = − ∂

∂β
logQ =

3N∑
i=1

~ωi 〈ni〉 =
3N∑
i=1

~ωi
eβ~ωi − 1

(4.4.12)

Going to the continuous limit and solving the continuous version of 4.4.12 (See Appendix B1 for
solution), to get:

U

N
= 3kTD(TD/T ) =


3kT

(
1− 3

8
TD
T + · · ·

)
(T � TD)

3kT

[
π4

5

(
T
TD

)3
+O

(
e−TD/T

)]
(T � TD)

(4.4.13)

Here D(x) is the Debye function and TD is the Debye Temperature defined as:

D(x) ≡ 3

x3

∫ x

0
dt

t3

et − 1
(4.4.14)

TD =
~ωm
k

(4.4.15)

Equation 4.4.13 can be used to compute the specific heat for the solid (See Appendix B2 for calcula-
tion). The high and low temperature limits wrt Debye temperature come out to be:

CV =


3Nk

[
1− 1

20

(
TD
T

)2
+ · · ·

]
(T � TD)

12Nkπ4

5

(
T
TD

)3
+O

(
e−TD/T

)
(T � TD)

(4.4.16)

Equation 4.4.16 is one of the greatest achievements of quantum mechanics for condensed matter
physics. The equation predicts that the specific heat goes to 0 as ∼ T 3 thus, verifying the third law of
thermodynamics. Further the high temperature limit gives the famous Dulon-Petit Law, CV = 3Nk.
Note that our model is only valid until anharmonic terms can be ignored from the Hamiltonian. Once
they can no longer no ignored, from a quantum point of view the phonons become interacting and our
analysis breaks down.
Still 4.4.16 is a beautiful equation which can be much more appreciated from the following graph:
The pressure calculation is exactly same to that of the photon case and will not be repeated here.
The equation of state is again PV = U/3 which can be used to compute the pressure of the system.

4.5 Study Of Non-Relativistic Massive Bosons

The Model - Consider a gas of N non-interacting, non-relativistic massive bosons of mass m within a
cubical box of volume V=L3. The Hamiltonian and the energy spectrum is is:

Ĥ =
p̂2

2m
= − ~2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
(4.5.1)

εk,s = εk =
~2k2

2m
(4.5.2)
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Figure 13: The Graph For Specific Heat Of Solids Via Debye Scheme[5]

The states are indexed by the quantum numbers for the momentum (p = ~k) and spin. Since there
is no magnetic field, the energy states are spin degenerate. Before starting the problem, lets find the
formula for transformation between the discrete and continuous limits as V →∞.∑

~k,s

→ g
∑
~k

→ gV

(2π)3

∫
4πk2 dk →

∫ [
gV

(2π)3
4πk2 dk

dε

]
dε

Using 4.5.2, we finally have:

∑
~k,s

→
∫ [

gV

4π2

(
2m

~2

)3/2√
ε

]
dε (4.5.3)

Using the formulae derived in section 3.2.3 and equation 4.3.3 we have the following formulae in the
continuous limit:

logZ = −V g

4π2

(
2m

~2

) 3
2
∫ ∞

0
dε
√
ε log

(
1− e−β(ε−µ)

)
(4.5.4)

The ensemble average for number of particles and internal energy is:

〈N〉 = V
g

4π2

(
2m

~2

) 3
2
∫ ∞

0
dε
√
ε

1

eβ(ε~k−µ) − 1
(4.5.5)

U = V
g

4π2

(
2m

~2

) 3
2
∫ ∞

0
dε ε

3
2

1

eβ(ε~k−µ) − 1
(4.5.6)

The pressure can be computed using P = 1
β
∂ logZ
∂V to get:

P = −kT g

4π2

(
2m

~2

) 3
2
∫ ∞

0
dε
√
ε log

(
1− e−β(ε−µ)

)
(4.5.7)
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Using integration by parts, we have:

P =
2

3

g

4π2

(
2m

~2

) 3
2
∫ ∞

0
dε ε

3
2

1

eβ(ε~k−µ) − 1
=

2

3

U

V
(4.5.8)

This also gives the equation of state PV = 2
3U .All the above integrals depend on the general integral

of the type:

Iν(β, βµ) =

∫ ∞
0

dε
εν

eβ(ε−µ) − 1
=

Γ(ν + 1)

βν+1
gν+1 (z) (4.5.9)

gν(x) =

∞∑
k=1

xk

kν
(4.5.10)

z = eβµ (4.5.11)

To see, how the integral was solved See Appendix C1. In the newer notation, the formulae looks
cleaner:

n =
〈N〉
V

=
g

4π2

(
2m

~2

) 3
2 Γ
(

3
2

)
β

3
2

g 3
2
(z) (4.5.12)

u =
U

V
=

g

4π2

(
2m

~2

) 3
2 Γ
(

5
2

)
β

5
2

g 5
2
(z) (4.5.13)

4.5.1 The High Temperature Limit

Being a physicist has some great perks. We can approximate without any remorse and this is what
we will use to solve the high temperature limit and then examine the validity of that limit. The high
temperature limit is classical. This is realized in the following way:

z = eβµ � 1 as T →∞

This can be used to approximate the Bose integral using the above criterion in the following manner:

Iν(β, βµ) =

∫ ∞
0

dε
εν

eβ(ε−µ) − 1
≈
∫ ∞

0
dεενe−β(ε−µ) =

Γ(ν + 1)

βν+1
eβµ (4.5.14)

Refer to Appendix C1 for the solution of the integral. Equation 4.5.14 is the approximated version of
the Drichlet-Reimann function defined in 4.5.10 where only first terms of the expansion are considered.
This actually allows us to solve equations for n and U exactly to give:

n =
g

4π2

(
2m

~2

) 3
2 Γ
(

3
2

)
β

3
2

eβµ =
g

λ3
eβµ (4.5.15)

1

λ
=

√
2πmkT

h2
(4.5.16)

U = V
g

4π2

(
2m

~2

) 3
2 Γ
(

5
2

)
β

5
2

eβµ =
3

2β
V n =

3

2
〈N〉kT (4.5.17)
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Equation 4.5.16 is also consistent with the law of equi-partition of energy. We had only 3 degrees
of freedom in the Hamiltonian which corresponded to 3 translational degree of freedom in space.
Equation 4.5.15 can be easily inverted to solve for the chemical potential to get:

µ = −kT log

(
gV

〈N〉

(
2πmkT

h2

) 3
2

)
(4.5.18)

The pressure of the gas can be computed using the equation of state.

PV =
2

3
U = 〈N〉kT (4.5.19)

All the relations from 4.5.15-4.5.19 are classical relations holding for both the fermi and bose gases.
The reason behind this is that the bose distribution and the fermi-distribution match each other in
the high temperature limit. This is encoded in the following relation and is the reason why we don’t
have any sense of bosons and fermions at the classical level.

1

eβ(ε−µ) + 1
≈ 1

eβ(ε−µ) − 1
≈ e−β(ε−µ) � 1 as T →∞ (4.5.20)

Now let’s check the validity of the approximation made. The approximation fails if:

z =
nλ3

g
∼ 1→ n =

g

λ3
= g

(
2mπkBTD

h2

) 3
2

This leads to:

kBTD =
h2

2mπ

(
n

g

) 2
3

(4.5.21)

Hence our approximation works iff T>TD. Further, equation 4.5.21 is ridiculously close (just off by
a constant factor) for the definition of the fermi-temperature for a fermi gas which was arrived using
the perturbation theory (Equation 3.4.15). I believe that this is quite a self-consistent achievement.

4.5.2 The Low-Temperature Limit

The low temperature limit for bosons is much more interesting than fermions. As T → 0 the fugacity
z → 1 which leads to a unique situation. If you look at the integral versions of the thermodynamic
parameter, you quickly realize that the contribution of ground state is being ignored since it is a
boundary point for the integral. The unique situation that arises due to z → 1 is that finite fraction
of molecules are found in the ground state whose contribution we are ignoring. Hence, to solve the
low temperature limit we separate the ground state contribution during the discrete version and then
move to the continuous limit. This leads to the following equations:

P

kT
= −4gπ

h3

∫ ∞
0

dpp2 log
(

1− ze−βp2/2m
)
− g

V
log(1− z) (4.5.22)

1

v
=
〈N〉
V

=
4gπ

h3

∫ ∞
0

dpp2 1

z−1eβp2/2m − 1
+
g

V

z

1− z
(4.5.23)
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Here p is the momentum variable (~k). Solving the Bose integrals (using Appendix C1) we have:

P

kT
=

g

λ3
g5/2(z)− 1

V
log(1− z) (4.5.24)

1

v
=

g

λ3
g3/2(z) +

g

V

z

1− z
(4.5.25)

Figure 14: The Graph of g3/2(z) ∈ [0, 1] in the relevant region[5]

Here λ and the function gν(x) is defined by equations 4.5.16 and 4.3.10 respectively. The above
analysis suggests that the group state average occupation number is 〈n0〉 = gz

1−z . To understand
bosons, we must first understand the Drichlet-Reimann function corresponding to equation 4.5.25,
g3/2(z). Since for bosons z ∈ [0, 1], we only consider this interval. Luckily for us these functions are
studied in mathematics extensively. First, let’s look at the graph of g3/2(z). The graph is monotonically
increasing in the required regions and converges on both the boundary points.
From 4.5.25 and figure 14. we realize that:

λ3〈n0〉
gV

=
λ3

gv
− g3/2(z)

Hence 〈n0〉 is finite (due to particle number conservation) when:

λ3

gv
> g3/2(1) = ζ(3/2) (4.5.26)

The relation 4.5.26 describes a region in the P-V-T space separating the two thermodynamic phases,
one with ~p = 0 and the other ~p 6= 0. The ~p = 0 region is called the condensation region separated
from the other region by the surface λ3

gv = g3/2(1).
Now let’s define some parameters. For a given specific volume, define the specific temperature as:

kTc =
2π~2/m[
vg3/2(1)

]2/3 (4.5.27)

Also for a given isotherm at temperature T, define a critical volume:

vc =
λ3

g3/2(1)
(4.5.28)
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Thus, the condensation region lies within T < Tc or v < vc. Hence, in the contnuous limit we have
the following solution for fugacity:

z =

 1
(
λ3

gv ≥ g3/2(1)
)

the root of g3/2(z) = λ3/gv
(
λ3

gv ≤ g3/2(1)

 (4.5.29)

Now let’s look at the expression of 〈n0〉 using the equations 4.5.23 and 4.5.27 for T < Tc.

N = 〈n0〉+ g

(
2πmkBT

h2

) 3
2

ζ

(
3

2

)
N = g

(
2πmkBTc

h2

) 3
2

ζ

(
3

2

)
〈n0〉 = N

[
1−

(
T

Tc

) 3
2

]

The second equation is by definition of the critical temperature. Hence:

〈n0〉
N

=

 0
(
λ3

gv ≤ g3/2(1)
)

1−
(
T
Tc

)3/2
= 1− v

vc

(
λ3

gv ≥ g3/2(1)
) (4.5.30)

Figure 15: Average Occupation Number of Bosons In Ground State[5]

This phenomenon is called the Bose-Einstein condensation wherein at low temperatures (T< Tc) the
bose gas particles are divided into two phases, a finite fraction occupying the ground state and the
rest spread thinly over the remaining levels. Now let’s look at whats happens to other thermodynamic
parameters.
First let’s take a looks at energy.

E =
∑
{~k,s}

ε~kn~k,s =
∑
{~k 6=0,s}

ε~kn~k,s (4.5.31)

Since, the ground state energy is 0, it does not contribute to the internal energy. Hence the form of
internal energy remains the same. Now lets look at what happens to pressure. The ground state term
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added to pressure is log(1−Z)
V . From previous analysis we know:

lim
V→∞,z→1

z

V (z − 1)
= finite

=⇒ (z − 1) ∝ 1

V

=⇒ lim
V→∞

log(1− ‡)
V

∝ lim
V→∞

1

V log(V )
→ 0 (4.5.32)

Hence there is no change in pressure. This is to be expected as ground state particles don’t have
any momentum and hence cannot collide with the walls of the container to exert pressure. Hence
the equation of state remains same PV = 2

3U and is valid along everywhere. By the same logic the
entropy and specific heat formula is also not affected. Following through the mathematics, we have:

P

kT
=

{
1
λ3
g5/2(z) (v > vc)

1
λ3
g5/2(1) (v < vc)

(4.5.33)

U

N
=

3

2
Pv =

{
3
2
kTv
λ3
g5/2(z) (v > vc)

3
2
kTv
λ3
g5/2(1) (v < vc)

(4.5.34)

S

Nk
=

{
5
2
v
λ3
g5/2(z)− log z (v > vc)

5
2
v
λ3
g5/2(1) (v < vc)

(4.5.35)

CV
Nk

=

{
15
4

v
λ3
g5/2(z)− 9

4

g3/2(z)

g1/2(z) (v > vc)
15
4

v
λ3
g5/2(1) (v < vc)

(4.5.36)

The equations 4.5.35 and 4.5.36 show consistency with the third law of thermodynamics. Both the
specific heat and entropy goes to 0 as T → 0. Further we observe that as T → 0, Cv ∝ T 3/2 which
is in contrast to the massless limit where Cv ∝ T 3. The reason for this difference is quite simple and

comes from the fact that the energy relation in the former was ε = p2

2m and in the latter was ε = pc.

Figure 16: Graph Of Specific Heat For Bosons[5]

Note that this analysis can be easily extended to the general relativistic version. However, one should
use the true invariant: |#(Particles)-#(Anti-Particles)| to allow for particle pair production. Other

51



than this, the formula for conversion from to discrete to the relativistic limit will get changed (basically
more complicated) but nonetheless, similar analysis as above can give a good closed form for the various
thermodynamic formulae. If we use the highly relativistic version of the formula, we obtain the same
form for density of states as obtained for photons and phonons which has solved already.

4.5.3 Bose-Einstein Condensation As Self-Consistent First Order Phase Transition

If we look at the P-v-T diagram for the ideal bose gas, it turns out that the equality in equation
4.3.26 defines a sub-space corresponding to a transition region. On one side of the transition region we
have the so called gas-phase (〈n0〉/V → 0) and the condensed phase (〈n0〉/V → 0). On the transition
region, we have a mixture of these two thermodynamic phases. Using equations 4.5.33 and 4.5.27 one
can find the critical line for isotherms (P-v diagrams) and P-T diagrams to get:

For P − v diagram : Pv5/3 =
2π~2

m

g5/2(1)[
g3/2(1)

]5/3 (4.5.37)

For P − T diagram : P =
( m

2π~2

)3/2
g5/2(1)(kT )5/2 (4.5.38)

All this information is explicit from the graph for ideal bose gas, Figure 6. Now consider the isotherm
for the ideal bose gas with a decreasing v. As soon as the isotherm cuts the critical line, vc is obtained
and both phases can coexist. Going further below gives a straight line acting as the transition region
between the two phases for temperature T and critical volume vc. Consider the transition line at
which the following equilibrium process happens:

Bosons (condensed)
 Bosons (gas)

The vapour equilibrium pressure can be computed using the equation of state as:

P0(T ) =
kT

λ3
g5/2(1) (4.5.39)

dP0(T )

dT
=

5

2

kg5/2(1)

λ3
=

1

Tvc

[
5

2
kT

g5/2(1)

g3/2(1)

]
(4.5.40)

Taking this to be the first order phase transition we match equation 4.5.40 with the famous Clayperon
equation (see Appendix C2) identify Latent heat of transition per particle (Lp) as:

Lp =
5

2
kT

g5/2(1)

g3/2(1)
(4.5.41)

However, the Latent heat per particle can also be computed from the change in specific entropy at
the critical line of the P-v diagram. For Bose-Einstein condensation to be a self-consistent first order
transition, both methods should give the same result. Let’s quickly check that. At any temperature,
the total entropy of bose gas is only due to liquid phase and condensed phase has 0 entropy (S → 0
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(a) P-T diagram

(b) P-v diagram

Figure 17: Graphs For Ideal Bose Gas[1]

as T → 0). Using 4.5.35 and 4.5.28, the difference in specific entropy of the thermodynamic phases at
the critical line is:

∆s = sgp − scp = s =
g5/2(1)

g3/2(1)

5

2
k (4.5.42)

Lp = T∆s =
5

2
kT

g5/2(1)

g3/2(1)
(4.5.43)

Equation 4.5.43 and 4.5.41 make the first order phase transition interpretation as a self-consistent one.
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Chapter 4:
Approximation Schemes

To
Handle Non-Ideal Gases
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5 Development Of Approximation Schemes

In the previous sections, the integration of the spatial coordinates in the phase space was trivial, giving
out a factor of the volume of the system. However doing this we made a fatal flaw and assumed that
two particles can occupy the same position in space. This was essentially the assumption about the
constituent particles of the system being point particles without any sub-structure. This assumption
however naive gives some quite powerful results. However now, we wish to introduce the finite size of
the particles and see how that changes the equation of state and other parameters of the system. In
the following sections, we will build some machinery to deal with central potentials which can be used
to incorporate finite size of the particles by taking a hard-sphere potential. The general Hamiltonian
we are interested to solve has the form:

H =

N∑
i=1

p2
i

2m
+
∑
i<j

V P
ij (5.0.1)

V P
ij ≡ V P (|ri − rj |) (5.0.2)

fij ≡ e−βV
P
ij − 1 (5.0.3)

Figure 18: General Forms Of V P
ij and fij

[5]

As we will further see that the integrals obtained in the position portion of the phase space are almost
impossible to solve analytically. Hence like a good physicist we do the only thing we can do, we
approximate. The general parameter of the perturbation series will be the density of the system ρ and
the equation of state obtained will be called the Virial Equation Of State. Our aim will be compute
the first non-trivial coefficient of this perturbation series which is the Second-Virial Coefficient (as we
shall see later) leading to an effective solution for a dilute gas composed of finite size particles. The
Virial equation of state is defined to be :

Pv

kT
=

∞∑
l=1

al(T )

(
λ3

v

)l−1

(5.0.4)

Here v = 1/ρ, al is the lth Virial Coefficient, P is pressure, k is Boltzmann constant, T is temperature
and λ is the thermal wavelength (1/λ3 is solution to the momentum integral of phase space in 3-D).
Further ρ = N/V where N is the number of particles and V is the volume occupied by the system.
The machinery here will be based upon both classical and quantum considerations. Further I will solve
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in the non-relativistic limit because the calculations are actually analytical for most part and doesn’t
require as much use of numerical integrations for the solving the momentum part of the integral.
However the generalization to the relativistic limits is quite trivial and can be easily implemented
once we understand the job of each variable in the classical limit.

5.1 Classical Cluster Expansion

The CE partition function is:

QN (V, T ) =
1

N !h3N

∫
d3Npd3Nr exp

−β∑
i

p2
i

2m
− β

∑
i<j

V P
ij


=

1

λ3NN !

∫
d3Nr exp

−β∑
i<j

V P
ij


Here we have integrated out the momentum part of the phase space integral to give the factor of

1/λ3N . For our non-relativistic Hamiltonian, λ =
√

2π~2
mkT . The left over integral over the spatial

coordinates is called the ”Configuration Integral” and is denoted by ZN (V, T ). In this notation, we
have the CE and GCE partition functions as:

QN (V, T ) =
1

N !λ3N
ZN (V, T ) (5.1.1)

Q(z, V, T ) =
∞∑
N=0

( z
λ3

)N ZN (V, T )

N !
(5.1.2)

My previous two reports focused on how to compute the momentum integral and in this one we will
develop methods to compute the configuration integral. Using 5.0.3:

ZN (V, T ) =

∫
d3r1 · · · · · · d3rN Π

i<j
(1 + fij)

Expanding the product we have the configuration integral as:

ZN (V, T ) =

∫
d3r1 · · · d3rN [1 + (f12 + f13 + · · · ) + (f12f13 + f12f14 + · · · ) + · · · · · · ] (5.1.3)

The expansion in 5.1.3 gives a cluster expansion of the configuration integral. It is because of this and
the fact that we are treating the system classically that we call this approximation method the Classical
Cluster expansion. This expansion as of now looks quite ridiculous but can be easily converted to an
analogous graph theory problem where it is much easier to understand.

5.1.1 Attacking The Problem Using Graph Theory

The idea behind this transformation is to easily manipulate and enumerate each and every term of
the expansion in 5.1.3 and hope that some sort of structure comes out from it.1 The transformation

1The substructure here is that only connected graphs matter.
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is done in the following manner. Consider, each of the N particles as vertices of an N vertex graph
with any number of undirected edges between the vertices. Suppose in a graph G(N,E), distinct pair
of vertices are connected by the edges labeled by α, β, γ, · · · , δ then this graph G corresponds to the
following term of the configuration integral:∫

d3r1 · · · d3rN fα fβ fγ · · · fδ (5.1.4)

Some basic properties of these graphs are mentioned in a pictorial fashion in Figure 19. The most
important property is the fact that any generic graph can be decomposed into some smaller connected
graphs. This property arises because the integration variables are independent of each other and only
connected by the functions ’f’ which correspond to edges of the connected graph. In this notation:

ZN (V, T ) = (Sum Of All distinct N − particle graphs) (5.1.5)

(a) Two Distinct Graphs for N=3
(b) Two Identical Graphs for N=3

(c) Pictorial Representation Of One Of the terms in the Configuration Integral for N=10

(d) Decomposition Of A Generic Graph into Smaller Connected components

Figure 19: Basic Properties Of The N-Particle Graphs [1]

Now that we are armed with this powerful tool, it is time to define a cluster integral. Since only
connected graphs matter, we define an l-cluster to be a l-particle connected graph. For eg: In figure
19(c), is a product of ’2’ 1-cluster, ’2’ 2-cluster and ’1’ 4-cluster. In this notation define the cluster
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integral as:

bl(V, T ) =
1

l!λ3l−3V
(Sum over all l − clusters) (5.1.6)

The normalization factor is chosen such that:

1. bl(V, T ) is dimensionless.

2. b̄ = lim
V→∞

bl(V, T ). This happens because the function ’f’ is of finite range and hence in an

l-cluster, the integration only gives a factor of V (which is usually over the center of mass of the
combined system).

Figure 20: Some Examples Of Cluster Integrals [5]

The decomposition property allows us to write any generic N-particle graph into a number of smaller
clusters out of which ml are l- clusters leading to the constraining equation:

N∑
l=1

mll = N (5.1.7)

Hence each N- particle graph can be mapped onto an ’l’ dimensional vector with lth entry being ml.
However, this is not an injective mapping. Given a vector containing the set of {ml} values satisfying
the 5.1.7 constraint, a unique N-particle graph cannot be recovered due to the following reasons:

• There are multiple ways of forming a single l-cluster. (See b3 in Fig 20)

• There are multiple ways of enumerating which particles belong to which cluster.

Hence set of {ml} values satisfying the 5.1.7 constraint gives a collection of graphs. Let the sum of
the contributions of all these graphs be denoted by S({ml}). In this notation:

ZN =
∑
{ml}

S({ml}) (5.1.8)

Using the Generating function method, we can S({ml}) as:
The expansion of S({ml}) has the following properties:
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1. Each bracket is a sum over all possible l-clusters.

2. If all the brackets are expanded using the multinomial theorem then the summand itself will
contain a large number of terms wherein each term will contain N-empty circles pointing to a
N-particle graph which is free to be enumerated.

3. The summation is over all distinct ways of numbering these circles from 1 to N.

Now here comes the real trick to compute S({ml}). Looking at the expansion of S({ml}), one observes
that that each term in summand has the same value. Hence the sum is simply the number of distinct
permutations times the value of any term in the sum. The value of each summand is same because
each graph simply represents an integral whose value is independent of the fact how those circles are
enumerated. The number of distinct permutations can be found by noticing:

• There are ml l clusters and a permutation among them does not lead to a new graph.

• Within each l-cluster, a permutation of the l-particles enumeration does not lead to a new graph.

Hence:

S({ml}) =
N !

[(1!)m1(2!)m2(3!)m3 · · · ][m1!m2!m3! · · · ]
× (1!V b1)m1(2!V b2)m2(3!V b3)m3 · · ·

S {ml} = N !
N∏
l=1

(
V λ3l−3bl

)ml
ml!

= N !λ3N
N∏
l=1

1

ml!

(
V

λ3
bl

)m
(5.1.9)

Using 5.1.9 and 5.1.8, one can effectively compute the configuration integral and hence the CE and
GCE partition functions. The computation of GCE partition function is shown below. Using 5.1.2

and the fact that:
∞∑
N=0

∑
{ml}

≡
∞∑

m1=0

∞∑
m2=0

· · · · · · Here {ml} denotes a restricted sum following the

5.1.7 constraint. However when this constraint is allowed to vary over all possible particle numbers,
it changes to an unrestricted sum with the parameters varying independently with each other. Thus

Q(z, V, T ) =

∞∑
m1=0

∞∑
m2=0

. . .

[
1

m1!

(
V

λ3
zb1

)m1 1

m2!

(
V

λ3
z2b2

)m2

. . .

]

=
∞∏
l=1

exp

(
V

λ3
zlbl

)
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1

V
log [Q(z, V, T )] =

1

λ3

∞∑
l=1

zlbl (5.1.10)

Now, we already have the GCE machinery to compute the useful functions. the equation of state
obtained via 5.1.10 is called the cluster expansion for the equation of state. In parametric form it is
given by: 

P
kT = 1

λ3

∞∑
l=1

blz
′

1
v = 1

λ3

∞∑
l=1

lblz
l

(5.1.11)

Now if we consider the dilute gas system, we can expand the pressure in terms of a perturbation series
of density ρ = 1/ν = N/V . However in this limit the equation of state becomes:

P
kT = 1

λ3

∞∑
l=1

b̄lz
′

1
v = 1

λ3

∞∑
l=1

lb̄lz
l

(5.1.12)

where b̄ = lim
V→∞

bl which is a well defined quantity as explained at 5.1.6. Only the dilute gas systems

can be terminated upto second order in perturbation series to get any useful results. Using the Virial
equation of state 5.0.4, the equation of state for dilute gas systems 5.1.12 and terminating the series
at the first non-trivial term (the second Virial coefficient), we arrive at the Van der waals’ equation
of state for real gases containing on the repulsive potential term (see Appendix D1):

P (V −NB2) = NkT (5.1.13)

B2(T ) = − 1

2V

∫∫
f12d~r1d~r2 = − 1

2V

∫∫
f12d~r1d~r12

= −1

2

∫ ∞
0

∫ π

0

∫ 2π

0
drdθdφr2 sin θf12 = −2π

∫ ∞
0

f12r
2dr

(5.1.14)

5.1.2 Second- Virial coefficients For Some Useful Potentials

• Hard-Sphere Potential: The potential is given by:

u(r) =

{
∞ for r < σ
0 for r > σ

e−βu(r) =

{
0 for r < σ
1 for r > σ

(5.1.15)

Using the appropriate relations we have:

B2 = 2π

∫ ∞
0

[
1− exp(−βu(r))r2dr

]
B2 = 2π

[∫ σ

0

(
1− exp(−βu(r))r2dr +

∫ ∞
σ

(
1− exp(−βu(r))r2dr

]
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B2 = 2π

([
r3

3

]σ
0

+ 0

)
=

2πσ3

3
= 4×

[
4π

3

(σ
2

)3
]

(5.1.16)

This is simply four times the total volume occupied by each molecule (σ acts like the molecule
diameter). This is exactly the excluded volume per molecule given that only two-particle collision
processes occur in the system.

• Square-Well Potential: The potential is given by:

u(r) =


∞ for r < σ
−ε for σ < r < λσ
0 for r > λσ

e−βu(r) =


0 for r < σ
eβε for σ < r < λσ
1 for r > λσ

(5.1.17)

Using the appropriate relations we have:

B2(T ) = 2π

[∫ σ

0
r2dr +

∫ λσ

σ

(
1− eβε

)
r2dr + 0

]
= 2π

[
σ3

3
+
(

1− eβε
)∫ λσ

σ
r2dr

]
=

2πσ3

3

[
1 +

(
1− eβε

) (
λ3 − 1

)]
(5.1.18)

Hence, one can always compute the integrals for any general central potential. It might sometimes
be too difficult to calculate the expression analytically but numerically, it can always be done which
makes the classical cluster expansion quite a powerful tool.

5.1.3 Variation In Number And Energy Density In Imperfect Gas When Compared To
Ideal Gas

The number density N and the energy density U can be computed using the following formulae of
the GCE:

N = z
∂
(

1
V logQ(z, V, β)

)
∂z

U = −
∂
(

1
V logQ(z, V, β)

)
∂β

From now, the superscript (0) will be used for ideal gas. For the ideal gas we have b̄
(0)
1 = 1 and

b̄
(0)
l>1 = 0. For the imperfect gas we have a hard sphere potential of radius ’a’ and an expansion only

upto the first non-trivial term which is the second cluster coefficient. Hence b̄1 = 1, b̄2 = −B2/λ
3 and

b̄l>2 = 0. Here B2 is defined via 5.1.16. Using 5.1.10 and substituting this back into theformulae, we
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have:

N −N (0) = −2z2B2

λ6
=
z2

λ6
× 4πa3

3
N −N (0) ∝ −a3T 3e

2µ
kT (5.1.19)

U −U (0) = −3z2B2

βλ6
=

z2

βλ6
× 2πa3 U −U (0) ∝ −a3T 4e

2µ
kT (5.1.20)

The results are within our expectation. The difference between the imperfect gas and ideal gas comes
up in the form of an extra term depending on the second cluster coefficient which in turn depends on
the cube of the hard sphere parameter ’a’. The ratio of the difference of energy density to number
density is proportional to T which is within our expectations due to the formula for equation of state
for the ideal gas, PV = NkT ∝ U .

5.2 Quantum Cluster Expansion

Consider N identical particles in an enclosed volume V. Let the Hamiltonian now be an operator H
instead of a number. In the coordinate representation, we have for the momentum operator:

H =
N∑
i=1

p̂i
2

2m
+
∑
i<j

V̂ P
ij

〈xi|p̂|xj〉 = piδ(xi − xj) = −i~∇iδ(xi − xj)

Using the above expression and inserting two identities in position space representation we have:

QN (V, T ) = Tr e−βH =

∫
d3Nr

∑
α

Ψ∗α(1, . . . , N)e−βX Ψα(1, . . . , N)

Here {Ψ} are a complete set of orthonormal wave-functions depending upon (r1, r2, · · · , rN ) which is
written in shorthand form as (1, 2, · · · , N). Defining:

WN (1, . . . , N) ≡ N !λ3N
∑

Ψ∗α(1, . . . , N)e−βH Ψα(1, . . . , N) (5.2.1)

QN (V, T ) =
1

λ3NN !

∫
d3NrWN (1, 2, · · · , N) (5.2.2)

Here again the factor of 1/λ3N comes out by integrating put the momentum part of the phase space
integrals. Some important properties of WN (1, 2, · · · , N) are (see Appendix D2):

1. W1(1) = 1

2. WN (1, 2, · · · , N) is a symmetric function of its arguments.

3. WN (1, 2, · · · , N) is invariant under unitary transformations.

4. Suppose that the molecules could be divided into two groups, say α (with m molecules) and β
(with N-m molecules) with the property that:

|ri − rj | >> r0 and |ri − rj | >> λ. Then

WN (r1, r2, ...., rN ) ≈Wα(r1,α, · · · , rm,α)Wα(r1,β, · · · , rN−m,β)
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Here r0 and λ are the two length scales available to the problem which are the mean free path
and the thermal wavelength respectively.

Consider the case for N=2. Property 4 suggests that if we write: W2(1, 2) = W1(1)W!(2) + U2(1, 2).
Then as |r1 − r2| → ∞ then U2(1, 2) → ∞. Hence U2(1, 2) should act like the quantum analogue to
the classical 2-cluster. Now, we proceed systematically to produce a scheme to recover the equation
of Ul(1, 2, · · · , l) from Wl(1, 2, · · · , l).2

W1(1) =U1(1) = 1

W2(1, 2) =U1(1)U1(2) + U2(1, 2)

W3(1, 2, 3) =U1(1)U1(2)U1(3) + U1(1)U2(2, 3)

+ U1(2)U2(3, 1) + U1(3)U2(1, 2) + U3(1, 2, 3)

· · ·

Repeating the recursion, the N th equation will look like:

WN (1, . . . , N)
=
∑
{ml}

∑
P

[U1() · · ·U1()]︸ ︷︷ ︸
m1 factors

[U2(, ) · · ·U2(, )]︸ ︷︷ ︸
m2 factors

· · · [UN (, · · · , )]︸ ︷︷ ︸
mN factors

(5.2.3)

N∑
l=1

lml = N∑
P

is sum over all distinct permutations.

(5.2.4)

Now, the above equations look awfully close to the classical equations obtained earlier however we ar-
rived them from a completely quantum mechanical point of view. Using the above system of equations
to recursively solve for Ul(1, 2, · · · , l). The first two are:

U1(1) = W1(1) = 1

U2(1, 2) = W2(1, 2)−W1(1)W1(2)
(5.2.5)

Now we are ready to define the l-cluster integral in the quantum cluster expansion as:

b1(V, T ) ≡ 1

l!λ3l−3V

∫
d3r1 · · · d3rlUl(1, . . . , l)b1(V, T ) ≡ 1

l!λ3l−3V

∫
d3r1 · · · d3rlUl(1, . . . , l) (5.2.6)

Some properties of the quantum cluster integral bl are:

• bl is dimensionless.

• b̄l(V, T ) = lim
V→∞

bl(V, T ) is a well-defined quantity. The reason for this is property 4 ofWN (1, 2, · · · , N).

Due to that Ul(1, 2, · · · , N) → 0 as soon as the distance between any two of its arguments be-
come much larger than the prescribed length scale of the problem. Hence each cluster integral
is at max has a direct proportionality with V.

2This systematic expansion was initially developed by Kahn and Uhlenbeck
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Now, we are ready to compute the CE and GCE partition functions. The technique used is same as
that in the classical case.∫

d3NrW (1, . . . , N)

=
∑
{m1}

N !
[(1!)m1 (2!)m2 ··· ](m1!m2!··· ) ×

∫
d3Nr [(U1 · · ·U1) (U2 · · ·U2) · · · ]

= N !
∑
{m1}

1
m1!

[
1
1!

∫
d3r1U1(1)

∣∣m1 1
m2!

[
1
2!

∫
d3r1d

3r2U2(1, 2)
]m2 . . .

= N !
∑
{ml}

N∏
l=1

(V λ3l−3bl)
ml

ml!

= N !λ3N
∑
{ml}

N∏
l=1

1
ml!

(
V
λ3
bl
)ml

QN (V, T ) =
∑
{ml}

N∏
l=1

1

ml!

(
V

λ3
bl

)ml
(5.2.7)

1

V
log [Q(z, V, T )] =

1

λ3

∞∑
l=1

zlbl (5.2.8)

In the V →∞, bl(V, T )→ b̄l(V, T ) and hence, subsequently we get an expansion in terms of perturba-
tion series of density for pressure and other relevant thermodynamic quantities of the system. From
the analysis of equation of states of ideal Bose and Ideal Fermi gases in the previous reports we have:

b
(0)
l =

{
l−5/2 (ideal Bose gas)

(−1)l+1l−5/2 (ideal Fermi gas)
(5.2.9)

Equation 5.2.8 and 5.2.9 combined gives back the Reimann-Drichlet functions obtained in the equation
of state of ideal Bose/Fermi gases. The superscript 0 is to signify that the system under consideration
is ideal. An important distinction from classical gases is the observation that even for quantum ideal
gases, the higher order cluster integrals and hence subsequently the virial coefficients are non-zero.
This is something that just cannot happen in the classical case.

5.3 Second-Virial Coefficient For Radial Potential In Quantum Expansion

To find the second virial coefficient in quantum expansion, we require the knowledge of W2(1, 2) which
is the property of a two body Hamiltonian. Hence our general N-body problem reduces to a 2-body
problem. Let the Hamiltonian be (non-relativistic as it is easier to manipulate):

H =
−~2

2m

(
∇2

1 +∇2
2

)
+ ν(|~r1 − ~r2|)

H Ψα(1, 2) = EαΨα

Now make the following substitutions:

~R =
1

2
(~r1 + ~r2) ~r = ~r2 − ~r1
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Our Hamiltonian now becomes:

H = −
(

~2

4m
∇2
R +

~2

m
∇2
r

)
+ ν(|~r|)

Applying separation of variables and solving we have:

Ψα(1, 2) =
1√
V
ei
~P ·~Rψn(~r)

Eα =
P 2

4m
+ εn, α ≡ (~P , n) independent set of quantum numbers

(5.3.1)

[
−~2

m
∇2 + v(r)

]
ψn(~r) = εnψn(~r) (5.3.2)

With the normalization condition:

∫
d3r|ψn(~r)|2 = 1 (5.3.3)

Now:

W2(1, 2) = 2λ6
∑
α

|Ψα(1, 2)|2 e−βEα =
2λ6

V

∑
~P

∑
n

|ψn(~r)|2 e−βP 2/4me−βεn

As V → ∞, 1
V

∑
P

can be transformed to an integral (as I have done many times in the previous

reports) and solved (using a simple substitution it becomes the integral for the Γ function) as:

1

V

∑
~P

e−βP
2/4m =

4π

h3

∫ ∞
0

dPP 2e−βP
2/4m =

23/2

λ3

Combining everything we have:

W2(1, 2) = 25/2λ3
∑
n

|ψn(~r)|2 e−βεn (5.3.4)

Repeating the calculation for the ideal gas (representing all parameters of the ideal gas with (0) in
superscript):

W
(0)
2 (1, 2) = 25/2λ3

∑
n

∣∣∣ψ(0)
n (~r)

∣∣∣2 e−βε(0)n
The second virial can now be calculated as:

b̄2 =
1

2λ3V

∫
d3r1d

3r2U2(1, 2) =
1

2λ3V

∫
d3Rd3r [W2(1, 2)− 1]

b̄2 − b̄(0)
2 =

1

2λ3V

∫
d3Rd3r

[
W2(1, 2)−W (0)

2 (1, 2)
]

= 2
√

2

∫
d3r

∑
n

[
|ψn(~r)|2 e−βεn −

∣∣∣ψ(0)
n (~r)

∣∣∣2 e−βε(0)n ]
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b̄2 − b̄(0)
2 = 2

√
2
∑
n

(
e−βεn − e−βε

(0)
n

)
(5.3.5)

b̄
(0)
2 has already been calculated in 5.2.9. To further solve 5.3.5, we first need to understand the energy

spectrum of both the ideal and the interacting two-body system.

• For the ideal system, the energy eigenvalues form a continuum in the dilute gas limit. The
eigenvalues are labeled by quantum number ’k’ which has the physical interpretation of being
the relative wave-number for the ideal system.

ε(0)
n =

~2k2

2m

• For the interacting system, we have two different types of energy states. First is a discrete set of
values of energy, labeled by B. These denote the bound states of two-body Hamiltonian. Then,
there is again a continuum of states labeled by the relative wave number ’k’ for the interacting
system.

εn =

{
εB For Bound States

~2k2
2m For Continuum States

Now, let g(k) and g(0)(k) be the density of states for the interacting and the ideal system respectively.
Then, in the most general case, we have:

b̄2 − b̄(0)
2 = 23/2

{∑
B

e−βεB +

∫ ∞
0

dk
[
g(k)− g(0)(k)

]
e−β~

2k2/m

}
(5.3.6)

Even the factor of 23/2 has a physical interpretation and is recognized as
[

λ
λCM

]3/2
with λ and λCM

being the thermal wavelength of individual system and the center of mass of the 2-particle system
respectively. Now all that is left is to compute the difference in the density of states of the interacting
and the ideal system.
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5.3.1 Machinery To Calculate The Difference In Density Of States: g(k)− g(0)(k)

To compute the density of states, we first take the help of equation 5.3.2 to account for the quantum
statistics of the Bose and Fermi gases. This equation looks very close to the hydrogen atom equation
and for a central potential, it will be solved in exactly the same way. The solution will look like:

Ψklm(~r) = AklmY
m
l (θ, φ)

ukl(r)

r
= AklmY

m
l (θ, φ)jl(kr) (5.3.7)

The Y m
l (θ, φ) and jl(kr) are the spherical harmonics and the Bessel functions of order l respectively.

Bessel functions for an integer order l, follow the property:

jl(−kr) = (−1)ljl(kr)

The above property combined with the completely symmetric and anti-symmetric nature of the Bose
and Fermi gases respectively leads to:

l =

{
0, 2, 4, · · · For Bosons

1, 3, 5, · · · For Fermions
(5.3.8)

The square integratibility of the wavefunction sets the boundary conditions to be: ukl(R) = u
(0)
kl (R) =

0 with R → ∞ at the end of the computation. Under the assumption that the perturbing potential
is confined in a short-range, the process can be treated as a scattering process. As the particle goes
far away from the effect of the potential, it again acts like a free particle. The only change in the
wavefunction of the perturbed particle is the introduction of a phase shift from the ideal case. Using
the partial-wave phase shift analysis we have:

ukl(r) r→∞ sin
[
kr + lπ

2 + ηl(k)
]

u
(0)
kl (r) r→∞ sin

(
kr + lπ

2

)
This asymptotic form defines the phase shift function ηl(k) for the corresponding radial potential. The
eigenvalues are determined using the boundary conditions as:

kR+
lπ

2
+ ηl(k) = nπ (Interacting system)

kR+
lπ

2
= nπ (Ideal system)

(5.3.9)

Some important properties of the eigenvalues are:

• Here n ∈ W as the boundary condition in solved in the asymptotic when r →∞.

• The eigenvalue ’k’ depends only on ’n’ and ’l’.

• Each eigenvalue ’k’ is 2l+1 fold degenerate as for a given ’l’, Y m
l has ’m’ varying from −l→ l.
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Now let the number of states between k and k+ dk for a given l be given by gl(k)dk and g
(0)
l (k)dk for

the interacting and the ideal system respectively. Using the last property of the energy eigenvalues
listed earlier,we have:

gl(k)dk

2l + 1
= 1

g
(0)
l (k)dk(0)

2l + 1
= 1

Since ’l’ is fixed the change dk must be produced by a change in ’n’. Since ’n’ can only change by an
integer value, a change of 1 unit in ’n’ produces a change dk in k which can be related as:

Rdk +
∂nl(k)

∂k
.dk = π

=⇒ dk =
π

R+
[
∂nl(k)
∂k

]
Similarly for an ideal system:

dk(0) =
π

R

Substituting these back we have:

gl(k)− g(0)
l (k) =

2l + 1

π

∂ηl(k)

∂k

Now, all that is left is to take sum over all valid valid values of ’l’, leading to:

g(k)− g(0)(k) =
1

π

′∑
l

(2l + 1)
∂ηl(k)

∂k
(5.3.10)

Here
′∑
l

is a restricted sum over the ’l’ values following 5.3.8. Substituting everything back, we finally

have the formula for the second virial coefficient for a finite-radial potential as:

b2 − b(0)
2 = 23/2

{∑
B

e−βεB +
1

π

∫ ∞
0

dk
′∑
l

(2l + 1)
∂ηl(k)

∂k
e−β~

2k2/m

}
(5.3.11)

5.3.2 Variation In Number And Energy Density In Imperfect Gas When Compared To
Ideal Gas

Again the formulae from section 5.1.3 remain valid for the computation of the number and energy
density. However, this time around the cluster coefficients of ideal gases are non-trivial and are given
by 5.2.9. Further, we shall assume only first order expansion in the second virial coefficient and
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also assume that the imperfect gas sways away from the ideal gas only at the level of second cluster
coefficient. Finally, the Bose and Fermi gases are considered to be spinless. Then:

N −N (0) =
z2

λ3
(b2 − b(0)

2 ) (5.3.12)

U −U (0) = −

[{
z2(b2 − b(0)

2 )
} ∂

∂β

(
1

λ3

)
+
z2

λ3

∂(b2 − b(0)
2 )

∂β

]
(5.3.13)

For Bosons, (b2 − b(0)
2 ) = −2a

λ (see Appendix D3), hence:

NB −N
(0)
B = −2z2a

λ4
NB −N

(0)
B ∝ −aT 2e2µ/kT (5.3.14)

UB −U
(0)
B = −7

2

z2a

λ4β
UB −U

(0)
B ∝ −aT 3e2µ/kT (5.3.15)

Unlike the classical gas the dependence on the hard sphere parameter for the difference in thermody-
namic macroscopic variables is linear for the Imperfect Bose Gases. As expected both the number and
the energy densities decrease at the same macroscopic state when compared to the ideal Bose Gas.
The ratio of difference in energy to number density is again directly proportional to the temperature
as in the classical case. All these results except the linear dependence are within our expectations.

For Fermions, (b2 − b(0)
2 ) = −6π

[
a
λ

]3
(see Appendix D3), hence:

NF −N
(0)
F = −6πz2a3

λ6
NF −N

(0)
F ∝ −a3T 3e2µ/kT (5.3.16)

UF −U
(0)
F = −18πz2a3

λ6β
UF −U

(0)
F ∝ −a3T 4e2µ/kT (5.3.17)

These results for the Fermi Gas match exactly with that obtained from the classical cluster expansion.
The reason being that in both of these cases the difference in the second virial coefficients (upto first

order in imperfect and ideal Fermi Gas) is proportional to a3

λ3
. The results definitely make sense and

all previous analysis passes through, however it is quite funny that Fermi gases are mimicking the
classical gases in this context.

6 Imperfect Gases At Low Temperatures

The imperfect gas in our case has the following defining properties:

• It is a dilute system of particles that interact among themselves via a finite inter-particle po-
tential. This potential has a finite range and the forces involved do not lead to any two-particle
bound states.

• The diluteness of the gas allows us to treat the inter-particle interaction as a small perturbation
to the ideal gas.

• Our system has two defining length scales, the thermal wavelength and the average inter-particle
separation. For our imperfect gas these length scales are much greater than the range of inter-
particle interaction.
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The advantages of making the above approximations are:

• The quantum particle cannot be localised in its thermal wavelength (which is the analogue of
de-Broglie wavelength to our problem). Thus, (by last defining property), the probability of
finding a second particle within the range of interaction of another particle is non-existent.

• Therefore, the effective potential as seen by a particle is very small even though inter-particle
potential may have large values. The exact details of the potential become irrelevant in the first
order (as we shall see later) of perturbation as the particles only experiences an average effect
of the potential.

• The gas is considered at low temperatures so that only low-lying energy levels (ground state
and levels close to it) contribute to the problem. For this purpose, we introduce an effective
Hamiltonian for the low-lying energy levels replacing the original Hamiltonian to compute the
partition function and hence everything subsequently. This method was first introduced by
Fermi and is called the Method Of Pseudopotentials3. This method aims to obtain the
relevant energy levels of the system in terms of the scattering phase-shifts of the potential.

6.1 Machinery To Handle Quantum Gases

6.1.1 Handling The Hard-Sphere Potential

Consider the interacting potential of the following form:

V (|~r1 − ~r2|) =

{
∞ |~r1 − ~r2| < a
0 |~r1 − ~r2| > a

(6.1.1)

Using the analysis in section 2.3 and 2.3.2, we have the schrodinger equation applied to our potential
in the coordinates of the center of mass of the system as:(

∇2 + k2
)
ψ(~r) = 0 (r > a)

ψ(~r) = 0 (r ≤ a)
(6.1.2)

with E(~P ,~r) =
P 2

2M
+

~2k2

2µ
(6.1.3)

Here ~r = ~r2−~r1, ~P is momentum vector for the COM of the system, M is the total mass and µ is the
reduced mass. Equation 6.1.2 suggests that hard sphere potential just introduces an extra boundary
condition to the relative wavefunction ψ(~r) at |r| = a in addition to some other boundary condition
as r →∞ which is irrelevant to our problem.
The radial solution to 6.1.2 for spherically symmetric waves (S-waves,l=0) at low energies (k → 0) is:

ψ(r) =

{
C
(
1− a

r

)
(r > a)

0 (r ≤ a)
(6.1.4)

Now the idea of pseudopotentials is borrowed from electrostatics wherein the boundary condition
provided by the metallic sphere is removed by positioning a series multipole sources at the center

3E. Fermi, Ricerca Sci., 7,13(1936)
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of the origin so that the electrostatic potential as obtained in both cases matches exactly outside
the sphere. In an analogous way, the method of pseudopotentials replaces the hard-sphere boundary
condition on the relative wavefunction ψ(~r) with a series of sources at the origin producing scattered
S,P,D, · · · waves (corresponding to l=0,1,2,· · · ). Having this in mind, define an extended wave-function
which satisfies: (

∇2 + k2
)
ψex(r) = 0 ( everywhere except at r = 0)

with the boundary condition: ψex(a) = 0

ψex(r)−→
r→0

(
1− a

r

)
χ

Here χ is a constant that depends on the boundary conditions at r=∞. χ can also be expressed in a
more convenient form:

χ =

[
∂

∂r
(rψex)

]
r=0

To eliminate the boundary condition one simply extends the equation of ψex(r) to include the origin.
This can be done by taking the limit as r → 0.

∇2ψex(r)−→
r→0

4πaδ(~r)χ = 4πaδ(~r)
∂

∂r
(rψex) (6.1.5)

In 3.1.5, one recognises δ(~r ∂∂rr) as the redefined Hamiltonian operator (for the potential energy) acting
on extended wavefunction. This operator is the pseudopotential for our problem upto this point. By
construction, ψex(r) has the satisfies the same equation and boundary condition as ψ(r) for |r| > a
and k → 0. Let’s note a few properties of the pseudopotential we have obtained:

• Pseudopotential obtained via 6.1.5 is not the exact pseudopotential as it is only valid for k → 0.
However, in the low temperature approximation and first order analysis in parameter ’a’, 6.1.5
is good enough.

• Technically we should be adding an infinite series of pseudopotentials to 6.1.5 representing the
S,P,D,F... scattered waves. However, the lth wave pseudopotential ∝ a2l+1 (related to the
scattering phase shifts). Hence, they need not be taken into consideration at the lowest order of
perturbation theory.

• Due to the presence of the delta function, the operator is only evaluated at r=0. The differential
operator takes the values:

–
[
∂
∂r (rψex(r))

]
r=0

= 1, if ψex(r) is well-behaved and normalized at r=0

–
[
∂
∂r (rψex(r))

]
r=0

= B, if ψex(r)−→
r→0

A
r +B

Hence if the wavefunctions are well-behaved the differential operator can be replaced by unity.
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6.1.2 Extending The Concept To A General Finite Potential

Let ν(r) be the general finite ranged potential in consideration. Then the differential equation of the
relative wavefunction becomes:

~2

2µ

(
∇2 + k2

)
ψ(~r) = v(r)ψ(~r) (6.1.6)

Again at low temperatures and hence low energies only the S-waves are important. Further due to
finite range of potential no bound states are possible for the 2-body system. Hence, we expect a
sinusoidal solution for the wavefunction at r =∞.

u′′(r) + k2u(r) = µ
~2 v(r)u(r)

u(r) ≡ rψ(r)

u(r) −→
r→∞

u∞(r)

u∞(r) ≡ rψ∞(r) = C (sin kr + tan η0 cos kr)

By definition, η0 is S-wave scattering phase shift. For k → 0:

ψ∞(r) −→
r→0

C’

(
1 +

tan η0

kr

)
In general, the scattering phase shift is a function of relative wavenumber, ’k’. However for small k,
there is an available expansion:

k cot η0 = −1

a
+

1

2
k2r0 + · · ·

Here ’a’ is called the scattering length and ’r0’ the effective range of the potential. Considering only
the first term of the expansion we have the shape independent approximation.

tanη0

k
≈ −a (6.1.7)

Replacing this back into the asymptotic wavefunction solution, we have:

ψ∞(r) −→
r→0

C’
(

1− a

r

)
(6.1.8)

Equation 6.1.8 and ψex(r) for the hard sphere solution have the same form as r → 0. Thus, all the
hard-sphere analysis again goes through. Thus, any finite ranged potential at low energies can be
equivalently replaced by a hard-sphere potential of some diameter ’a’ characteristic to the potential
at the first order analysis.

6.1.3 Extension To A N-Particle System

The previous analysis was for a 2-body system. However, the problems generally encountered are
for a complicated N-body system. From previous analysis we can say that to our concern (first
order analysis in parameter ’a’) only the s-wave l body pseudopotentials have the chance to trigger
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any effects. Further, at our level of analysis any general finite potential is equivalent to a hard-
sphere potential (diameter ’a’) in some 3N-dimensional configuration. Hence, without the loss of
generalization consider the N-body problem with hard sphere interactions. The differential equation
now required to be solved is:

− ~2
2m

(
∇2

1 + · · ·+∇2
N

)
Ψ = EΨ (|~ri − ~rj | > a, for all i 6= j)

Ψ = 0 (otherwise)
(6.1.9)

6.1.9 provides another complex boundary condition for Ψ in a 3N-dimensional configuration space.
Now, here comes the awesome trick. Like before we will introduce an extended wavefunction. Now
consider a region S12 : |r1 − r2| = a. For this region the 2-body analysis goes through (as we have
nothing to do with other coordinates) and hence we get a 2-body pseudopotential corresponding to
S12. Hence for each Sij i<j we have a corresponding 2-body pseudopotential.
However, the above analysis doesn’t take into account the regions where say S12 and S13 intersect.
This region is where 3 particles simultaneously collide. To incorporate this effect we need to include a
3-body S-wave pseudopotential. However it turns out that N-body S-wave pseudopotential ∝ a3N−5

(see Appendix E1). Thus only, 2-body pseudopotentials are of relevance in our analysis. Hence our
effective Hamiltonian at low temperatures simply becomes (in accordance with 6.1.5):

H = − ~2

2m

(
∇2

1 + · · ·+∇2
N

)
+

4πa~2

m

∑
i<j

δ (~ri − ~rj)
∂

∂rij
rij (6.1.10)

Finally, we use another trick to make our life easier. This is based on the realization that if we treat
the pseudopotentials only in first order of the perturbation theory then the differential operator only
acts on the unperturbed wavefunctions (due to the presence of the factor of ’a’ in the pseudopotential).
Since the unperturbed wavefunctions are always well-behaved, we can replace the differential operator
with unity to achieve the following reduced effective Hamiltonian:

Heff = − ~2

2m

(
∇2

1 + · · ·+∇2
N

)
+

4πa~2

m

∑
i<j

δ (~ri − ~rj) (6.1.11)

Equation 6.1.11 is the culmination of an incredible number of approximations. Always keep in mind
that 6.1.11 works only in the first order of perturbation theory in ’a’. For this the gas must be dilute
and the length scale of the thermal wavelength and the inter-particle separation must be greater than
any other length scale in the problem except for the container in which the system is bound. Further
6.1.11 works only where the momentum energy is close to 0 from the baseline state. In a real system
this is realized at extremely temperatures where the particles can only get excited to those states from
ground state which have vanishingly small momentum.
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6.2 Imperfect Spinless Bose Gases At Low Temperatures

Now finally, the time has arrived to use the effective Hamiltonian for low temperature on quantum
bose gases to see how the imperfect gas differs from its ideal counterpart. The energy eigenvalues as
computed using 6.1.11 for the Bose gas comes out to be (see Appendix F2):

Heff = H0 +
4πa~2

m

∑
i<j

δ (~ri − ~rj) (6.2.1)

En = εn +
4πa~2

mV

N2 − 1

2
N − 1

2

∑
~p

n2
p

 (6.2.2)

Here εn is the kinetic energy part obtained from the ideal Bose gas Hamiltonian. Now, if we assume
that we are working when temperatures are so small that very very few particles are able to get
excited from the ground state, then we can make another approximation to the energy spectrum of
the imperfect Bose Gas by letting 1

N → 0 & nk
N → 0 for all k 6= 0:

En ≈ εn +N

(
~
m

)2

4πaρ

[
1− 1

2

(n0

N

)2
]

(6.2.3)

Introducing the parameter ξ ≡ n0
N and λ =

√
2π~2
mkT , the non-relativistic thermal wavelength, the energy

spectrum and hence the CE partition function becomes:

En = εn +N

(
aλ2

ν

)(
2− ξ2

)
ν =

V

N

Qn =
∑
n

e−βεne−N(aλ2/v)(2−ξ2) = Q
(0)
N

〈
e−N(aλ2/v)(2−ξ2)

〉
0

(6.2.4)

Here Q0
N =

∑
n
e−βεn and 〈〉0 represents the thermodynamic ensemble average with respect to ideal

Bose Gas. Now, we can use all the tools available to us from Statistical Mechanics to find the
thermodynamic parameters. For instance the Helmholtz free energy of the particle is:

A

N
=
A(0)

N
− kT

N
log
〈
e−N(aλ2/v)(2−ξ)2

〉
0

The superscript 0 is to denote the parameter for the ideal gas. Now using linearity of the expectation
operator, ex ≈ 1 + x, log(1 + x) ≈ x and that the mean-square fluctuations for any observable at
thermodynamic equilibrium are small (

〈
ξ2
〉

0
− (〈ξ〉0)2 ≈ 0), we have:

A

N
=
A(0)

N
+

~2

m

4πa

v

(
1− 1

2
ξ̄2

)
(6.2.5)

ξ̄ ≡ 〈ξ〉0 = 〈n0/N〉0 =

{
0 T > Tc, ν > νc

1−
[
T
Tc

]3/2
= 1− ν

νc
T < Tc, ν < νc

(6.2.6)
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Equation 6.2.6 is the result of previous reports from analysis on Ideal Bose Gases. Now the pressure
can be easily obtained using P = −∂(A/N)

∂ν :

P = P (0) +
4πa~2

m

[
1

v2

(
1− 1

2
ξ̄2

)
+

1

v
ξ̄
∂ξ̄

∂v

]
Using 6.2.6 we finally have:

P =


P (0) + 4πa~2

mv2
(v > vc, T > Tc)

P (0) + 2πa~2
m

(
1
v2

+ 1
v2c

)
(v < vc, T < Tc)

(6.2.7)

Similarly, we can compute all other thermodynamic parameters upto first order in the perturbation
series of hard sphere diameter ’a’. Here again P 0 is the pressure for the ideal Bose gas. The results
6.2.5 and 6.2.7 are extremely simple and within expectations. These predict that the hard sphere
potential in the imperfect Bose gas at low temperatures acts as a perturbation to the ideal bose gas
leading to a simple extra correction term in all of the thermodynamic parameters.

Figure 21: The Isotherms Of Ideal Vs Imperfect Bose Gas [5]

As expected the Pressure of Ideal and Imperfect Bose Gas seem to converge at ν = ∞. There is one
more interesting feature that pops out from these calculations that are in contradistinction to the ideal
Bose gas. To see that, we first need to compute the internal energy for which we require the entropy.
The entropy can be computed as S = −∂A

∂T . We then have:

S = S(0) +N
4πa~2

mν

(
ξ
∂ξ

∂T

)
(6.2.8)

Using 6.2.6, we finally have:

S =


S(0) (v > vc, T > Tc)

S(0) −N 4πa~2
mν

(
1−

[
T
TC

]3/2
)(

3
2
T 1/2

T
3/2
C

)
(v < vc, T < Tc)

(6.2.9)
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Now, we are ready to compute the internal energy. This can be done by using the formula: U = A +
TS. We then have:

U =


U (0) +N 4πa~2

mν (v > vc, T > Tc)

U (0) +N 4πa~2
mν

[(
1− 1

2

{
1−

(
T
TC

)3/2
}2
)
−
(

1−
[
T
TC

]3/2
)(

3
2
T 3/2

T
3/2
C

)]
(v < vc, T < Tc)

(6.2.10)

Now, we see the magic. Let’s calculate the change in specific heat across the transition line.

∆CV
Nk

=

∣∣∣∣ 1

Nk

[
CV (at T+

C )− CV (at T−C )
]∣∣∣∣

=

∣∣∣∣∣ 1

Nk

{[
∂U

∂T

]
T=T+

C

−
[
∂U

∂T

]
T=T−C

}∣∣∣∣∣
A simple calculation from 6.2.10 gives:

∆CV
Nk

=
9aπ~2

mkνTC
=

9a

2λC
g3/2(1) (6.2.11)

The second equality comes from the previous reports where all the appropriate functions are defined
in detail.The beauty of 6.2.11 is that the change in specific heat as one crosses the transition point
is non-zero. This is characteristic of a second-order phase transition phenomenon. Hence in our low
temperature analysis, the Bose Einstein condensation appears to be a second order phase transition
which is in contradistinction to the ideal bose gas where we showed that Bose-Einstein condensation
is a self-consistent first order phase transition. The only difference till now in the imperfect gas is the
introduction of finite size of the constituent particles. Note that the present model doesn’t confirm
that Bose-Einstein condensation is a second order phase transition but just says that it appears to
be like a second order phase transition in the lowest order of the perturbation theory in the hard-
sphere diameter ’a’ (along with the length scale assumptions of thermal wavelength and inter-particle
separation).

6.3 Imperfect Spin-1/2 Fermi Gas At Low Temperatures

In the last report we saw how spinless bosons behave under the Fermi’s pseudopotential approximation.
Now we will explore what happens to a spin-1/2 fermi gas under the same scheme. The energy
eigenvalues as computed using 6.1.11 for the spin 1/2 Fermi gas comes out to be (see Appendix E3):

Heff = H0 +
4πa~2

m

∑
i<j

δ (~ri − ~rj) (6.3.1)

En = 〈Φn|Heff |Φn〉 =
∑
~p

(np,+ + np,−)
|~p|2

2m
+

4πa~2

mV
(N+N−) = εn +

4πa~2

mV
(N+N−) (6.3.2)
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Here np,± is the number of particles with momentum p and in spin state ±1/2 sand N+, N− are the
total number of particles in spin states ±1/2 respectively and εn denotes the ideal part. For a spin
1/2 in a canonical ensemble we have N+ + N− = N . Now define the canonical ensemble partition
function for the imperfect fermi gas:

Qn =
∑
n

e−βεn
[
e−

2aλ2

V (NN+−N2
+)
]

Here λ is the standard thermal de-Broglie wavelength. Just like the Boson case this can be re-written
in terms of expectation values of ideal fermi gas as:

QN = Q0
N

〈
e
− 2aN2λ2

V

(
N+
N
−
N2
+

N2

)〉
0

(6.3.3)

Here Q0
N =

∑
n
e−βεn and 〈〉0 represents the thermodynamic ensemble average with respect to ideal

Fermi Gas. Now, we can use all the tools available to us from Statistical Mechanics to find the
thermodynamic parameters. For instance the Helmholtz free energy per particle of the system is:

A = A0 + log

〈e− 2aN2λ2

V

(
N+
N
−
N2
+

N2

)〉
0


The superscript 0 is to denote the parameter for the ideal gas. Now using linearity of the expectation
operator, ex ≈ 1 + x, log(1 + x) ≈ x and that the mean-square fluctuations for any observable at

thermodynamic equilibrium are small
(

1
N2

[〈
N2

+

〉
0
− 〈N+〉20

]
≈ 0
)

, we have:

A

N
=
A0

N
+

4πa~2

mν

(〈
N+

N

〉
0

−
〈
N2

+

N2

〉
0

)
(6.3.4)

Here ν = 1/ρ = V/N . Note that since our Hamiltonian does not have a preference for any spin
direction, we expect that at low temperatures 〈N+〉 = 〈N−〉 = N/2. Substituting this back in 6.3.4,
we have:

A

N
=
A0

N
+

3πa~2

mν
(6.3.5)

Hence the per particle Helmholtz free energy of the interacting system is simply related to that of
the ideal system by an additive function of macroscopic parameters (V,N). The unexpected thing is
that the correction term does not depend on T explicitly. However one needs to be careful while
making such a statement as the whole approximation scheme is built around the low temperature
approximation. Nevertheless, we move on to compute the macroscopic thermodynamic parameters of
the system.
The pressure is simply: −∂A/N

∂ν . This gives:

P = P 0 +
3πa~2

mν2
(6.3.6)
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As expected the pressure exerted by the imperfect gas is more than that of the ideal gas. The entropy
is given by: S = −∂A

∂T .This gives:

S = S0 (6.3.7)

This result is expected as the correction term has no explicit dependence on temperature. Now the
internal energy is given by: U = A+ TS. This gives:

U = U0 +
3Nπa~2

mν

As expected the internal energy of the imperfect gas is more than that of the ideal gas. Finally the
specific heat is given by: cV = ∂U

∂T . This gives:

CV = C0
V (6.3.8)

Again the specific heat doesn’t change as the correction factor does not have an explicit temperature
dependence.
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Chapter 5:
Mean-Field Approach

To
Handle Non-Ideal Gases
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7 The Van-Der Waals Equation Of State

7.1 The Classical Derivation

Consider the Hamiltonian of the following form:

H =
N∑
i=1

(
p2
i

2m
+ U0i

)
(7.1.1)

Then the canonical ensemble partition function can be defined as:

QN (V, T ) =
1

h3NN !

∫ ∫
d3r1 · · · d3rnd

3p1 · · · d3pne
−β

N∑
i=1

(p2i /2m+U0,i)

Making a simple change of variables: r2 → r1, p2 → p1 and U02 → U01 and realizing the indistin-
guishability of particles we have:

QN (V, T ) =
1

N !

[∫ ∫
e(p2/2m+U0)d

3rd3p

h3

]N
where I have used the indistinguishability to completely remove the indices. Using the results of
standard Gaussian integral, our partition function reduces to:

QN (V, T ) =
1

N !

[(
2πm

βh2

)3/2 ∫
e−βU0d3r

]N
The remaining configuration integral is solved by noting that due to finite size and subsequently strong
repulsion of particles there are regions where U0 →∞. Hence the integrand vanishes in these regions,
This volume where the integrand vanishes is called the excluded volume V0. In the remaining volume
V − VEX , we assume that U0 varies slowly with respect to the inter-molecular separation. Thus, we
replace the potential by a mean field value Ū0. Hence:

QN (V, T ) ≈ 1

N !

[(
2πm

βh2

)3/2

(V − VEX)e−βŪ0

]N
(7.1.2)

Now, we estimate the values of Ū0 & V0. The mean potential energy of the system is Ē = NŪ0. Here
we will be taking only binary collisions into consideration. Then the number of scattering interactions
possible are: NC2 ≈ N(N−1)

2 ≈ N2/2 as N →∞. Let ū be the average potential energy of this binary
interaction. Then:

E ≈ 1

2
N2ū =⇒ 1

2
N2ū = NŪ0

=⇒ Ū0 =
1

2
Nū

Now an estimation of the function ū is required, Starting with the following simplistic assumption:

u(R) =

{
∞ R<R−0

−u0

(
R0
R

)λ
R>R−0

80



Here, of course u0>0 , λ>0. The most appropriate exponent usually is 6 (Appendix F1). The average
interaction energy of the binary collisions can now be given as:

ū =

∫
u(R)dP (R)

=

∫
u(R)

4πR2

V
dR

=

[
−4πu0

V

] ∫ ∞
R0

(
R0

R

)λ
R2dR

The above integral converges only for λ>3. The mean interaction energy is given by:

Ū0 = −α′N
V

where α′ =

[
2πu0

V

] ∫ ∞
R0

(
R0

R

)λ
R2dR

The integral for the parameter α can be easily solved to get:

α′ =

[
2πu0

λ− 3

]
R3

0 where λ ≥ 4 (7.1.3)

Now by nature of the potential, R0 is the distance of closest approach or diameter of the particles of
the system. Thus, due to the presence of 1 molecule in the system, other molecules now do not have
access to a volume equivalent to the sphere of radius R0. Hence the total excluded volume is roughly:

VC =
1

2
N2 × 4π

3
R3

0

But the total excluded volume is simply VEX = N × V0 where V0 is simply the excluded volume per
particle. A simple comparison gives:

V0 = b′N

where b′ =
2π

3
R3

0 = 4

[
4π

3

(
R0

2

)3
]

Hence:

b′ = 4×Volume of each particle (7.1.4)

Now, we are ready to write the canonical partition function. Substituting this back in 7.1.2, we have:

QN (V, T ) ≈ 1

N !

[(
2πm

βh2

)3/2

(V − b′N)e−β×−α
′N
V

]N
Now pressure can be computed by using the formula: P = 1

β
∂ log(QN (V,T ))

∂V . This gives:

P =
1

β

[
N

V − b′N
− α′N

2β

V 2

]
(7.1.5)
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Rearranging this equation a bit to get:

(P + α′n2)(ν − b′) = kT

where n =
N

V
and ν =

V

N

Now using the concept of molar volume: Vν = νNA (NA is the Avagadro’s number), we have the Van
der waals equation of state in a much more familiar form from chemistry:[

P +
a

V 2
ν

]
[Vν − b] = NAkT = RT

where a = N2
Aα
′ and b = NAb

′

7.2 Quantum Statistical Formulation Of Equation Of State For Real Gases On
Nuclear Scale In GCE

The section below discusses the possible equation of states under the Van der waals’ formalism in the
cases where finite size (excluded volume effects) and attractive potential are considered within the
system.

7.2.1 Effects Of Excluded Volume[7]

We are aware that the pressure of the system is related to the grand partition function L via the
relation:

p(T, µ) = lim
V 7→∞

T
ln Z (T, µ, V )

V
(7.2.1)

Here µ is the chemical potential, V is the volume of the system in consideration and T is the temper-
ature. The Grand partition function is defined using the canonical partition function as follows:

Z (T, µ, V ) =

∞∑
N=0

eµN/TQ(T,N, V ) (7.2.2)

Here Q is the canonical ensemble partition function. To introduce van der waals excluded volume
effects, one needs to introduce an appropriate change in the canonical ensemble partition function.
This is done by the following substitution:

Zexcl(T,N, V ) = Z (T,N, V − v0N) θ (V − v0N) (7.2.3)

The excluded volume canonical partition function is quite simple to understand. It is simply the ideal
gas partition function with the additional reasonable constraint that once a molecule occupies some
volume in real space. the same volume is now unavailable for other molecules of the system. Thus,
any additional molecule experiences the same system with a reduced volume. Here v0 is the excluded
volume per molecule and θ is the step function that makes sure that the total excluded volume does
not exceed the volume of the system in consideration. The definition of θ function is given as follows:

θ(x− x0) =

{
1 x>x0

0 x<x0
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This leads to the following formulation of the grand partition function:

Z excl(T, µ, V ) =

∞∑
N=0

eµN/TZ (T,N, V − v0N) θ (V − v0N) (7.2.4)

Now here comes the great trick to solve 7.2.4. The idea is to take the Laplace transform to remove
the complicated excluded volume dependence in the grand partition function. Taking the Laplace
transform gives:

Ẑ excl (T, µ, ξ) ≡
∫ ∞

0
dV e−ξV Z excl(T, µ, V )

=

∫ ∞
0

dx e−ξxZ (T, µ̂, x)

(7.2.5)

Here µ̂ ≡ µ − v0Tξ . Equation 7.2.5 is obtained by taking the Laplace transform of 7.2.4 and then
making the substitution V → x ⇒ x = V − v0N . Now the following property of Laplace transforms
is the reason why we really did it. The pressure in GCE can be written as:

pexcl(T, µ) ≡ lim
V 7→∞

T
ln Z excl(T, µ, V )

V
= Tξ∗(T, µ) (7.2.6)

Here ξ∗(T, µ) is the extreme right singularity of Ẑ excl in the variable ξ. For our function, there is
only one singularity when the integral over x diverges in 7.2.5. Hence:

ξ∗ = lim
x 7→∞

ln Z (T, µ̃, x)

x
where µ̃ = µ− v0Tξ

∗ (7.2.7)

Comparing 7.2.1 and 7.2.6, we have an implicit equation for pressure in the excluded volume model
as:

pexcl(T, µ) = pid(T, µ̃) (7.2.8)

where µ̃ = µ− v0p
excl(T, µ) (7.2.9)

Now that we have a formulation for pressure, the other thermodynamic parameters can be easily
computed as:

nexcl
id (T, µ) ≡

(
∂pexc

id

∂µ

)
T

=
nid(T, µ̃)

1 + v0nid(T, µ̃)
(7.2.10)

sexcl
id (T, µ) ≡

(
∂pexcl

id

∂T

)
µ

=
sid(T, µ̃)

1 + v0nid(T, µ̃)
(7.2.11)

εexcl
id (T, µ) ≡ Tsexcl

id − pexcl
id + µnexcl

id =
εid(T, µ̃)

1 + v0nid(T, µ̃)
(7.2.12)

The above formulae are only valid under first order approximation in the perturbation series of v0

(Appendix F2). The above equations are quite easy to implement in a computer. First 7.2.8 is solved
numerically and then 7.2.8-7.2.10 are used to compute all the basic macroscopic parameters of the
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system.
A keen reader observes that the above formulation can be easily extended to a system of multi-particle
species. Consider a system with ’k’ different types of particles each being characterised by chemical

potential µi and having an excluded volume of v
(i)
0 . Then:

pexcl (T, µ1, . . . , µk) = p (T, µ̃1, . . . , µ̃k)

where

µ̃i = µi − v(i)
0 pexc 1 (T, µ1, . . . , µk) , i = 1, . . . , k

(7.2.13)

Furthermore

nexi =

(
∂pexcl

∂µi

)
T

=
ni (T, µ̂i)

1 +
∑
k

v
(k)
0 nidk (T, µ̂k)

(7.2.14)

sexcli =

(
∂pex

∂T

)
{µi}

=
sidi (T, µ̂i)

1 +
∑
k

v
(k)
0 nidk (T, µ̂k)

(7.2.15)

εexcl = Ts− P +
∑
k

µini =

∑
i
εidi (T, µ̂i)

1 +
∑
k

v0kn
id
k (T, µ̂k)

(7.2.16)

A similar formulation as above can be obtained by directly applying the mean field approach to the
grand-partition function. Introducing excluded volume correction directly into the grand partition
function (for a system with a single specie) we have:

Z excl(T, µ, V ) = Z
(
T, µ, V − v0N̄

excl
)

(7.2.17)

Now we know that in GCE formulation:

P excl =
1

β

Z excl(T, µ, V )

V

Using Taylor’s Expansion → P excl =
1

β

[
L (T, µ, V )

V
− v0N̄

excl

V

∂L (T, µ, V )

∂V

]
This finally gives:

P excl = Pid(T, µ)(1− v0n
excl(T, µ)) (7.2.18)

Now if −v0n
excl(T, µ)� 1, 3.2.13 can be re-written by using the first order Taylor expansion as:

pexcl(T, µ) ∼= pid (T, µ− v0p(T, µ)) = pid(T, µ̃) (7.2.19)

Equation 7.2.17, under first order perturbation in v0 can be re-written as:

P excl = Pid(T, µ)(1− v0nid(T, µ)) (7.2.20)
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Now all the other macroscopic parameters can be found using:

nexcl
id (T, µ) ≡

(
∂pexc

id

∂µ

)
T

sexcl
id (T, µ) ≡

(
∂pexcl

id

∂T

)
µ

εexcl
id (T, µ) ≡ Tsexcl

id − pexcl
id + µnexcl

id

Here the partial derivatives will be computed using equation 7.2.19. Of course, this formulation is
going to follow the ideal gas much more closely as I have essentially removed the concept of shifted
chemical potential and simply connected the excluded and ideal gas models with a small suppression
factor. This will be shown in detail in the discussion of excluded gas model below.

For the van der waals’ interaction the excluded volume per particle v0 is estimated using the formula
7.1.4.

7.2.2 Excluded Volume Effects + Attractive Interactions[8]

Before inserting an ansatz form for the free energy of the system, let us look at the requirements that
a quantum gas should satisfy considering the classical solution.

• If the parameters corresponding to the non-idealities (’a’ for attractive interactions and ’b’ for
finite size) are 0, then the formulation should give solutions corresponding to an ideal quantum
gas.

• In the thermodynamic region where quantum fluctuations can be ignored, the solutions should
reduce to that of the classical case.

• The entropy should be non-negative and the formulation should follow the third law of thermo-
dynamics i.e. Entropy → 0 as t→ 0.

Considering this in mind, the following ansatz form of free energy in the canonical ensemble is intro-
duced:

F (T, V,N) = F id(T, V f(η), N) +Nu(n) (7.2.21)

Here η = bn/4, n = N/V , F id(T, V f(η), N) gives the free energy of the corresponding ideal gas system
and u(n) gives the attractive potential in consideration of the system. Now by construction of 7.2.19,
the first two points in the requirements are satisfied. The third point is also satisfied which can be
seen by an explicit calculation of entropy as follows:

S(T, V,N) = −
(
∂F

∂T

)
V,N

= Sid(T, V f(η), N) (7.2.22)
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The RHS of 7.2.20 follows the last requirement as quantum ideal gases do not violate the third law of
thermodynamics. The remaining quantities can be calculated as:

E(T, V,N) = F − TS = Eid(T, V f(η), N) +Nu(n)

p(T, V,N) =−
(
∂F

∂V

)
T,N

=pid(T, V f(η), N)
[
f(η)− ηf ′(η)

]
+ n2u′(n)

µ(T, V,N) =

(
∂F

∂N

)
T,V

=µid(T, V f(η), N)− b

4
f ′(η)pid(T, V f(η), N)

+ u(n) + nu′(n)

Now in the thermodynamic limit, all the intensive parameters in the canonical ensemble depend only
on the temperature (T) and number density (n). Hence, finally we have:

p(T, n) = pid
CE

(
T,

n

f(η)

)[
f(η)− ηf ′(η)

]
+ n2u′(n) (7.2.23)

s(T, n) =
S

V
= f(η)sid

CE

(
T,

n

f(η)

)
(7.2.24)

ε(T, n) =
E

V
= f(η)εid

CE

(
T,

n

f(η)

)
+ nu(n) (7.2.25)

µ(T, n) = µid
CE

(
T,

n

f(η)

)
− b

4
f ′(η)pid

CE

(
T,

n

f(η)

)
+ u(n) + nu′(n) (7.2.26)

Here id denotes ideal gas and CE denotes the canonical ensemble. Now we use the thermodynamic
equivalence of CE and GCE to transform the CE relations into the GCE ones. However before that,
we introduce the following notation:

p∗ = pid
CE

(
T, n

f(η)

)
, n∗ = nid

CE

(
T, n

f(η)

)
s∗ = sid

CE

(
T, n

f(η)

)
, µ∗ = µid

CE

(
T, n

f(η)

) (7.2.27)

Looking at the expression of µ∗, we identify the following as the number density of the ideal system:
n

f(η)
= nid (T, µ∗) (7.2.28)

From 7.2.26, it follows that:

p∗ = pid (T, µ∗) , n∗ = nid (T, µ∗) , s∗ = sid (T, µ∗) (7.2.29)

Now from 7.2.27 and 7.2.21-7.2.24, one finds that:

p(T, µ) =
[
f(η)− ηf ′(η)

]
pid (T, µ∗) + n2u′(n) (7.2.30)

s(T, µ) = f(η)sid (T, µ∗) (7.2.31)

ε(T, µ) = f(η)εid (T, µ∗) + nu(n) (7.2.32)

n(T, µ) = f(η)nid (T, µ∗) (7.2.33)
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In the above equations, it is implied that n ≡ n(T, µ). The value of shifted chemical potential
µ∗ = µ∗(T, µ) itself is calculated using the following implicit equation:

µ = µ∗ − b

4
f ′(η)p∗ + u(n) + nu′(n) (7.2.34)

This completes the GCE analysis for a generalised system. These equations are difficult to solve
analytically however a computer can easily solve it numerically. First 7.2.22 and 7.2.31 are used to
solve for µ∗ which is then used to compute n(T, µ). Finally 7.2.28-7.2.30 are used to compute the
remaining quantities.
Finally for the van der waals’ model we have the following substitutions for f(η) and u(n):

f(η) = 1− 4η (7.2.35)

u(n) = −an (7.2.36)

Substituting these back into 7.2.28-7.2.32, we have for a van der waals’ model:

pint(T, µ) = pid (T, µ∗)− a(nint(T, µ))2 (7.2.37)

nint(T, µ) =
nid (T, µ∗)

1 + bnid (T, µ∗)
(7.2.38)

µ∗ = µ− bpid (T, µ∗) + 2anint(T, µ) (7.2.39)

s ≡ s(T, µ) = (1− bnid (T, µ∗))sid (T, µ∗) ≈ sid (T, µ∗)

1 + bnid (T, µ∗)
(7.2.40)

ε ≡ ε(T, µ) =
εid (T, µ∗)

1 + bnid (T, µ∗)
− an2 (7.2.41)

Again equations 7.2.35-7.2.39, can be easily extended to a system containing many species. For a
multi-particle system[9] of baryons(B) and anti-baryons (B̄) (not interacting with each other), we

87



have:

p(T, µ) = pB(T, µ) + pB̄(T, µ) (7.2.42)

pB(B̄)(T, µ) =
∑

k∈B(B̄)

pidk

(
T, µ

B(B̄)∗
k

)
− an2

B(B̄) (7.2.43)

µ
B(B̄)∗
k = µk − bpB(B̄) − abn2

B(B̄) + 2anB(B̄) (7.2.44)

nB(B̄) =

∑
k∈B(B̄)

nidk

(
T, µ

B(B̄)∗
k

)
1 + b

∑
k∈B(B̄)

nidk

(
T, µ

B(B̄)∗
k

) (7.2.45)

sB(B̄) =

∑
k∈B(B̄)

sidk

(
T, µ

B(B̄)∗
k

)
1 + b

∑
k∈B(B̄)

nidk

(
T, µ

B(B̄)∗
k

) (7.2.46)

εB(B̄) =

∑
k∈B(B̄)

εidk

(
T, µ

B(B̄)∗
k

)
1 + b

∑
k∈B(B̄)

nidk

(
T, µ

B(B̄)∗
k

) − an2
B(B̄) (7.2.47)

88



Chapter 6:
Application To

Hadron Resonance Gas
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8 Application To Hadron Resonance Gas

The ideal hadron resonance gas in consideration contains all the Baryons and Mesons (which can be
built using up,down and strange) available to us from the Particle Data Group. All particles here are
considered to be stable and their decays are not included in this analysis. Further we are working
at extremely high temperatures and hence particle production is a real possibility. Hence the choice
of ensemble is the Grand Canonical Ensemble. For the time being the chemical potential includes
only the baryonic chemical potential and hence what is conserved in our analysis is simply the Baryon
number. I have parameterized the chemical potential as:

µ = B · µB (8.0.1)

where B=0/1 for mesons/baryons respectively. Further, I am using quantum statistics and hence
baryons follow the fermionic while mesons follow the bosonic formulation in the Grand Canonical
Ensemble.

8.1 Data Used

The data in consideration consists of two excel files containing information of all the stable Baryons
and Mesons upto an invariant rest mass of 2500 MeV. Further, only those baryons and mesons are
taken into consideration which can be constructed using the up,down and strange quarks. Both files
contain 6 columns which represent the ’index no.’, ’Baryon/Meson Name’, ’Mass(MeV)’, ’Degeneracy
factor (2S+1)(2I+1)’,’Baryon Number (0 for Mesons and 1 for Baryons)’ and ’Type Of Quantum
particle (0 for Bosons and 1 for Fermions)’. There are 66 Mesons and 64 Baryons that satisfy our
required criterion. All the data is taken from pdg (Particle Data Group). To access the excel files
please click on the following hyperlink: Data For Hadron Resonance Gas.

8.2 The Ideal Hadron Resonance Gas

This section uses the ideal gas formalism defined in the previous reports. Before I start combining the
data for all the particles present in our hadron gas, let us first look at the temperature dependence of
the pressure variable on the invariant mass parameter of the individual hadron.

8.2.1 Looking For Temperature Dependence For Pressure Variable As A function Of
Invariant Mass At 0 Chemical Potential

In the GCE, for an individual hadron having a degeneracy factor ’g’, the formula for the pressure
variable at 0 chemical potential reads:

pidF/B =
( g

2π2~3

)∫ ∞
m

(
1

3

(
ε2 −m2

)3/2) 1

eβε ± 1
dε (8.2.1)

Here ’+’ sign is for fermions and ’-’ sign is for bosons. The idea is to generate a power law relation
between the pressure and the temperature variable which looks like:

P ∝ T b (8.2.2)
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The idea is to characterize the formula for the variable ’b’ in terms of the invariant mass of the hadron.
The following fitting formula was used for this purpose:

b = AmB + C (8.2.3)

This formulation was implemented in python to generate the following results:

(a) Parameter ’b’ As Function Of Mass For Boson-
s/Fermions

(b) Value Of Fit Parameters A,B,C in 4.2.3

(c) Fitted Curve (Done After Combining Bosons And Meson Data)

Figure 22: Looking For Temperature Dependence For Pressure Variable As A function Of Invariant
Mass At 0 Chemical Potential

As one can observe from part (b); the value of fit parameter A is quite small nearly nullifying the
effect of mass parameter ’m’. The main contribution comes from the parameter ’C’ which is roughly
equal to 4 which is what we divide the pressure variable with to get the normalised (dimensionless)
pressure.
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8.2.2 Graphs For Ideal Hadron Resonance Gas

(a) Graph of Normalised Pressure vs Tem-
perature

(b) Graph of Normalised Number Density vs
Temperature

(c) Graph of Normalised Energy Density vs
Temperature

(d) Graph of Normalised Entropy Density vs
Temperature

Figure 23: Graphs For A Relativistic Ideal Hadron Resonance Gas At 0 Chemical Potential

To view the non-normalised graphs and graphs for different values of the baryonic chemical potential
coefficient µB, see (Appendix G1). The data for 0 chemical potential has been obtained from
reference [14] and represents the lattice QCD results of the Wuppertal-Budapest.

8.3 Van Der Waals’ Excluded Volume Model For Hadron Resonance Gas

This section has been divided into three parts: First where we have used the formulation as defined
by 7.2.12-7.2.15, second where we have used the formalism as defined by 7.2.17-7.2.19 and third where
we have compared the results for both the formulations. In this subsection, this is done only for 0
chemical potential. The computation is done for hard sphere radius of 0.1 fm. To view the same
results for different values of the baryonic chemical potential coefficient µB, see (Appendix G2).
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8.3.1 Part 1: Using Formalism As Defined In 7.2.12-7.2.15

(a) Graph of Normalised Pressure vs Tem-
perature

(b) Graph of Normalised Number Density vs
Temperature

(c) Graph of Normalised Energy Density vs
Temperature

(d) Graph of Normalised Entropy Density vs
Temperature

Figure 24: Graphs Of Some Important Parameters For A General Relativistic Van Der Waals’EV
Hadron Resonance Gas At 0 Chemical Potential

At this point, it is instructive to check whether our formulation is thermodynamically consistent or
not. This means that our macroscopic thermodynamics variables should indeed follow the first law
of thermodynamics. By construction of the formalism, one can easily see that the equations are
thermodynamically consistent. However, to be sure we compute energy density of the system in two
different ways (LHS and RHS of 3.2.15) for 0 chemical potential and check if we are getting the same
values of energy density. We plot the energy densities computed via two different ways against each
other and check if the curve obtained can be fitted with a straight line. If the values are same then
we should get the fit curve as a straight line with slope 1 and 0 y-intercept.
Performing the fit gave me the following results: As we can see from part (b) of the figure below,
the fit slope is indeed 1. The y-intercept is quite close to 0, however there is a huge error in it. This
implies that the values obtained through the two ways are not exactly equal everywhere. This can be
traced back to rounding-off errors and errors while computing the integrals involved by the python
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(a) Graph Of energy density computed two ways

(b) Value Of Fit Parameters And Errors In
Them

Figure 25: Check For Thermodynamic Consistency

compiler. Hence our formulation is thermodynamically consistent.

8.3.2 Part 2: Using Formalism As Defined In 7.2.17-7.2.19

From the graphs shown below, one can see that in this formulation the excluded volume model follows
the ideal gas model much more closely. This is well within expectations as we removed most of the
effects of the excluded volume model when we didn’t write the equations in terms of the shifted
chemical potential as in the previous case. The correction term introduced shows significant effect
only at a high chemical potential and a temperature greater than that of 250 MeV.The main motive
here is to understand that ones needs to be careful while inserting the equations into the computer.
A small change in formalism can lead to very different results as we see here.

(a) Graph of Normalised Pressure vs Temperature
(b) Graph of Normalised Number Density vs Temper-
ature

Figure 26: Normalised Graphs For Van Der Waals’ EV Hadron Resonance Gas At Various Chemical
Potential. Dots Represent Ideal Gas and Solid Line represents calculation done via Part 2 Formalism
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(a) Graph of Normalised Energy Density vs Temper-
ature

(b) Graph of Normalised Entropy Density vs Temper-
ature

8.3.3 Comparing Results Of Part - I and II:

(a) Graph of Normalised Pressure vs Temperature
(b) Graph of Normalised Number Density vs Temper-
ature

(c) Graph of Normalised Energy Density vs Temper-
ature

(d) Graph of Normalised Entropy Density vs Temper-
ature

Figure 28: Comparing Normalised Graphs. Dots represent ideal gas while triangles and solid line
represents calculation done via Part- I and II respectively

95



8.4 Interacting Van Der Waals’ Hadron Resonance Gas

8.4.1 Mesons And Baryons Are Part Of The Same System

In this subsection, I have treated baryons and mesons on equal footing. They are the part of the same
system and Meson-Baryon interactions exist in this system. These interactions are parameterised by
the variable ’a’ in the van der waals’ equation of state and is same for Meson-Meson and Baryon-
Baryon attractive interactions. Of course excluded volume effects are taken into consideration but it
is assumed that all the particles occupy the same excluded eigenvolume (average excluded volume per
particle). The values for the van der waals’ parameters are chosen[8] to be: a = 329MeV fm3 and b
= 3.41fm3 corresponding to a hard sphere radius of 0.59fm.

(a) Graph of Normalised Pressure vs Temperature (b) Graph of Normalised Number Density vs Temper-
ature

(c) Graph of Normalised Energy Density vs Temper-
ature

(d) Graph of Normalised Entropy Density vs Temper-
ature

Figure 29: Normalised Graphs For Interacting Van Der Waals’ HRG At 0 Chemical Potential

These graphs are plotted only for a temperature range of 0-200 MeV as beyond this the deviations
from the ideal gas model are quite large. This happens because the system can no longer be described
as a resonance hadron gas. For more information visit Appendix G3)
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8.4.2 Mesons And Baryons Belong To Different Subsystems

In this subsection, Baryons and Mesons are considered to be a part of different subsystems and they
are not interacting with each other. The Meson subsystem is assumed to be ideal while the Baryon
subsystem includes the Van Der Waals’ interactions. The parameters chosen for interacting part is
same as that of the previous subsection.

(a) Graph of Normalised Pressure vs Temperature
(b) Graph of Normalised Number Density vs Temper-
ature

(c) Graph of Normalised Energy Density vs Temper-
ature

(d) Graph of Normalised Entropy Density vs Temper-
ature

Figure 30: Normalised Graphs For Interacting Van Der Waals’ HRG At 0 Chemical Potential. Here
Mesons and Baryons belong to different sub-systems. Mesons are considered to be ideal while baryons
are considered to a interacting Van Der Waals’ subsystem.

As expected, this model follows the ideal gas much more closely than when both mesons and baryons
were part of the same interacting system.

8.4.3 An Interesting Case

In reference 9, the authors have taken the value of van der waals’ parameter a= 1250 MeV fm3 and a
hard sphere radius value of 0.7 fm. Even under my analysis (0 chemical potential), if the mesons and
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baryons are allowed to be the part of the same system (like in 8.4.1), the shifted baryonic chemical
potential for mesons at a temperature of 102.6 MeV goes as high as 138.9 Mev (Fig 31). This is clearly
a problem since the invariant rest mass of the pion family is below (extremely close) to this value.
Hence the Bose integrals will simply diverge in our original formulation. The way to get around such
divergences is to assume that at higher temperatures, either the mesons follow the simple Boltzmann
statistics or allow mesons and baryons to be a part of different subsystems (as proceeded in 8.4.2).
The authors in reference proceed forward by using the latter technique.

(a) Complete Graph (b) Zoomed Version

Figure 31: Graphs Of Shifted Chemical Potential For Mesons And Baryons

8.5 Conclusions

• The ideal gas model for hadron resonance gas (0 chemical potential) is in quite good agreement
with the lattice qcd data of Wuppertal-Budapest. The normalized pressure, energy density and
entropy density are very well described by this model. Significant deviations start appearing for
T > 150 MeV.

• The Van der Waals’ EV model (hard-sphere radius=0.1 fm) gives values for relevant normalised
thermodynamic quantities, which are significantly lower than what is obtained from ideal HRG
and the lattice qcd data.

• The case of interacting HRG is quite interesting. The analysis is done for van der waals’ param-
eters a=329 MeVfm3 and b=3.41 fm3:

– If mesons and baryons are kept on the same footing and are included as part of the same
system then interacting HRG grossly underestimates the relevant thermodynamic parame-
ters when compared to lattice data. This is quite expected since Van der Waals’ EV model
was already underestimating the parameters (and that too when the sphere radius was
lower than what is taken for this case).

98



– Consider mesons and baryons to be the parts of different sub-systems. Further allowing
mesons to be ideal while treating baryons using the interacting HRG formalism leads to
excellent agreement with the lattice qcd data.

9 Particle Production In Relativistic Heavy Ion (Au-Au) Collisions

9.1 Extracting The Chemical Freeze-Out Parameters

9.1.1 Particle Yields For Normal Hadrons

(a) Yield For π+ (b) Yield For π−
(c) Yield For K+

(d) Yield For K−
(e) Yield For p (f) Yield For p

Figure 32: Graphs Of Particle Yields vs Collision Centrality

In this subsection we will be looking at the particle yields of π+, π−,K+,K−, p and p. I have drawn
the graphs for particle yields as a function of collision centrality. In reference [10], the events have been
divided into 9 centrality classes:classes: 0–5%, 5–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%,
60–70%, and 70–80%. In the following graphs each centrality class is represented by its center point.
For eg: the centrality class 10-20 will be represented by the point 15 on the X-axis. The center of
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mass energies that have been taken into consideration are 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and
39 GeV. All the data presented in this section has been taken from reference 10 which itself is taken
at the mid-rapidity range of y =| 0.1 |.
As expected, the particle yields for all particles (except proton) increase with increase in the center of
mass energy of the collision. For protons, interestingly, the maximum yield is at the lowest energy of
7.7 GeV (suggesting highest baryon density at midrapidity for this energy). The main reason for this
trend is that at lower energies, the hadrons maintain their identity throughout multiple collisions and
hence partonic degrees of freedom are not as important. Thus, baryon density becomes quite high
when collision energies are small (0 ∼ 30 GeV). Further, lower collision centrality implies a head on
collision, a higher production of particles and consequently higher particle yields.

9.1.2 Particle Yields For Strange Hadrons

In this subsection we will be looking at the particle yields of K0
S ,Λ,Λ,Ξ

− and Ξ
+

. I have drawn the
graphs for particle yields as a function of collision centrality. In reference [10], the events have been

(a) For K0
S (b) For Λ (c) For Λ

(d) Yield For Ξ− (e) For Ξ
+

Figure 33: Graphs Of Particle Yields vs Collision Centrality For Strange Hadrons
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divided into 7 centrality classes:classes: 0–5%, 5–10%, 10–20%, 20–30%, 30–40%, 40–60% and 60–80%.
In the following graphs each centrality class is represented by its center point. For eg: the centrality
class 10-20 will be represented by the point 15 on the X-axis. The center of mass energies that have
been taken into consideration are 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV. All the data
presented in this section has been taken from reference 11 which itself is taken at the midrapidity
range of y =| 0.5 |.

9.1.3 Chemical Freeze Out Parameters

The yields obtained from the previous two subsections are processed using THERMUS (”a package of
C++ classes and functions allowing statistical-thermal model analyses of particle production in rela-
tivistic heavy-ion collisions”[12]) to give temperature (Tch), baryonic (µB) and strange (µS) chemical
potential, strange suppression factor (γS) and the radius of the thermal system.

(a) Variation Of Temperature with COM energy
(b) Variation Of Baryonic chemical potential with
COM energy

(c) Yield Comparison For Model and Experiment at√
sNN=7.7 GeV

Figure 34: For Most Central Collisions (0-5%)

The choice of ensemble for fitting is the Grand Canonical Ensemble (GCE). As expected as the
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temperature of the thermal system increases with the increase in the center of mass energy. The
chemical potentials decrease with increasing energies simply because pair production starts becoming
the dominant mechanism for particle production. The anti-particle to particle ratio starts going
towards 1 consequently sending the corresponding chemical potentials to 0. For all the energies the
suppression factor is close to 1 in most central collisions.

Table 1: Extracted chemical freeze-out parameters for grand canonical ensemble

√
sNN (GeV) Centrality(%) Tch (MeV) µB (MeV) µS (MeV) γS R (fm) χ2/ndf

7.7

0-5 144.2 ± 2.6 400.1 ± 13.8 89.3 ± 7.4 1.09 ± 0.06 5.63 ± 0.30 1.2
5-10 144.6 ± 2.5 402.3 ± 14.1 91.7 ± 7.7 1.09 ± 0.06 5.22 ± 0.28 1.7
10-20 144.8 ± 2.7 390.6 ± 13.9 86.7 ± 7.5 1.00 ± 0.05 4.86 ± 0.26 1.3
20-30 143.5 ± 2.9 383.4 ± 14.3 84.9 ± 8.3 0.93 ± 0.05 4.46 ± 0.26 1.1
30-40 147.4 ± 2.8 378.3 ± 14.9 87.7 ± 7.8 0.86 ± 0.04 4.03 ± 0.22 0.9

11.5

0-5 149.8 ± 3.0 281.4 ± 12.3 47.1 ± 7.2 0.90 ± 0.05 6.21 ± 0.33 1.5
5-10 152.6 ± 3.3 286.8 ± 14.4 57.8 ± 10.4 0.97 ± 0.07 5.41 ± 0.34 1.6
10-20 152.6 ± 3.3 288.1 ± 13.9 67.1 ± 7.8 1.03 ± 0.06 4.84 ± 0.29 1.6
20-30 156.6 ± 3.4 280.5 ± 13.3 63.2 ± 7.6 0.92 ± 0.05 4.09 ± 0.24 1.3
30-40 158.8 ± 3.6 270.7 ± 13.9 59.9 ± 8.1 0.85 ± 0.05 3.52 ± 0.21 1.3

19.6

0-5 159.2 ± 3.5 191.4 ± 13.3 41.6 ± 8.1 1.06 ± 0.06 5.73 ± 0.34 2.2
5-10 160.6 ± 3.4 192.8 ± 13.0 42.6 ± 7.8 1.04 ± 0.06 5.28 ± 0.31 2.0
10-20 166.8 ± 4.3 180.8 ± 13.7 39.8 ± 9.9 0.95 ± 0.07 4.40 ± 0.33 3.0
20-30 162.0 ± 3.7 182.2 ± 13.5 41.8 ± 8.4 0.97 ± 0.06 4.21 ± 0.26 1.8
30-40 162.7 ± 3.8 170.5 ± 13.0 38.9 ± 8.2 0.92 ± 0.05 3.67 ± 0.22 1.8

27

0-5 161.2 ± 3.5 181.7 ± 12.6 47.6 ± 7.7 1.07 ± 0.06 5.62 ± 0.33 4.2
5-10 162.5 ± 3.5 151.1 ± 12.5 35.1 ± 7.9 1.10 ± 0.06 5.24 ± 0.31 1.4
10-20 161.2 ± 3.4 141.1 ± 12.0 31.7 ± 7.9 1.03 ± 0.06 5.00 ± 0.29 2.1
20-30 161.9 ± 3.4 135.9 ± 11.7 31.7 ± 7.6 1.01 ± 0.05 4.37 ± 0.25 2.2
30-40 164.0 ± 3.7 138.8 ± 12.3 34.5 ± 8.0 0.96 ± 0.05 3.72 ± 0.22 1.8

39

0-5 162.0 ± 3.3 104.0 ± 11.1 22.8 ± 7.1 1.11 ± 0.06 5.79 ± 0.32 2.5
5-10 162.7 ± 3.4 102.4 ± 11.2 22.6 ± 7.4 1.03 ± 0.06 5.52 ± 0.31 2.0
10-20 163.1 ± 3.4 103.8 ± 11.5 24.6 ± 7.4 1.05 ± 0.06 4.98 ± 0.28 2.2
20-30 164.0 ± 3.6 99.9 ± 11.7 24.3 ± 7.7 1.01 ± 0.06 4.37 ± 0.25 1.9
30-40 165.3 ± 3.6 96.9 ± 11.4 24.5 ± 7.4 0.97 ± 0.05 3.76 ± 0.21 1.7

Finally, the radius of the system decreases from central to peripheral collisions. The table tabulated
here is in fine agreement with the one tabulated in reference [10]. The parameters obtained here are
close but not exact to what was obtained in [10]. The reason for this could be they that have included
the contribution of Ω and Ω baryons which is not done by me. (To see fit parameters without including
strange baryons visit Appendix H1).
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9.2 Constraining Particle Production Mechanism Using AMPT Model For
√
sNN=7.7

GeV

9.2.1 AMPT Model

AMPT[14] stands for A Multi-Phase Transport model and is used to simulate the dynamics of a
relativistic heavy-ion collision. It is a hybrid model and has 4 main components.

• Initial Condition: These are obtained using the HIJING (Heavy-Ion Jet Interaction Generator).
Hard minijet partons are produced perturbatively if the transfer of momentum is greater than
a threshold value else soft strings are produced. This threshold value is set to be 2 GeV/c for
our simulation. In the default AMPT model the soft strings are retained while in string melting
formalism they are completely converted into partons.

• Partonic Interactions: ZPC (Zhang’s Parton Cascade) is used for this part. The differential

parton-parton scattering cross section is given by: dσ
dt ≈

9πα2
s

2(t−µ2)2
Here t is the Mandelstam

variable, αs is the strong coupling constant, and µ is the Debye screening mass in partonic
matter.

• Hadronization: For default model, partons stop interacting after they combine with their parent
strings. Hadronization of this model takes place through Lund String Fragmentation model
[14]. Here 〈p2

T 〉 depends on the Lund-string fragmentation parameters (a,b) as:
〈
p2
T

〉
∝ 1

b(2+a) .
In the string melting version, Hadronization takes place via a quark coalescence model. Here
the nearest partons are combined together to form the quark-antiquark pair (mesons) or quark
triplets (baryons).

• Hadronic interactions: These describe the dynamics of the hadronic matter as described by
the ART (A relativistic Transport)[14] model. This model includes baryon-baryon,meson-meson,
meson-baryon, elastic and inelastic scatterings.

In this section, we have used the following parameter values for both default and string melting version
to try and simulate the particle production of Au-Au collisions at

√
sNN = 7.7GeV . These parameters

are supposed to be fine-tuned for this energy scale and were obtained from reference [13].

Table 2: Initial Values For Lund-String Fragmentation Parameters And Parton-scattering Cross sec-
tion

Set a b (GeV −2) αS µ (fm−1) σ (Cross-Section in mb)

A 0.55 0.15 0.33 2.265 3

B 0.5 0.9 0.33 3.2 1.5

C 2.2 0.5 0.47 1.8 10
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9.2.2 Results

(a) For π+ (b) For K+

(c) For proton (d) For π+

(e) For K+ (f) For proton

Figure 35: Graphs Of Particle Yields vs Collision Centrality At Mid-rapidity (y< | 0.1 |) from AMPT
default (a-c) and string melting (d-f) models
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For each set A,B,C and each model (default and string melting), we have simulated 20,000 events.
From the figure above we have the following observations:

• For π+ - In the default model, set B seems to able to best describe the dn/dy graph. However
even set B is consistently above the points obtained from data. The string melting model seems
to much better describe the yield of pion. Again the parameters of set C in the string melting
model best describe the pion yield plot.

• For K+ - Both the default and string melting models (all three sets) consistently fail to mimic
the kaon yield plot especially at centrality class 0-5%. None of the models seem to be able to
properly describe the kaon yield plot. Hence AMPT model fails to describe the production of
K+ at 7.7 GeV center of mass energy.

• For proton - Both the default and the string melting models (all three sets) seem to be able to
properly describe the proton yield curve. For the default model, the parameters of set B best
describe the dN/dy graph of proton. In the string melting formalism, set B and set C describe
the proton yield curve quite well with set B better explaining the central collision portion while
set C is better explaining the peripheral collision part.

• Overall, it was observed that for the same set of parameters the yield obtained through the
default model was a little higher than that obtained via the string melting model. It was also
observed that generally the yields obtained through set A were highest followed by set C and
set B for the default model.

To see the plots for the corresponding anti-particles visit Appendix H2.
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Chapter 7:
Flow In Relativistic

High Energy Collisions

106



10 Flow In Relativistic High Energy Collisions

Studies from the RHIC (Relativistic Heavy Ion Collider) suggests that the QGP matter formed due
to the deconfinement of partonic degrees of freedom appear to be more like a liquid rather than a gas.
This indicates that the particles produced in HIC tend to move collectively due to the variations of
pressure across the the volume of the overlap region formed by the colliding nuclei. This phenomenon
has been termed as flow[15] as this collective behavior is analogous to the properties of particles moving
in a fluid. One of the basic problems is to discover the fundamental laws leading to this emergent
behavior of produced particles.

10.1 Collision Geometry

For HIC, the number of nucleons is generally large. Hence, nucleus itself can be approximated by a
round (spherical) shape as shown in the figure below. The impact parameter vector, b̃ is defined along
the line joining the centers of the two nuclei at the point of closest approach. It’s magnitude is given
by the closest distance of approach between the centers of the two nuclei. Due to the non-spherical
shape of the overlapping region (which is generally observed to be dominated by elliptic flow), three
different kinds of planes can be defined:

• Reaction Plane (RP) : This plane is defined by the vectors of the beam direction and the impact
parameter.

• Participant Plane (PP): This plane is defined by the vectors of the beam direction and the
average vector of the participants.

• Event Plane (EP): This plane is defined by the vectors of the beam direction and the average
vector of the final particles detected

Clearly, in an experiment, one does not have access to the Reaction plane and the participant plane as
they are defined in the initial stages of the HIC. However, we will be working with models and hence
have access to both of these planes.

Figure 36: Reaction Plane (RP), Participant Plane (PP) and Event Plane (EP)[16]
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10.2 Anisotropic Flow

Consider a non-central collision (b̃ 6= 0) as shown in the figure below. The overlap region formed the
two colliding nuclei is non-spherical (”almond-like” shape is what people to call) within which nuclear
matter can be roughly considered to be continuous. A keen eye directly notices that the average
pressure gradient between the center of the overlap region and the surrounding vacuum is larger for
the reaction plane (xz plane in the figure) when compared to the out of plane direction. This is because
the overlapping region is thinner along the reaction plane.

We know that: ~F ∝ ∇P. Hence forces are different along different directions in the overlapping

Figure 37: Left: Example Of A Non-Central Collision and Right: Initial spatial anisotropy translating
into final momentum anisotropy of produced particles (https://cds.cern.ch/record/2634558/files/ATL-
PHYS-SLIDE-2018-604.pdf)

region. Therefore, the particles emitted along the flow direction (xz plane in the figure) have a higher
momenta when compared to the other directions leading to an anisotropy in the azimuthal momenta
distribution of the produced particles. Further, it is not unreasonable to expect this momentum
anisotropy is approximately proportional to the initial anisotropy in the collision geometry.
It was later realized that initial geometry fluctuates around the averaged elliptic shape. This happens
due to random positions of the participant nucleons in the overlapping region on an event by event
basis.This deformation can be cleverly quantified by a mode decomposition method with respect to
the azimuthal anisotropy of the positions of the participant nucleons. It leads to the definition of
dimensionless harmonic coefficients eccentricity as[15]:

ε1 ≡ ε1eiφ1 = −〈r
3eiφ〉
〈r3〉

εn ≡ εneiφn = −〈r
neinφ〉
〈rn〉 (n > 1)

(10.2.1)

Here (r, φ) is relative to the center of mass coordinate system and the average is over all the partici-
pating nucleons.
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Figure 38: Initial spatial anisotropy (for n=2,3,4) from Monte-Carlo Glauber[15]

10.3 Harmonic Flow

The study of momentum anisotropy is of prime importance as not only is it related to the initial
spatial anisotropy but also the medium properties of QGP. It is the latter observation which makes
the harmonic flow coefficients a possible signature of QGP like behavior.
Let us formally try to quantify this momentum anisotropy. To do this, first define a coordinate system
(pT , φ, η/y). This is related to the cartesian momentum coordinate system (px, py.pz) as:

px = pT cosφ
py = pT sinφ

pz =
√
p2
T +m2 sinh y

(10.3.1)

where the rapidity (y) is: y =
1

2
ln
E + pz
E − pz

(10.3.2)

the pseudorapidity (η) is: η =
1

2
ln
|p|+ pz
|p| − pz

= − ln tan

(
θ

2

)
(10.3.3)

where θ is the polar angle between p and beam axis (z). When particle mass becomes negligible,
E ≈ p, then η ≈ y. For HIC, this this is generally true and hence both are interchangly used
sometimes. Finally pT is the transverse momentum and φ is the azimuthal angle.
Now we are ready to quantify the momentum anisotropy mathematically of the produced particles.
Let us begin with the invariant yield of the produced particles:

E
d3N

dp3
= E

d3N

dpxdpydpZ

dy =
dpz
E

dpxdpy = pTdpTdφ

E
d3N

dp3
=

d3N

pTdpTdφdy

Now integrating out the φ variable (integration limits from 0 to φ), one realizes that that the obtained
function is periodic in the variable φ with a period of 2π. Hence it can be decomposed using a Fourier
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Figure 39: Schematic Of (pT , φ, η/y) coordinate system[15]

decomposition to get:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

[
1 +

∑
n=1

2vn(pT , y) cos(n(φ−ΨR))

]
(10.3.4)

Here ΨR is the reaction plane angle with respect to the x-axis. Note that, flow is always computed
with respect to a symmetry plane which is chosen to be the reaction plane in our case. The sine
terms vanish in the Fourier expansion due to the reflection symmetry wrt to the reaction plane. This
symmetry corresponds to the invariance of the invariant yield under the coordinate transformation:
(φ − ΨR) → −(φ − ΨR). Physically, this can be understood in the following manner. Collision
dynamics are completely constrained by the colliding beam directions and their distance of closest
approach (governed by impact parameter). Since, reaction plane is defined by these two vectors, a
person sitting on the reaction plane cannot differentiate between the collision dynamics if he looks out
of/into the plane.
The Fourier coefficients vn are called the as harmonic flow coefficients, The flow is usually dominated
by the first few harmonics: directed flow (v1), elliptic flow (v2), triangular flow (v3) and quadrangular
flow (v4). Here the vn coefficients are functions of η and pT and they are often referred to as differential
flow.
The flow coefficients can be computed as:

〈cosn(φ−ΨR)〉 =

∫ π
−π cosn(φ−ΨR) E d3N

d3p
dφ∫

E d3N
d3p

dφ

〈cosn(φ−ΨR)〉 =

∫ π
−π cosn(φ−ΨR)

(
1+
∞∑
n=1

2vn cosn(φ−ΨR)

)
dφ∫ (

1+
∞∑
n=1

2vn cosn(φ−ΨR)

)
dφ

Now using the orthogonality relation of the Fourier decomposition:∫ 2π

0
cos(m(φ−ΨR)) cos(n(φ−ΨR)) dφ = πδmn

This finally gives:

vn = 〈cos(n(φ−ΨR)) (10.3.5)
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10.3.1 Harmonic Flow Visualization

(a) No Flow (Uniform Distribution) (b) Flow Dominated by v1 (Directed Flow)

(c) Flow Dominated by v2 (Positive Elliptic
Flow coefficient)

(d) Flow Dominated by v2 (Negative Elliptic
Flow Coefficient)

(e) Flow Dominated by v3 (Triangular Flow)
(f) Flow Dominated by v4 (Quadrangular
Flow)

Figure 40: Effect of dominant flow coefficients on momenta distribution

Before we move any further, it is instructive to see how various harmonic coefficients of equation 10.3.4
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affects the final momenta distribution. In the plots drawn above, the impact parameter direction is
chosen to be along the x-axis. This sets the reaction plane angle to 0. The momenta distribution (2-D
histogram) in the transverse plane has been simulated keeping only the dominant flow term (non zero
v1 for directed flow, non zero v2 for elliptic flow and so on). The flow coefficient is a small positive
number unless stated otherwise. Finally for each plot, the distribution has been simulated for a region
covered by unit circle centered at origin in the momentum space.
One observes that uniform distribution is the no flow condition. This makes sense as no flow implies
no anisotropy in the distribution. For flow dominated by v1, we observe that more number of particles
flow along a particular direction (defined by impact parameter here). This justifies it’s name of
directed flow (sometimes also referred to as sideward flow). Moving onto flow dominated by v2, we
see an elliptic deformation in the distribution of momentum of particles justifying it’s name of elliptic
flow. When v2 > 0, then the major axis of the deformed ellipse is along the impact parameter
direction (x axis above). v2 < 0, then the major axis of the deformed ellipse is perpendicular to the
impact parameter direction. This is also know as squeeze-out flow. For flow dominated by v3, we see
that particles prefer to arrange themselves in a triangular type deformation in the momentum space.
Finally, for flow dominated by v4 we observe that particles in momentum space try to preferentially
orient themselves into one of the smaller four rooms which seem to be separated by the diagonals of
a large rectangle.

10.4 Hydrodynamic Framework

Every behavior of the strong interactions can technically be described by the beautiful QCD lagrangian
density:

L = ψ̄i

(
iγµD

µ
ij −mδij

)
ψj −

1

4
FµναF

µνα (10.4.1)

where ψi is a quark field, γµ are Dirac matrices, Dµ is a covariant gauge derivative, m is a quark mass,
δ is Kronecker delta and Fµνα is the field strength of the gluons corresponding to the color index α. In
a perfect world, this lagrangian would have been exactly solvable. However, interesting properties such
as running coupling, color confinement and self-interaction between gluons makes this impossible with
our current knowledge of mathematics. So the solution is to use a hydrodynamic model to provide a
phenomenological theory. Hydrodynamic models require two main conditions to work:

• the mean free path of the system is smaller than the size of the system. Mathematically,

λmeanfreepath � L (Box Size)

• The system must be in approximate local thermal equilibrium.

For a hydrodynamic simulation, we require three things. First an initial condition model, second the
relevant hydrodynamic equations and third an algorithm for particle production.

10.4.1 Initial Conditions

The initial condition provides a description of the initial state geometry and fluctuations within it.
The model which has been used in the hydro-simulator that I have been using is the Monte Carlo
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Glauber. In this model each nucleon is treated as hard sphere and is distributed within the nucleus
with a Wood-Saxon distribution. It is given by:

ρ(r) = ρ0

[
1 + exp

(
r −R
a

)]−1

(10.4.2)

where R corresponds to the classical radius of the nuclei given by R0A
1/3 and ’a’ is called the skin

depth. A nucleus-nucleus collision is considered to be a superposition of many nucleon nucleon collision.
Fluctuation of initial geometry in each event arises from the random position of finite nucleons within
the nucleus when sampled from the Wood-Saxon probability distribution.

Figure 41: Wood-Saxon Distribution (From Google Images)

10.4.2 Relevant Hydrodynamic Equations

The equations of hydrodynamics are simply a set of conservation equations. For ideal hydrodynamics,
the conservation laws are for the energy momentum tensor and the conserved charges of the system
are:

∂µN
µ
k = 0 (10.4.3)

∂µT
µν = 0 (10.4.4)

where Tµν is the energy momentum tensor defined as a function of energy density ε, flow four-velocity
umu and pressure P. Nk refers to the kth conserved charge of the system. The system further satisfies
another constraint given by the 2 law of thermodynamics. This says that the entropy of the universe
must increase. However we demand a much stricter condition that individually the entropy of both
the system and surrounding should increase. Mathematically, if Sµ is the entropy four current then:

∂µS
µ ≥ 0

with equality holding for the equilibrium condition.
A keen reader observes that we are still missing 1 equation to completely describe the system. The en-
ergy momentum tensor provides 4 equations which each conserved current equation gives one equation.
This gives a total of 4+k equation (assuming k conserved charges). Now the number of independent
parameters are 5+k. k for each conserved charge, 2 corresponding to energy and pressure while 3

113



corresponding to fluid four velocity (uµuµ = 1 decrease one free parameter). This extra equation
is provided in the form of equation of state (EOS) and governs the pressure-energy relation of the
system.

10.4.3 Algorithm Of Particle Production[17]

Once, the system has fully evolved using the hydrodynamic equations we require an algorithm to
recover back the particle spectra. This is usually done using the Copper-Fyre freeze-out algorithm
and is shortly discussed below:
. The Lorentz invariant momentum space distribution is given by:

E
dNi

d3p
=

dNi

dyp⊥dp⊥dϕp
=

dNi

dym⊥dm⊥dϕp
=

1

(2π)3

∫
Σ
p · d3σµ(x)fi(x, p) (10.4.5)

where p⊥,m⊥ are transverse momenta and mass respectively, φp is the azimuthal angle, y is rapidity,
σ is a 3-dimensional hypersurface, d3σµ(x) is the normal vector to hypersurface at point x, Ni is
the particle of type i and fi is the distribution function. It can be derived [17] that two separate
hypersurfaces Σ1 and Σ2 produce the same particle spectra if the distribution function evolves via a
boltzmann equation with a collision kernel that preserves the corresponding particle number. The same
momentum spectrum is reproduced iff fi(x) is a solution to the kernel corresponding to a collisionless
Boltzmann equation. Hence to compute the momentum spectrum, surface Σ which corresponds to the
detector is replaced by the surface ΣF which is the earliest surface enclosing all scattering processes.
This is why it is called the ”surface of last scattering” or the ”freeze-out surface”. Now parameterize the
3-dimensional surface by local orthogonal coordinates (u,v,w). Then the normal d3σµ(x) transforms
into the new local system as:

d3σµ = −εµνλρ
∂σν

∂u

∂σλ

∂v

∂σρ

∂w
dudvdw (10.4.6)

where εµνλρ corresponds to the four-dimensional completely antisymmetric levi-cevita symbol. As-
suming longitudinal boost invariance, the freeze out surface can be parameterized by a longitudinal
proper time τf (r⊥) as:

Σµ
f (r⊥, η) = (tf , xf , yf , zf) = (τf (r⊥) cosh η, r⊥, τf (r⊥) sinh η) (10.4.7)

d3σµ =

(
cosh η,−∂τf

∂x
,−∂τf

∂y
,− sinh η

)
τf (r⊥) d2r⊥dη (10.4.8)

p · d3σ(x) = (m⊥ cosh(y − η)− p⊥ ·∇⊥τf (r⊥)) τf (r⊥) d2r⊥dη (10.4.9)

with ∇⊥ = (∂x, ∂y), r⊥ is the transverse radius and η is the pseudorapidity. Now all that is left is to
somehow find the phase-space distribution function on the freeze-out surface. For that assume that
system in consideration expands extremely fast such that the mean free path increases rapidly. Thus,
the transition from strong interacting hydrodynamic medium to an essentially free medium occurs in
a very short interval. Now, one can safely assume that this time scale is not large enough to affect the
macroscopic variables of the system. Hence, the distribution function on the freeze-out surface can be
roughly approximated by its thermal equilibrium form. This is given by:

fi,eq(x, p) =
gi

e[p·u(x)−µi(x)]/T (x) ± 1
= gi

∞∑
n=1

(∓1)n+1e−n[p·u(x)−µi(x)]/T (x) (10.4.10)
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This is the standard Bose/Fermi distribution function. This small derivation leads to the famous
Cooper-Fyre freeze-out algorithm:

• Determine the freeze-out surface where the local thermal equilibrium just begins to break down.

• Use the local equilibrium distribution function as given by 10.4.10 in 10.4.5 to get the invariant
yield.

11 Harmonic Flow Coefficients As QGP Signatures

One of the main objectives of HIC, is to probe the realm of QGP (Quark-Gluon Plasma) which is a
de-confined state of quarks and gluons. Now, assume that you collided two heavy ions. How does one
know that QGP like medium was actually formed during the evolution of the collision system? Hence,
we need some kind of signature which can identify if QGP like medium was formed or not.
In this section, we will see if flow coefficients can be used as QGP signatures. The major focus will
be on elliptic flow (which is the major deformation in the initial spatial anisotropy) along with a
minor focus on triangular flow. This test will be done using the simulations produced from the AMPT
(A Multi-Phase Transport) Model and hydrodynamic simulation of Au-Au collisions at

√
sNN = 200

GeV.

11.1 Analysis Using The AMPT Model

The basics of the AMPT model has already been discussed in section 9.2. 20,000 events were simulated
for both the default and string models. The initial values required to run the AMPT model is given
in table 3.

(a) Schematic for the Default Version (b) Schematic for the String Melting Version

Figure 42: Versions Of The AMPT Model

115



Table 3: Initial Values For Lund-String Fragmentation Parameters And Parton-scattering Cross sec-
tion

a b (GeV −2) αS µ (fm−1) σ (Cross-Section in mb)

2.2 0.5 0.47 1.8 10

These set of values is the same as set C used in section 9.2 for constraining particle production of
Au-Au collisions at

√
sNN = 7.7 GeV. This set was used as it gave the correct magnitude for the

coefficient of elliptic flow in the string melting version when compared to the data available from the
STAR collaboration.
To test v2/v3 as possible qgp signatures, we need to produce two different scenarios and compare their
performances keeping all other parameters fixed. This is done by:

• Scenario 1- NO QGP like medium is produced. This scenario is simulated using the default
version of the AMPT model. The process of hadronization in this version follows the LUND
string fragmentation model. This model incorporates color strings between partons which then
later on fragments successively into final state hadrons. The major thing to notice is that partons
are never actually free and exist in a color singlet form by always remaining in a bound state.
see the figure below for more clarity. Hence, default version is a good candidate to simulate this
scenario.

• Scenario 2- QGP like medium IS produced. This is simulated using the string melting version
of AMPT. This model follows a quark coalescence. This algorithm combines the two nearest
quark-antiquark pair into a meson and the three nearest quarks (antiquarks) into a baryon (anti-
baryon). Before coalescence the partons are essentially free from each other and hence it forms
a good candidate for simulating scenario 2.

(a) Lund String Fragmentation (From Aranya’s
thesis)

(b) Quark Coalescence (YONSEI UNIVERSITY)

Figure 43: Schematics for hadronization algorithms
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11.1.1 A Preliminary Check

Before we dive into the results, let us do a preliminary check to see if momentum anisotropy is indeed
dominated by elliptic flow. To do this, we plot the distribution of azimuthal angle in the momentum
space for various produced particles (pion,kaons,protons,lambda and phi). The resulting histogram is
then fitted using the fit equation:

N(φ) = A+Bcos(2(φ− φR)) (11.1.1)

Here A, B and φR are fit parameters. The ratio B/A quantifies elliptic flow and φR is the reaction
plane angle.
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Figure 44: Azimuthal Distribution (In Momentum Space) For Some particles

As one can see from the above figure, the azimuthal distribution (In Momentum Space) for fits incred-
ibly well to a Fourier decomposition containing only the second flow harmonic. This indeed suggests
that momentum space anisotropy is dominated by elliptic flow. This also true for other produced
particles which have not been shown here. The above distribution of particles have been simulated
from the string melting version. To see the same for the equivalent results for default version visit
Appendix J1.

Table 4: Optimum Parameters For Fit Function For Various Particles

Particle Pid A ∆A B ∆B φR ∆φR v2 ∆v2

K0
S 310 10790.9 9.29124 1114.48 13.1421 -0.00325 0.005878 0.1032796 0.0013068

Proton 2212 35278.2 16.7996 3415.07 23.757 -0.01606 0.00347 0.0968040 0.0007195

Lambda 3122 4712.26 6.13987 486.29 8.69565 0.004659 0.008891 0.1031968 0.0019798

Pion 211 166519 36.4987 12436.9 51.6395 0.002274 0.002071 0.0746876 0.0003265

Kaon 321 21574.7 13.1376 2223.62 18.5857 -0.00181 0.004165 0.1030661 0.0009242

Phi 333 2106.16 4.10479 235.48 5.80907 -0.00882 0.012279 0.1118054 0.0029760

Pi0 111 102638 28.6549 7683.84 40.5434 0.001937 0.002632 0.0748635 0.0004159

Table 4, suggests that the reaction plane angle is essentially 0 for all the particles which is to be
expected. The elliptic flow coefficient is around 0.1 which is the correct order of magnitude (for string
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melting version) as we shall see in the next subsection. Please note that this is not an exact analysis
but a coarse graining of the problem at hand.

11.1.2 Number Of Constituent Quark (NCQ) Scaling:

For v2:
Consider the following graphs of 〈v2〉nq vs mT−m0

nq
. Here mT stands for the transverse mass, m0 goes for

rest mass, 〈v2〉 stands for the event average of the elliptic flow and nq refers to the number of quarks
in the hadron. All v2 computations have been done at minimum bias. The elliptic flow coefficient

(a) For Default Version (b) For SM version

Figure 45: Graph Of 〈v2〉nq vs mT−m0
nq

v2 for an event has been calculated using the formula obtained in 10.3.5 by substituting n=2. Since,
in the AMPT model the impact parameter axis is along the x-axis and the beam direction is along
the z-axis, the reaction plane angle for every event is 0. This was also confirmed for many produced
particles (in SM version) in the previous subsection.

One can see that for the SM version 〈v2〉nq vs mT−m0
nq

falls impressively on a universal curve. The graph

above has been plotted for K±,π0 (which are mesons) and proton and Λ0 (which are baryons). Hence,
NCQ scaling seems to be a universal behavior (irrespective of hadron type) in the SM version. Clearly,
no NCQ scaling is observed for the default version.
The presence of NCQ scaling is proof of the presence of partonic degrees of freedom at some time in
the evolution of system formed from high energy collisions. The argument for this is quite simple.
The v2

nq
scaling shows that elliptic flow of any sea-parton is independent of it’s parent hadron. This

implies that it doesn’t matter whether an up quark comes from a proton, a pion or a Kaon. Once
we have adjusted for finite mass effects of hadron. This is exactly why the scaling behavior is much
prominent when plotted against mT−m0

nq
rather than pT

nq
. Since, the flow of parton is independent of

the parent hadron, this suggests that at some time during the evolution of system partonic degrees
were the fundamental degrees of freedom flowing collectively with the medium. Hence the presence of
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NCQ scaling in the elliptic flow of produced particles is a good signature of QGP.

For v3:
The calculation of v3 is a bit different than that of v2. It cannot be simply calculated by keeping n=3
in 10.3.5. This is due to the fact that the minor axis of triangular deformation has no correlation with
the minor axis of eccentricity of elliptic deformation and the reaction plane angle in Glauber Monte
Carlo calculations. This implies that the average triangularity calculated with respect to the reaction
plane is zero. This can be explicitly seen in the figure below.

Figure 46: Distribution of third order symmetry plane wrt the reaction plane in AMPT

Each event has a different orientation for the third order symmetry plane. Since the distribution
is non-uniform (but constantly fluctuates about the constant red line), one can expect a very small
non-zero triangular flow (sometimes positive sometimes negative based on your luck). This is indeed
what I obtained when I did this incorrectly, with v3 vs pT graph fluctuating about the mean value of
0.
The third order symmetry plane in the AMPT is calculated using the position of participant nucleons
when the coordinate system is set at the center of mass of the participating nucleons. The third order
symmetry plane angle is given by[18]:

ψ3 =
atan 2

(〈
r2 sin (3φpart )

〉
,
〈
r2 cos (3φpart )

〉)
+ π

3
(11.1.2)

where (r, φpart) are the polar coordinate positions of participating nucleons. Here ψ3 is the minor axis
of participant triangularity. It is wrt this plane that triangular harmonic flow of produced particles
will be calculated as:

v3 = 〈cos(3(φ− ψ3)) (11.1.3)
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In 11.1.2, the atan2(y,x) is a special function which makes sure that the coordinate transformation
from cartesian to polar system happens correctly. It is given by:

atan 2(y, x) =



arctan
( y
x

)
if x > 0,

arctan
( y
x

)
+ π if x < 0 and y ≥ 0,

arctan
( y
x

)
− π if x < 0 and y < 0,

+π
2 if x = 0 and y > 0,
−π

2 if x = 0 and y < 0,
undefined if x = 0 and y = 0.

Now we are finally ready to see NCQ in the triangular flow. The scaling function is a bit modified for
triangular flow. Consider the following graphs of 〈v3〉

n
3/2
q

vs mT−m0
nq

. Here mT stands for the transverse

mass, m0 goes for rest mass, 〈v3〉 stands for the event average of the triangular flow and nq refers to
the number of quarks in the hadron. All v3 computations have been done at minimum bias.

(a) For Default Version (b) For SM version

Figure 47: Graph Of 〈v3〉nq vs mT−m0
nq

One can see that for the SM version 〈v3〉nq vs mT−m0
nq

falls impressively on a universal curve. The graph

above has been plotted for K±,π0 (which are mesons) and proton and Λ0 (which are baryons). Hence,
NCQ scaling seems to be a universal behavior (irrespective of hadron type) in the SM version. Clearly,
no NCQ scaling is observed for the default version. This is again a good signature for arguing that a
QGP like medium is formed.

Finally, one can also observe that the elliptic and triangular flow obtained for the particles simulated
from the SM version is roughly double than that for the particles simulated from the default version.
As the flow is dominated by elliptic flow in both the versions, the elliptic flow coefficients for each
version is much higher when compared to the triangular flow coefficients for the corresponding version.
Hence a large momentum anisotropic flow can also be considered as a good signature for the production
of a qgp like medium. This observation will get stronger in the coming subsections.
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11.1.3 vn=2,3 vs 〈pT 〉 Histograms

Another key observable to check is the vn=2,3-〈pT 〉 correlation. These variables are expected to be
correlated due to equation 10.3.4. Here 〈pT 〉 is the mean transverse momenta computed for the event
for which vn=2,3 has been calculated.
This correlation will be quantified using the Pearson correlation coefficient (PCC). PCC quantifies the
amount of linear correlation between two sets of data. Given a pair of random variables (X,Y), the
PCC ρXY is given as:

ρX,Y =
cov(X,Y )

σXσY

ρX,Y =
E [(X − µX) (Y − µY )]

σXσY
where: µX = E[X]
µY = E[Y ]
σ2
X = E

[
(X − E[X])2

]
= E

[
X2
]
− (E[X])2

σ2
Y = E

[
(Y − E[Y ])2

]
= E

[
Y 2
]
− (E[Y ])2

E [(X − µX) (Y − µY )] = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

Here E is the expectation value.Substituting everything back, we finally have the working formula for
PCC as:

ρX,Y =
E[XY ]− E[X]E[Y ]√

E [X2]− (E[X])2
√

E [Y 2]− (E[Y ])2
(11.1.4)

(a) For Default Version (b) For SM version

Figure 48: v2 vs 〈pT 〉 histograms

The final thing left to do is to interpret the value of ρX,Y . From equation 11.1.4, one observes that
the range of correlation coefficient lies between -1 and 1. A value of 1/-1 implies that there a perfect
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linear relationship between the random variables X and Y. Mathematically y = m ∗ x ∀ ordered pairs
(x ∈ X, y ∈ Y ). The value of +1 implies m > 0 and the variables are said to be positively correlated.
The value of -1 implies m < 0 and the variables are said to be negatively correlated. A value of 0
implies that there is no linear correlation between the variables.

(a) For Default Version (b) For SM version

Figure 49: v3 vs 〈pT 〉 histograms

Just by looking at the histograms, one can say that only v2 has some significant positive correlation
with the mean pT of the event. This can be explicitly seen from the PCC values tabulated in table
5. For v2, there is roughly no correlation between the two observables for the default version while
there is a small (yet significant) positive correlation in the SM version. For v3, there is roughly
no correlation between the two observables for the default version while there is an extremely weak
positive correlation in the SM version.

Table 5: Data For Pearson correlation coefficient

Model
Flow

Elliptic
Flow

Triangular
Flow

• Default 0.01 0.02

• SM 0.14 0.06
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11.1.4 Collective Flow in φ Mesons

The φ meson has a quark content of ss̄. The study of collective flow in φ mesons can help us directly
probe the properties of the medium produced in HIC. The reason for this is that the interaction cross
section for φ meson is less when compared to the interaction cross section for other hadrons. This can
explicitly be seen from the cross section values detailed below[18]

σφN ∼ 10mb σKN ∼ 2.1σφN
σρN ∼ 3σφN σΛN ∼ 3.5σφN
σπN ∼ 2.6σφN σNN ∼ 4σφN

This implies that φ meson decouples early. In simple words, once hadronization takes place to form
the φ meson, it simply ignores any interaction with other particles of the medium before getting
detected by the detector. This completes a qualitative argument to prove our initial claim. Consider
the following graph for elliptic flow of φ meson as a function of

√
sNN (center of mass energy for a

pair of nucleons) of the Au-Au colliding system.

Figure 50: Elliptic Flow In φ meson as a function of
√
sNN

In the above graph 〈v2〉 is the event average elliptic flow at corresponding
√
sNN . This is further

done at minimum bias which means that within an event the average is taken over all produced φ
meson. One observes from the graph that that the trend followed by the default and the SM versions
are roughly the same. The difference between the two versions lies primarily in the magnitude of
elliptic flow produced. On an average, given

√
sNN the elliptic flow produced in a QGP like scenario

is almost double when compared to the non-QGP like scenario. Hence, an usually large elliptic is a
good indication that a QGP like medium was formed during the evolution of the collision system.

11.2 Analysis Using The Hydrodynamic Simulation

The basics of hydrodynamic framework has already been explained in section 10. As with the AMPT
model, we first need to create two scenario between which we can compare to see if elliptic flow can
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be effectively used as a signature of QGP.

11.2.1 Setting Up The Scenarios

The hydrodynamics simulated here will correspond to ideal hydrodynamic framework. In this frame-
work, we don’t have much freedom other than choosing the equation of state of the evolving system.
This is what will differentiate between the two scenarios:

• Scenario 1 - NO QGP like medium is produced. This scenario is encoded into the simulation
by using the equation of state for a massless ideal hadron resonance gas at 0 chemical potential.
The parameterization in terms of energy density is given as (Appendix J2):

P = 1
3ε

s = 1.17ε0.75

T = ε+P
s = 1.14ε0.25

(11.2.1)

• Scenario 2 - QGP like medium IS produced. This scenario is encoded into the simulation by
using the equation of state from lattice QCD. A parameterization in terms in energy density can
be found in arXiv:0912.2541.

11.2.2 Elliptic Flow From Ideal Hydrodynamic Framework

Consider the following < v2 > vs pT graph for pions as recovered from the hydrodynamic simulations.
Here pT is the transverse momentum of the pions.

Figure 51: Elliptic Flow From Hydrodynamic Framework
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One observes, that the elliptic flow obtained for Lattice EOS is almost double to what is obtained for
the ideal HRG EOS. This is nothing new and was already seen in collective flow for φ meson that the
elliptic flow is much larger for the scenario where QGP like medium is produced when compared to the
non-QGP scenario. AMPT is a model that microscopically evolves the dynamics of the system while
the same in the hydrodynamic system is done macroscopically. Hence, it is very satisfying to see that
we obtain same results from two very different types of simulations. Further, we also see that elliptic
flow obtained from lattice EOS is quite to close that of SM version of AMPT and is in good agreement
from data of the STAR Collaboration. Similarly, elliptic flow obtained from AMPT default version
and ideal HRG EOS are quite close to each other. In both the scenarios, elliptic flow obtained from
AMPT model is just a bit higher when compared to corresponding scenarios in the hydro-simulation.

11.3 Results

• For v2 (Elliptic Flow):

– NCQ scaling is observed only for the scenario where the model was encoded to have a QGP
medium.

– Elliptic flow is almost double for the QGP scenario when compared to the non-QGP sce-
nario.

– Elliptic flow has weak positive correlation and roughly no correlation with 〈pT 〉 for SM and
Default versions respectively.

– The results for elliptic flow in both the scenarios are consistent for both the AMPT and
hydrodynamic models. They are also in good agreement with the data from STAR collab-
oration.

• For v3 (Triangular Flow):

– The momentum anisotropy is dominated by elliptic flow for both the Default and SM
versions.

– A modified NCQ scaling is observed only for the scenario where the model was encoded to
have a QGP medium.

– Triangular flow is almost double for the QGP scenario when compared to the non-QGP
scenario.

– Triangular flow has an extremely weak correlation and roughly no correlation with 〈pT 〉 for
SM and Default versions respectively.

• Presence of NCQ scaling for v2 and a modified NCQ scaling for v3 is a definite characteristic of
formation of QGP like medium.

• Large elliptic flow in produced particles is a good signature of QGP like behavior.
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12 Final Conclusions

In this initial part of this thesis work, we have seen that simple statistical mechanics formulation has
been incredibly efficient in explaining the physics of non-relativistic realm. When applied to photons it
gives the famous Stephan-Boltzmann and Wien Displacement Laws, applied to phonons gives sigmoidal
type curve for specific heat and when applied to massive bosons, it explains the phenomenon of Bose-
Einstein condensation. This success has motivated us to apply statistical mechanics to the system
formed due to high energy collisions in the form of Hadron Resonance Gas.
In this thesis, three different versions of HRG are considered. First is ideal HRG where constituent
particles have point size, second is VDWEV HRG (Van-der waals’ excluded volume) where constituent
particles have finite size and finally attractive VDWEV HRG where attractive interactions between
constituent particles is introduced in addition to their finite size. When compared to data of lattice
QCD from Wuppertal-Budapest, it is observed that ideal gas model for HRG at 0 chemical potential
is in quite good agreement. Significant deviations start appearing for T > 150 MeV which is close to
the phase transition temperature to QGP. The attractive interacting HRG (with hard sphere radius
of 0.59fm and an interacting strength corresponding to 329Mevfm3) is a slightly better fit to lattice
QCD data. This however works under the assumption that mesons and baryons are part of different
subsystems. Further mesons are considered to be behaving ideally while only baryons are treated with
the interacting HRG formalism.
Another thermal model called THERMUS is applied is extract chemical freeze out parameters from
the invariant yields of the produced particles (π±,K±, p(p̄),Λ(Λ̄),K0

S ,Ξ
−(Ξ̄+)) to Au-Au collisions

at
√
sNN = 7.7,11.5,15,27 and 39 GeV. The advantage of using THERMUS model is that it takes

finite life-time of resonances and their decays into account which was previously absent in the HRG
model. The fit parameters obtained from THERMUS are in quite good agreement with that obtained
from STAR collaboration. It is observed that inclusion of strange baryons increases the freeze-out
temperature as expected. The success of thermal models in describing the thermodynamics of high
energy collisions suggests that indeed a thermal equilibrated medium is formed during the evolution
of the medium formed due to HIC. Further AMPT model is used to constrain particle production
in Au-Au collisions at

√
sNN=7.7 GeV. AMPT model reproduces the particle spectra for hadrons

containing only light quarks (pions and protons) while it fails to do so for hadron containing strange
quark (kaon).
Finally, simulations from the AMPT model and hydrodynamic framework are used to see if elliptic
flow can be used as a valid QGP signature. In AMPT, default model and string melting (SM) versions
simulate the non-QGP and QGP like scenarios respectively. In hydro, similar scenarios are reproduced
using the ideal massless HRG EOS and lattice EOS respectively. It is observed in AMPT that the
presence of NCQ scaling for elliptic flow and a modified NCQ scaling for triangular is a definite
characteristic of formation of QGP like medium. It is also observed that elliptic flow is almost double
for the QGP scenario when compared to the non-QGP scenario. The latter observation has also been
supported from elliptic flow obtained from hydro-simulations which is quite wonderful. Hence it is
quite safe to say large elliptic flow in produced particles is a good and reliable signature of QGP like
behavior.
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13 Appendix

13.1 Appendix A1: Calculation for internal energy and specific heat for Photons

The formula for energy density as 4.3.14 and 4.3.15 is:

U

V
=

∫ ∞
0

dω
~

π2c3

ω3

eβ~ω − 1

Consider the integral:

I =

∫ ∞
0

dω
ω3

eβ~ω − 1
=

∫ ∞
0

dω
ω3e−β~ω

1− e−β~ω

=

∫ ∞
0

dω ω3

[ ∞∑
n=0

(e−β~ω)n

]

=
∞∑
n=0

∫ ∞
0

dω ω3e−β~nω

(13.1.1)

Now make the substitution β~ω = t and β~dω = dt to get:

I =

∞∑
n=0

1

(~β)4

1

n4

∫ ∞
0

t3e−t dt

=
Γ(4)

(~β)4

∞∑
n=0

1

n4
=

Γ(4)

(~β)4
ζ(4)

(13.1.2)

Here Γ, ζ are the generalized factorial function and the Reimann zeta function respectively. Both their
values are known standards and can be substituted to get:

I =
π4

15(β~)4
(13.1.3)

U

V
=
π2

15

(kT )4

(~c)3
(13.1.4)

CV =
∂U

∂T
=

4π2V k4T 3

15(~c)3
(13.1.5)

13.2 Appendix A2: Solving Equation 4.3.21

Equation 4.3.21 are quite the special equations and require the use of Lambert W function or the
product log function to solve exactly. These equations have infinitely many solutions in the complex
domain, however we are lucky to solve only for the real solution. The equation has a form:

ex(x− 3) + 3 = 0

=⇒ (x− 3)e(x−3) = −3e−3
(13.2.1)
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Now apply the lambert W function on both sides. The left sides reduces simply to x due to the
defining properties of the function. Hence:

=⇒ Wn

[
(x− 3)e(x−3)

]
= Wn

[
−3e−3

]
=⇒ x− 3 = Wn

[
−3e−3

]
=⇒ x = 3 +Wn

[
−3e−3

]
n ∈ Z

(13.2.2)

Since lambert W function is inverse of a multi-valued function branch cuts are required to be defined
in the complex domain to return a valid value. Each of those branch cuts are index by an integer
which is the significance of ’n’. Since we only need real solutions, equation 5.2.2 need to be solved for
n=0,-1. One can use Wolfram Mathematica to get the particular values to get:

n = 0 =⇒ x = 0 (13.2.3)

n = −1 =⇒ x = 2.82144 (13.2.4)

Both are valid solutions to 5.2.1 (however x=0 is not a physical solution to our system).

13.3 Appendix B1: Solving For Internal Energy Of Phonons

The internal energy as given by 4.4.12 is:

U =

3N∑
i=1

~ωi
eβ~ωi − 1

Using 4.4.4 and 4.4.5 to go to the continuous version to get:

U =
3V

2π2c3

∫ ωm

0
dω ω2 ~ω

eβ~ω − 1

U

N
=

9(kT )4

(~ωm)3

∫ β~ωm

0
dt

t3

et − 1

The second part can be obtained by making the substitution β~ω = t. Now define the special function,
Debye function and the Debye temperature as follows. The Debye function is extensively studied in
mathematics and I have directly picked up its expansion at the relevant points.

D(x) ≡ 3

x3

∫ x

0
dt

t3

et − 1
=

{
1− 3

8x+ 1
20x

2 + · · · (x� 1)
π4

5x3
+O (e−x) (x� 1)

kTD = ~ωm = ~c
(

6π2N

N

)1/3

Now everything can be finally re-substituted to get:

U

N
= 3kTD(TD/T ) =


3kT

(
1− 3

8
TD
T + · · ·

)
(T � TD)

3kT

[
π4

5

(
T
TD

)3
+O

(
e−TD/T

)]
(T � TD)

(13.3.1)
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13.4 Appendix B2: Solving For Specific Heat Of The Phonon System

Using 11.3.1 we want to compute the specific heat. Before starting the differentiating process define
x = TD/T The major steps are as follows:

CV
Nk

= 3D(x) + 3T

[
∂D(x)

∂x

∂x

∂T

]
∂D(x)

∂x
= − 9

x4

∫ x

0

t3

et − 1
dt+

3

ex − 1
= −3

x
D(x) +

3

ex − 1

∂x

∂T
= − 1

T 2
TD = − x

T
CV
Nk

= 3

[
4D(x)− 3x

ex − 1

]
Now the value of x can be re-substituted to get back the desired result:

CV =


3Nk

[
1− 1

20

(
TD
T

)2
+ · · ·

]
(T � TD)

12Nkπ4

5

(
T
TD

)3
+O

(
e−TD/T

)
(T � TD)

13.5 Appendix C1: Solving The General Bose Integrals

The integral we wish to evaluate is:

Iν(β, βµ) =

∫ ∞
0

dε
εν

eβ(ε−µ) − 1

=

∫ ∞
0

dε εν
∞∑
k=1

(e−β(ε−µ))k

=
∞∑
k=1

(eβµ)k
∫ ∞

0
εν e−βεk dε

Now make the substitution βεk = t and dε = 1
βkdt to get:

I =
1

βν+1

[ ∞∑
k=1

(eβµ)k

kν+1

](∫ ∞
0

tνe−tdt

)
Now it’s just a matter of recognizing the famous functions. The function in [] and () brackets are the
Drichlet-Reimann functions and the Generalized factorial function respectively leading to the result:

I =
Γ(ν + 1)

βν+1
gν+1(eβµ) (13.5.1)

This is the general trick of solving these type of integrals. Even the fermi-integrals can be reduced
using this type of analysis. All hail complex numbers and analytic continuation properties which allow
us to formulate continuous versions of an otherwise discrete function.
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13.6 Appendix C2: The Clayperon Equation

The Clayperon equation is a way of characterizing a discontinuous phase transition between two phases
of matter having the same basic constituent. As generally, phase transitions occur under atmospheric
pressure, hence this equation comes in to be quite useful.
The derivation begins by considering two phases α & β currently at equilibrium with each other. At
the coexistence curve we must have:

dµα = dµβ

Using the extensive property of internal energy, assuming V,S and N to be the extensive variables and
applying the Euler’s homogeneous theorem, the internal energy has the form:

U = −PV + TS +Nµ

By first Law of thermodynamics we have:

dU = −PdV + TdS + µdN

Differentiating the original equation and comparing with the first law gives:

dµ = −sdT + vdP

Using the property of the coexistence curve, we have:

−(sβ − sα)dT + (vβ − vα)dP = 0

dP

dT
=

∆s

∆v
=

Lp
T∆v

The final obtained equation is the famous Clayperon-Equation.

13.7 Appendix D1: Towards Van der Waals’ Equation From The Virial Equation
For Dilute Gases

Dividing the equation of state with the number density and comparing the resulting equation with
the Virial equation of state, we get:

∞∑
l=1

al

( ∞∑
n=1

nb̄nz
n

)l−1

=

∞∑
l=1

b̄lz
l

∞∑
l=1

lb̄lzl

(
b̄1z + 2b̄2z

2 + 3b̄3z
3 + · · ·

) [
a1 + a2

( ∞∑
n=1

nb̄nz
n

)
+ a3

( ∞∑
n=1

nb̄nz
n

)2

+ · · ·

]

= b̄1z + b̄2z
2 + b̄3z

3 + · · ·
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Comparing the coefficients of powers of z on both sides we have:

a1 = b̄1 = 1
a2 = −b̄2
a3 = 4b̄22 − 2b̄3
· · ·

Hence each Virial coefficient can be written in terms of linear combination of some cluster coefficients.
Further, each cluster coefficient can be computed as a sum of finite number of integrals. Hence the
classical cluster problem is simply a problem where we have to solve a large but finite number of
integrals, however the integrals might not be easy. Now re-writing the Virial equation of state upto
second order we have:

P =
NkT

V

[
1 + a2λ

3N

V

]

Now substituting, a2λ
3 = B2 and realizing that for a dilute gas ρ = N/V is small and using the

approximation 1
1−x ≈ 1 + x if |x| << 1:

P =
NkT

V
[
1−B2

N
V

]
P =

NkT

[V −NB2]

P [V −NB2] = NkT

Now:

B2 = a2λ
3 = −b̄2λ3

B2(T ) = − 1

2V

∫∫
f12d~r1d~r2 = − 1

2V

∫∫
f12d~r1d~r12

= −1

2

∫ ∞
0

∫ π

0

∫ 2π

0
drdθdφr2 sin θf12 = −2π

∫ ∞
0

f12r
2dr

Here to solve the integral we gave made the following substitutions:

~r1 =
1

2
[~r1 + ~r2]

~r12 = ~r2 − ~r1

Determinant Of the Jacobian Matrix = |J | = 1∫
d~r1 = V (Center Of Mass V olume)

f12 = f12(|~r12|)
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13.8 Appendix D2: Proving Some Properties Of WN(1, 2, · · · , N)

Proof Of property 1:

W1(1) = W1 (~r1) =
λ3

V

∑
~p

e−i~p·~r1/~e(β~
2/2m)∇2

ei~p·~r1/~

=

(
λ

h

)3 ∫
d3pe−βp

2/2m = 1

Proof Of Property 2:

WN (1, 2, · · · , a, · · · , b, · · · , N) = N !λ3N
∑
α

Ψ∗α(1, 2, · · · , a, · · · , b, · · · , N)e−βH Ψα(1, 2, · · · , a, · · · , b, · · · , N)

WN (1, 2, · · · , a, · · · , b, · · · , N) = N !λ3N
∑
α

Ψ∗α(1, 2, · · · , b, · · · , a, · · · , N)e−βH Ψα(1, 2, · · · , b, · · · , a, · · · , N) for Bosons

N !λ3N
∑
α
−Ψ∗α(1, 2, · · · , b, · · · , a, · · · , N)e−βH −Ψα(1, 2, · · · , b, · · · , a, · · · , N) for Fermions

WN (1, 2, · · · , a, · · · , b, · · · , N) = WN (1, 2, · · · , b, · · · , a, · · · , N)

Proof Of Property 3:

Let Ψα =
∑
λ

SαλΦλ, where Sαλ be a unitary matrix :∑
α

S∗αλSαγ = δλγ∑
α

〈
Ψα, e

−βH Ψα

〉
=
∑
α,λ

S∗αλSαγ

〈
Φλ, e

−βH Φγ

〉
=
∑
λ

〈
Φλ, e

−βH Φλ

〉

13.9 Appendix D3: First Order Calculation Of b2− b(0)
2 For Fermions And Bosons

For the hard sphere potential, ηl=0,1 ≈ −(ka)2l+1/(2l + 1) is a good approximation to start off with.
This is definitely not the exact phase shift but at the lowest order of analysis this goes through. This
will not give the correct numerical coefficients, however it will depict the correct relation with the
hard-sphere scattering parameter ’a’. Before the starting of this calculation, we shall assume that the
potential does not form any two-particle bound states.
For Bosons, we only consider l=0 term in 2.3.11:

∂η0(k)

∂k
= −a

b2 − b(0)
2 = −23/2a

π

∫ ∞
0

dk e−
β~2k2
2m

b2 − b(0)
2 = −2a

λ
λ is the thermal wavelength

134



Now for fermions only l=1 term is considered as we are doing a lowest order analysis. Hence:

∂η0(k)

∂k
= −3a3k2

b2 − b(0)
2 = −3a323/2a

π

∫ ∞
0

dk k2e−
β~2k2
2m

Change Of Variables:
β~2k2

m
= t 2kdk =

m

β~2
dt

b2 − b(0)
2 =

3
√

2a3

π

(
m

β~2

)3/2 ∫ ∞
0

t1/2e−t dt

b2 − b(0)
2 =

3
√

2a3

π

(
m

β~2

)3/2

(1/2)!

b2 − b(0)
2 = −6π

[a
λ

]3
λ is the thermal wavelength

13.10 Appendix E1: Dependence between N-body S-wave Pseudopotential And
Hard-Sphere Diameter

To find the exact expression of an N-body pseudopotential one needs to solve a corresponding l-body
problem with the hard sphere potential. However, finding out the dependence on the hard sphere
diameter ’a’ can be done easily using a simple dimensional argument. Consider an intersection of N-
surfaces of type Sij as defined in 3.1.3. Then we have a N-body Schrodinger equation. Recursively
applying the method of pseudopotentials suggests that this N-body Hamiltonian can be expressed as a
sum of 2-body pseudopotential, 3-body pseudopotential, · · · , N-body pseudopotential. Here N - body
pseudopotential will consist of N-1 delta functions to incorporate the effect of N-particles colliding at
the same coordinates in space. Hence:(

∇2
1 +∇2

2 + · · ·+∇2
N + k2

)
Ψ

= ( sum of two-body pseudopotentials ) + ( sum of three-body pseudopotentials )
+ · · ·+ ( sum of (N-1)-body pseudopotentials ) + δ (~r1 − ~r2) δ (~r1 − ~r3) · · · δ (~r1 − ~rN )CNΨ

Now a simple dimensional analysis gives:

∇2
1 = [L]2 δ3(~r1 − ~r2) = [L]−3

CN = [L]3(N−1)−2 = [L]3N−5

Since the only available parameter of length in our problem is the hard-sphere diameter, ’a’ we have
the following relation:

CN ∝ a3N−5

135



13.11 Appendix E2: Energy Eigenvalues For Bose Gases For Pseudopotential
Part

The Hamiltonian in consideration is:

V =
∑
i<j

V P
ij =

∑
i<j

δ(~ri − ~rj)

Let Φα is the N-body wavefunction formed by symmeterizing the product uα1(1)uα2(2) · · ·uαN (N).
Here uα1(1) ≡ uα1(~r1) is a state of a single particle wave-function corresponding to particle number 1
of the N-body system. The energy of the system can be calculated using:

〈Φα|V |Φα〉 =

∫
d3NrΦ∗α

∑
i<j

V P
ij Φα =

1

2
N(N − 1)

∫
d3NrΦ∗αv12Φα

The second integral is realized by taking into account that there are NC2 potential terms in the sum.
Further each term depends on only two independent coordinates of the system. Hence they can be
suitably renamed to match the first term of the sum. Now:

〈Φα|V |Φα〉 =
N(N − 1)

N !2

∑
P

∑
Q

∫
d3Nr

[
u∗Pα1

(1) · · ·u∗PαN (N)
]
v12 [uQα1(1) · · ·uQαN (N)]

=
N(N − 1)

N !2

∑
P

∑
Q

〈Pα1, Pα2|v|Qα1, Qα2〉 (δPα3,Qα3 · · · δPαN ,QαN )

where 〈α, β|v|γ, λ〉 ≡
∫
d3r1d

3r2u
∗
α(1)u∗β(2)v12uγ(1)uλ(2)

Here P,Q are permutations on N objects. Permutation P sends the ordered set {1,2,...,N} to the
ordered set {P1,P2,...,PN}. Summing over takes care of symmeterization but not normalization.
〈Φα|Φα〉 =

∏
α

(nα!) with nα being the occupation number of the single particle state α. In the inner

product, the only non-zero terms have: Pα1 = Qα1 and Pα2 = Qα2 or Pα2 = Qα1 and Pα1 = Qα2

with Pαj = Qαj for all jneq1, 2. Hence:

〈Φα|V |Φα〉 =
N(N − 1)

N !2

∏
α

(nα!) ×
∑
P

(〈Pα1, Pα2|v|Pα1, Pα2〉+ 〈Pα1, Pα2|v|Pα2, Pα1〉)

Now, we will change the label from states of the single particle system to occupation numbers. There
are (N-2)! permutations that that effect the quantum numbers {α3, ..., αN}, leaving {α1, α2} un-
changed. Further let the occupation numbers of state α be denoted by nα. Then the number of ways
in which a pair, say (α, β) can be chosen is simply:

fαβ =

{
nαnβ (α 6= β)
1
2nα (nα − 1) (α = β)

combining fαβ = (1− δαβ)nαnβ + 1
2δαβnα (nα − 1)
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Hence: 〈
Φ′n|V |Φ′n

〉
=

1

2
N(N − 1)

(N − 2)!

N !

∑
α,β

fαβ(〈α, β|v|α, β〉+ 〈α, β|v|β, α〉)

|Φ′α〉 =
1√∏

α
(nα!)

|Φα〉 is now the normalized ket

〈
Φ′n|V |Φ′n

〉
=

1

2

∑
α,β

[
(1− δαβ)nαnβ +

1

2
δαβnα (nα − 1)

]
×(〈α, β|v|α, β〉+ 〈α, β|v|β, α〉)

Since, we are working with the lowest order in perturbation theory, the eigenfunctions are simply the
free-particle eigenfunctions of the ideal gas. Thus, each inner product simply gives out a factor of
1/V. Hence: 〈

Φ′n,
∑
i<j

δ (~ri − ~rj) Φ′n

〉
=

1

V

∑
~p 6=~k

n~pn~k +
1

2

∑
~p

n~p
(
n~p − 1

)
∑
~p 6=~k

n~pn~k =
∑
~p

n~p
∑
~k

n~k −
∑
~p

n2
~p = N2 −

∑
~p

n2
~p

En =

〈
Φ′n,

∑
i<j

δ (~ri − ~rj) Φ′n

〉
= 1

V

(
N2 − 1

2N −
1
2

∑
~p

n2
~p

)

13.12 Appendix E3: Energy Eigenvalues For Spin 1/2 Fermi Gases For Pseudopo-
tential Part

The interacting part of the Hamiltonian in consideration is:

V =
∑
i<j

V P
ij =

∑
i<j

δ(~ri − ~rj)

Let Φα is the N-body wavefunction formed by symmeterizing the product uα1(1)uα2(2) · · ·uαN (N).
Here uα1(1) ≡ uα1(~r1) is a state of a single particle wave-function corresponding to particle number 1
of the N-body system. The energy of the system can be calculated using:

〈Φα|V |Φα〉 =

∫
d3NrΦ∗α

∑
i<j

V P
ij Φα =

1

2
N(N − 1)

∫
d3NrΦ∗αv12Φα

The second integral is realized by taking into account that there are NC2 potential terms in the sum.
Further each term depends on only two independent coordinates of the system. Hence they can be
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suitably renamed to match the first term of the sum. Now:

〈Φα|V |Φα〉 =
N(N − 1)

N !2

∑
P

∑
Q

∫
d3Nr

[
u∗Pα1

(1) · · ·u∗PαN (N)
]
v12 [uQα1(1) · · ·uQαN (N)]

=
N(N − 1)

N !2

∑
P

∑
Q

〈Pα1, Pα2|v|Qα1, Qα2〉 (δPα3,Qα3 · · · δPαN ,QαN )

where 〈α, β|v|γ, λ〉 ≡
∫
d3r1d

3r2u
∗
α(1)u∗β(2)v12uγ(1)uλ(2)

Here P,Q are permutations on N objects. Permutation P sends the ordered set {1,2,...,N} to the
ordered set {P1,P2,...,PN}. Summing over takes care of symmeterization but not normalization.
〈Φα|Φα〉 =

∏
α

(nα!) with nα being the occupation number of the single particle state α. In the inner

product, the only non-zero terms have: Pα1 = Qα1 and Pα2 = Qα2 or Pα2 = Qα1 and Pα1 = Qα2

with Pαj = Qαj for all j 6= 1, 2.
Now this is where we deviate from the case of bosons. Since the fermionic wavefunctions are completely
anti-symmetric, we pick up an extra minus sign to get:

〈Φα|V |Φα〉 =
N(N − 1)

N !2

∏
α

(nα!) ×
∑
P

(〈Pα1, Pα2|v|Pα1, Pα2〉 − 〈Pα1, Pα2|v|Pα2, Pα1〉)

Now, we will change the label from states of the single particle system to occupation numbers. There
are (N-2)! permutations that that effect the quantum numbers {α3, ..., αN}, leaving {α1, α2} un-
changed. Further let the occupation numbers of state α be denoted by nα. Then the number of ways
in which a pair, say (α, β) can be chosen is simply:

fαβ =

{
nαnβ (α 6= β)
0 (α = β)

combining fαβ = (1− δαβ)nαnβ

Hence: 〈
Φ′n|V |Φ′n

〉
=

1

2
N(N − 1)

(N − 2)!

N !

∑
α,β

fαβ(〈α, β|v|α, β〉 − 〈α, β|v|β, α〉)

|Φ′α〉 =
1√∏

α
(nα!)

|Φα〉 is now the normalized ket

Further realizing that nα ∈ {0, 1} for fermions, we have:

(Φn,ΩΦn) =
1

2

∑
α,β

nαnβ(〈α, β|v|α, β〉 − 〈α, β|v|β, α〉)

Now the free particle wavefunction can be written as:

ups(r, σ) =
1√
V
eip·r/~δ(s, σ)

where δ(s, σ) =

{
1 (s = σ)
0 (s 6= σ)
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However our interacting potential is independent of spin coordinates. Thus, we have:

〈α, β|δ|α, β〉 =
1

V

〈α, β|δ|β, α〉 =
1

V
δ (sα, sβ)

Now all we need to do is re-substitute. Let nks denote the occupation number of the momentum state
’k’ with spin value ’s’. Then:〈

Φn,
∑
i<j

δ (ri − rj) Φn

〉
=

1

2V

∑
s,s′

∑
p,k

npsnks′
[
1− δ

(
s, s′

)]

=
1

2V

N2 −
∑
s

∑
p,k

npsnks


Now let:

N+ ≡
∑
p

np,+1

N− ≡
∑

np,−1 = N −N+

Finally, we have for spin-1/2 fermionic system:〈
Φn,

∑
i<j

δ (ri − rj) Φn

〉
=
N+N−
V

13.13 Appendix F1:Reason For λ = 6 As The Appropriate Exponent

As an electron moves in a molecule, there exists a separation of positive and negative charges within
the molecule. Hence the molecule acquires a time varying dipole moment ~pdip. Assuming this molecule
to be at the origin, this instantaneous dipole moment generates an electric field given by:

~E(~r) =
1

4πε0r3
×
[
3(~pdip.~r)~r − |~r|2~pdip

]
Here ~r is the displacement vector from the origin. A second molecule, located at ~r relative to the first
one develops an induced dipole moment due to the electric field of the first molecule. Let α be the
molecular polarizability. Then the induced moment is given by:

~pind(~r) = α~E(~r)

The potential energy for this binary system is given by:

u(~r) = −~pind(~r) • ~E(~r)
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The average energy of interaction s the average over time and all possible orientations of ~pind(~r). This
is given by:

u(~r) = −
(

1

t2 − t2

)∫ t2

t1

[(
1

2π

)∫ 2π

0
α| ~E|2dθ

]
dt

Computing |E|2:

~E(~r, t, θ) =
1

4πε0|~r|5
[
3|~p||~r|cosθ − |~r|2~p

]
|E|2 =

1

16π2ε2|~r|10

[
9(~p · ~r)2|~r|2 − 3|~r|2(~p · ~r)2 − 3|~r|2(~p · ~r)2 + |~r|4|~p|2

]
⇒ 1

16π2ε2|~r|10

[
3(~p · ~r)2 + |~r|4|~p|2

]
Now using the above decomposition and the fact that 1

2π

∫ 2π
0 cos2θ dθ = 1/2, we have:

u(~r) =
−1

(t2 − t1)

∫ t2

t1

·
(

α

16π2ε2
0|~r|10

)[
5

2
r4|~p|2

]
dt

u(~r) = − 5α

32π2ε2
0|~r|6

·
〈
|~p|2
〉

Here the 〈〉 denote the time average. Clearly one can see that:

u(~r) ∝ 1

|~r|6

13.14 Appendix F2: Explicit Computation Of Thermodynamic Parameters In
The Excluded Volume Ideal Gas Model

Let us begin with the formula for number density. We have:

nexclid (T, µ) =
∂P excl

∂µ

=
∂P (T, µ̃)

∂µ

=
∂P (T, µ̃)

∂µ̃

∂µ̃

∂µ

= nid(T, )

[
1− v0

∂P (T, µ̃)

∂µ̃

]
= nid(T, µ̃) [1− v0 nid(T, µ̃)] +O(v2

0)

Ignoring higher order terms and using 1− x ≈ 1

1 + x
if x� 1

nexclid (T, µ) =
nid(T, µ̃)

1 + v0 nid(T, µ̃)
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Now for the entropy density we have:

sexclid (T, µ) =
∂P excl

∂T

=
∂P (T, µ̃)

∂T

=

[
∂P (T, µ̃)

∂T

]
µ̃

+

[
∂P (T, µ̃)

∂µ̃

]
T

∂µ̃

∂T

= sid(T, µ̃) + nid

[
−v0

∂Pid(T, µ̃)

∂T

]
= sid(T, µ̃) [1− v0 nid(T, µ̃)] +O(v2

0)

Ignoring higher order terms and using 1− x ≈ 1

1 + x
if x� 1

sexclid (T, µ) =
sid(T, µ̃)

1 + v0 nid(T, µ̃)

Finally, for energy density we have the following trick:

εexclid (T, µ) = Tsexclid (T, µ)− P + µnexclid (T, µ)

P =
P [1 + v0 nid(T, µ̃)]

1 + v0 nid(T, µ̃)
≈ P

1 + v0 nid(T, µ̃)

Using: v0 nid(T, µ̃)� 1 =⇒ P � P × v0 nid(T, µ̃) =⇒ P [1 + v0 nid(T, µ̃)] ≈ P

εexclid (T, µ) =
εid(T, µ̃)

1 + v0 nid(T, µ̃)

As one observes, all the above formulae are only valid under first order approximation in perturbation
series of v0 and face the condition v0 nid(T, µ̃)� 1.
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13.15 Appendix G1: Some More Graphs For Ideal Hadron Resonance Gas

This section contains the non-normalized graphs of various thermodynamic parameters at 0 chemical
potential. Further, it also contains graphs for ideal hadron resonance gas at various values of bary-
onic chemical potential µB or simply µ as I have only considered baryonic chemical potential in the
formulation.

(a) Graph of Pressure vs Temperature
(b) Graph of Number Density vs Tempera-
ture

(c) Graph of Energy Density vs Temperature
(d) Graph of Entropy Density vs Tempera-
ture

Figure 52: Graphs Of Some Important Parameters For A General Relativistic Ideal Hadron Resonance
Gas At 0 Chemical Potential

The graphs shown in figure below are for a variety of values of µ. All the parameters are plotted for
7 different values of µ. The values are as follows: [′0′,′ 0.1′,′ 1′,′ 10′,′ 100′,′ 500′]
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(a) Graph of Pressure vs Temperature (b) Graph of Number Density vs Temperature

(c) Graph of Energy Density vs Temperature (d) Graph of Entropy Density vs Temperature

Figure 53: Graphs Of Some Important Parameters For A General Relativistic Ideal Hadron Resonance
Gas At Various Chemical Potential

This completes the ideal gas analysis.

(a) Graph of Normalised Pressure vs Temperature
(b) Graph of Normalised Number Density vs Temper-
ature
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(a) Graph of Normalised Energy Density vs Temper-
ature

(b) Graph of Normalised Entropy Density vs Temper-
ature

Figure 55: Normalised Graphs Of Some Important Parameters For A General Relativistic Ideal Hadron
Resonance Gas At Various Chemical Potential

13.16 Appendix G2: Some More Graphs For Van der Waals’ Excluded Volume
Model For Hadron Resonance Gas

This section contains the non-normalized graphs of various thermodynamic parameters at 0 chemical
potential. Further, it also contains graphs for Van Der Waals’ excluded volume hadron resonance
gas model at various values of baryonic chemical potential µB or simply µ as I have only considered
baryonic chemical potential in the formulation. The graphs shown in figure below are for a variety
of values of µ. All the parameters are plotted for 7 different values of µ. The values are as follows:
[′0′,′ 0.1′,′ 1′,′ 10′,′ 100′,′ 500′]. The calculation is done for a hard sphere radius of 0.1 fm.

(a) Graph of Pressure vs Temperature
(b) Graph of Number Density vs Tempera-
ture
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(a) Graph of Energy Density vs Temperature (b) Graph of Entropy Density vs Tempera-
ture

Figure 57: Graphs Of Some Important Parameters For A General Relativistic Van Der Waals’ EV
Hadron Resonance Gas At 0 Chemical Potential

(a) For Baryons (b) For Mesons

Figure 58: Graphs Of Shifted Chemical Potential For Mesons And Baryons

(a) Graph of Pressure vs Temperature (b) Graph of Number Density vs Temperature
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(a) Graph of Energy Density vs Temperature (b) Graph of Entropy Density vs Temperature

Figure 60: Graphs Of Some Important Parameters For EV Hadron Resonance Gas At Various Chem-
ical Potentials. Ideal Gas Models are represented by dots and EV model by dashed lines

(a) Normalised Graph of Pressure vs Temperature
(b) Normalised Graph of Number Density vs Temper-
ature

(c) Normalised Graph of Energy Density vs Temper-
ature

(d) Normalised Graph of Entropy Density vs Temper-
ature

Figure 61: Normalised Graphs Of Some Important Parameters For A General Relativistic Van Der
Waals’ EV Hadron Resonance Gas At Various Chemical Potential. Ideal Gas Models are represented
by dots and EV model by solid lines
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13.17 Appendix G3: Some More Graphs For Van der Waals’ Interacting Model
For Hadron Resonance Gas

This section contains non-normalized graphs of various thermodynamic parameters at 0 chemical
potential. Further, it also contains graphs for Interacting Van Der Waals’ hadron resonance gas model
at various values of baryonic chemical potential µB or simply µ as I have only considered baryonic
chemical potential in the formulation.

(a) Graph of Pressure vs Temperature (b) Graph of Number Density vs Temperature

(c) Graph of Energy Density vs Temperature (d) Graph of Entropy Density vs Temperature

Figure 62: Graphs Of Some Important Parameters For A General Relativistic Interacting Van Der
Waals’ Hadron Resonance Gas At 0 Chemical Potential

As one observes from the graphs above, after T=200 MeV the thermodynamic parameters start
deviating greatly form the ideal gas parameters. When appropriately normalised thermodynamic
quantities are plotted, the results are quite interesting. Each normalised thermodynamic quantity
when plotted against temperature has a peak near T=200 Mev for 0 chemical potential which shifts
a bit towards the left as one increases the coeffcient of the baryonic chemical potential µ. This is
explicitly shown on the next page.
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(a) For Baryons (b) For Mesons

Figure 63: Graphs Of Shifted Chemical Potential For Mesons And Baryons

(a) Graph of Pressure vs Temperature (b) Graph of Number Density vs Temperature

(c) Graph of Energy Density vs Temperature (d) Graph of Entropy Density vs Temperature

Figure 64: Normalised Graphs Of Some Important Parameters For A General Relativistic Interacting
Van Der Waals’ Hadron Resonance Gas At Various Chemical Potential. Squares represent interacting
HRG while dots represent Ideal HRG
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13.18 Appendix H1: Chemical Freeze Out Parameters After Excluding Strange
Baryon Contribution

Table 6: Extracted chemical freeze-out parameters for grand canonical ensemble√
(sNN ) Centrality(%) Tch (MeV) µB (MeV) µS (MeV) γS R (fm) χ2/ndf

7.7 (GeV)

0-5 136.4 ± 4.0 367.7 ± 19.2 79.0 ± 9.2 0.96 ± 0.10 6.76 ± 0.60 0.051
5-10 136.4 ± 3.8 368.8 ± 18.5 79.1 ± 3.0 0.97 ± 0.09 6.32 ± 0.53 0.052
10-20 137.0 ± 3.8 360.9 ± 18.4 77.4 ± 9.4 0.91 ± 0.09 5.77 ± 0.49 0.060
20-30 138.2 ± 3.9 361.1 ± 19.0 79.7 ± 10.0 0.90 ± 0.09 5.00 ± 0.43 0.056
30-40 141.1 ± 4.5 360.6 ± 19.3 77.6 ± 11.1 0.84 ± 0.09 4.18 ± 0.39 0.079
40-60 139.2 ± 4.1 341.3 ± 17.5 73.6 ± 9.2 0.74 ± 0.07 4.46 ± 0.38 0.064
60-80 139.2 ± 4.2 322.0 ± 17.5 75.3 ± 10.0 0.48 ± 0.04 3.14 ± 0.27 0.402

11.5 (GeV)

0-5 143.2 ± 4.3 263.0 ± 17.0 58.8 ± 11.1 0.87 ± 0.09 7.03 ± 0.60 0.022
5-10 143.5 ± 4.7 264.5 ± 17.5 58.7 ± 11.3 0.92 ± 0.10 6.44 ± 0.58 0.027
10-20 143.4 ± 3.9 261.9 ± 15.6 56.7 ± 10.7 0.88 ± 0.09 5.89 ± 0.46 0.020
20-30 146.7 ± 4.8 257.7 ± 17.3 58.0 ± 11.4 0.83 ± 0.09 4.93 ± 0.44 0.025
30-40 147.4 ± 5.6 251.2 ± 18.0 55.9 ± 11.3 0.77 ± 0.08 4.33 ± 0.43 0.027
40-60 149.1 ± 4.8 245.1 ± 17.1 57.7 ± 12.4 0.69 ± 0.07 4.25 ± 0.36 0.038
60-80 147.1 ± 5.0 212.7 ± 16.8 51.9 ± 11.6 0.51 ± 0.05 3.11 ± 0.28 0.025

19.6 (GeV)

0-5 146.2 ± 4.4 166.5 ± 15.6 38.1 ± 11.2 0.84 ± 0.09 7.53 ± 0.65 0.005
5-10 147.4 ± 4.5 172.4 ± 15.8 38.4 ± 11.5 0.85 ± 0.09 6.88 ± 0.60 0.005
10-20 150.1 ± 5.3 158.6 ± 16.4 38.2 ± 10.2 0.65 ± 0.08 6.13 ± 0.58 0.006
20-30 148.4 ± 5.1 164.7 ± 18.6 38.1 ± 10.5 0.83 ± 0.09 5.44 ± 0.50 0.005
30-40 149.5 ± 5.0 152.5 ± 16.2 35.2 ± 11.5 0.80 ± 0.09 4.71 ± 0.43 0.006
40-60 151.5 ± 5.2 144.9 ± 16.4 34.7 ± 16.0 0.74 ± 0.10 4.61 ± 0.43 0.006
60-80 151.7 ± 5.0 128.9 ± 14.3 32.3 ± 11.0 0.60 ± 0.06 3.18 ± 0.29 0.006

27 (GeV)

0-5 145.1 ± 4.3 164.6 ± 15.4 37.6 ± 11.1 0.81 ± 0.9 7.76 ± 0.65 0.014
5-10 149.2 ± 5.1 133.1 ± 14.7 28.1 ± 10.4 0.86 ± 0.11 6.95 ± 0.75 0.084
10-20 148.7 ± 4.5 126.5 ± 14.2 25.3 ± 10.2 0.86 ± 0.09 6.41 ± 0.55 0.003
20-30 149.7 ± 4.3 120.2 ± 13.4 24.1 ± 10.6 0.84 ± 0.09 5.57 ± 0.46 0.003
30-40 152.2 ± 4.7 122.6 ± 14.3 26.2 ± 11.3 0.81 ± 0.09 4.68 ± 0.41 0.004
40-60 153.9 ± 5.3 115.3 ± 15.4 25.8 ± 10.8 0.78 ± 0.08 4.59 ± 0.44 0.004
60-80 154.0 ± 4.9 110.5 ± 14.1 38.9 ± 12.8 0.69 ± 0.08 3.13 ± 0.28 0.004

39 (GeV)

0-5 149.2 ± 4.3 92.4 ± 12.9 21.2 ± 10.4 0.86 ± 0.09 7.59 ± 0.62 0.003
5-10 150.6 ± 4.5 92.4 ± 13.3 22.0 ± 10.4 0.87 ± 0.09 6.98 ± 0.59 0.004
10-20 149.7 ± 4.5 94.8 ± 13.4 21.2 ± 10.1 0.86 ± 0.09 6.47 ± 0.55 0.003
20-30 151.3 ± 4.6 91.9 ± 13.5 21.2 ± 11.0 0.84 ± 0.09 5.57 ± 0.48 0.004
30-40 153.7 ± 4.7 87.0 ± 4.7 20.7 ± 10.5 0.83 ± 0.09 4.68 ± 0.41 0.003
40-60 154.5 ± 4.5 81.6 ± 12.2 23.7 ± 11.0 0.76 ± 0.08 4.69 ± 0.40 0.025
60-80 152.7 ± 5.1 67.2 ± 14.9 16.2 ± 10.2 0.69 ± 0.07 3.31 ± 0.30 0.007
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13.19 Appendix H2:AMPT Plots For Corresponding Anti-Particles

(a) For π− (b) For K−

(c) For Anti-proton (d) For π−

(e) For K+ (f) For Anti-proton

Figure 65: Graphs Of Particle Yields vs Collision Centrality At Mid-rapidity (y< | 0.1 |) from AMPT
default (a-c) and string melting (d-f) models
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13.20 Appendix J1:Azimuthal Distribution (In Momentum Space) For Particles
In Default Version

We plot the distribution of azimuthal angle in the momentum space for various produced particles
(pion,kaons,protons,lambda and phi). The resulting histogram is then fitted using the fit equation:

N(φ) = A+Bcos(2(φ− φR)) (13.20.1)

Here A, B and φR are fit parameters. The ratio B/A quantifies elliptic flow and φR is the reaction
plane angle.
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Figure 66: Azimuthal Distribution (In Momentum Space) For Some particles

As one can see from the above figure, the azimuthal distribution (In Momentum Space) for fits incred-
ibly well to a Fourier decomposition containing only the second flow harmonic. This indeed suggests
that momentum space anisotropy is dominated by elliptic flow. This also true for other produced
particles which have not been shown here. The above distribution of particles have been simulated
from the string default version.

Table 7: Optimum Parameters For Fit Function For Various Particles

Particle Pid A ∆A B ∆B φR ∆φR v2 ∆v2

K0S 310 11664.5 9.66002 491.705 13.6597 -0.0205128 0.0138813 0.0421540 0.0012060

Proton 2212 34196.1 16.5399 697.992 23.3992 -0.0138046 0.0154656 0.0204115 0.0006941

Lambda 3122 6236.31 7.06332 207.822 9.98801 -0.0226604 0.0240944 0.0333245 0.0016393

Pion 211 185961 38.5706 7162.12 54.5594 0.00225564 0.00380549 0.0385141 0.0003014

Kaon 321 23309.1 13.6555 917.557 19.316 0.0163893 0.0105343 0.0393648 0.0008518

Phi 333 1830.36 3.8266 93.9074 5.41132 -0.0408031 0.0287679 0.0513054 0.0030637

Pi0 111 106179 29.1451 4101.64 41.2252 -0.00036217 0.00502183 0.0386295 0.0003989
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13.21 Appendix J2:Parameterization For Massless Ideal Hadron Gas At 0 Chem-
ical Potential

The thermodynamics for the massless ideal hadron resonance gas at 0 chemical potential has already
been discussed at length in sections 7 and 8. Our aim is to parameterize everything wrt to energy
density. To do that the following fit functions are assumed:

p = Aε+ C (13.21.1)

s = Aε+B (13.21.2)

(a) Pressure vs Energy density Graph (b) Entropy Density vs Energy density

(c) Value Of Fit Parameters A,C in 12.21.1 (d) Value Of Fit Parameters A,B in 12.21.2

Figure 67: Parameterization Of Pressure And Entropy Density wrt Energy Density

As one can be see that the y-intercept parameter is almost 0 and the relation can simply be expressed
by the first terms of 12.21.1 and 12.21.2.
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14 Data Tables From Particle Data Group (PDG)[6]

This section contains tables on leptons, quarks, baryons and mesons listing their major properties
as published in the summary tables of the Particle data group. Please note that the Spin quantum
number written for Baryons and Mesons is not just actually spin (S) but total angular momentum
(J=L+S) in which they are found in their supposedly ground state 4. Further the masses of the
baryons and mesons are the Breight-Wigner Masses.

14.1 Leptons :

Table 8: Data For Leptons

Leptons
Properties

Mass
(MeV)

Charge
|e−|

Spin
(~)

Mean
Lifetime

Degrees Of
Freedom

• Electron (e−) 0.5109989461 ±
0.0000000031

-1 1/2 > 6.6 x 1028 yr 2

• Muon (µ−) 105.6583745 ±
0.0000024

-1 1/2 (2.1969811 ± 0.0000022)
x 10−6 s

2

• Tauon (τ−) 1776.86 ±
0.12

-1 1/2 (290.3 ± 0.5)
x 10−15 s

2

Table 9: Charge, Spin And Flavour Quantum Numbers Of Leptons

Leptons
Quantum #

Q L Le Lµ Lτ s

e− (Electron) -1 +1 +1 0 0 1/2
νe (Electron Neutrino) 0 +1 +1 0 0 1/2

e+ (Positron) +1 -1 -1 0 0 1/2
ν̄e (Electron Anti-neutrino) 0 -1 -1 0 0 1/2

µ− (Muon) -1 +1 0 +1 0 1/2
νµ (Muon Neutrino) 0 +1 0 +1 0 1/2

µ+ (Anti-Muon) +1 -1 0 -1 0 1/2
ν̄µ (Muon Anti-neutrino) 0 -1 0 -1 0 1/2

τ− (Tauon) -1 +1 0 0 +1 1/2
ντ (Tau Neutrino) 0 +1 0 0 +1 1/2

τ+ (Anti-Tauon) +1 -1 0 0 -1 1/2
ν̄τ (Tau Anti-neutrino) 0 -1 0 0 -1 1/2

4I don’t understand exactly what they mean by this
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14.2 Quarks

Table 10: Data For Quarks

Quark
Properties

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
I(Iz)

Degrees Of
Freedom

• Up (u) 2.16+0.49
−0.26 2/3 1/2 1/2 (+1/2) 6

• Down (d) 4.67+0.48
−0.17 -1/3 1/2 1/2 (-1/2) 6

• Strange (s) 93+11
−5 -1/3 1/2 0 6

• Charm (c) 1270± 20 2/3 1/2 0 6

Table 11: Some Important Quantum Numbers For Quarks

Quarks
Quantum #

Q
Flavour Quantum Number Colour

Charge
Spin

Iso-Spin
I(Iz)U D S C

Up (u) +2/3 +1 0 0 0 YES
(RGB)

1/2 1/2(1/2)

Anti-Up (ū) -2/3 -1 0 0 0 YES
(R̄ḠB̄)

1/2 1/2(-1/2)

Down (d) -1/3 0 -1 0 0 YES
(RGB)

1/2 1/2(-1/2)

Anti-Down (d̄) +1/3 0 +1 0 0 YES
(R̄ḠB̄)

1/2 1/2(1/2)

Strange (s) -1/3 0 0 -1 0 YES
(RGB)

1/2 0

Anti- Strange (s̄) +1/3 0 0 +1 0 YES
(R̄ḠB̄)

1/2 0

Charm (c) +2/3 0 0 0 +1 YES
(RGB)

1/2 0

Anti-Charm (c̄) -2/3 0 0 0 -1 YES
(R̄ḠB̄)

1/2 0

154



14.3 Baryons

The Baryon tables have been grouped into various Baryon families based on the quark content and
iso-spin quantum number. I have not listed those baryons whose existence is uncertain or whose
quantum numbers have not been properly studied and require further experimentation. Further, this
list only covers Baryons upto a mass of ∼ 2600 MeV.5

Table 12: Data For N-Baryons

Baryons
Properties

Quark
Content

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

N
p,N+ uud 938.272081 ± 0.000006 1 1/2 1/2

6
n,N0 udd 939.565413 ± 0.000006 0 1/2 1/2

N(1440) 1/2+**** uud,udd 1410-1470 (≈ 1440) 1,0 1/2 1/2 6

N(1520) 3/2−**** uud,udd 1510-1520 (≈ 1515) 1,0 3/2 1/2 8

N(1535) 1/2−**** uud,udd 1515-1545 (≈ 1530) 1,0 1/2 1/2 4

N(1650) 1/2−**** uud,udd 1635-1665 (≈ 1650) 1,0 1/2 1/2 4

N(1675) 5/2−**** uud,udd 1665-1680 (≈ 1675) 1,0 5/2 1/2 12

N(1680) 5/2+**** uud,udd 1680-1690 (≈ 1685) 1,0 5/2 1/2 12

N(1700) 3/2−*** uud,udd 1650-1800 (≈ 1720) 1,0 3/2 1/2 8

N(1710) 1/2+**** uud,udd 1680-1740 (≈ 1710) 1,0 1/2 1/2 4

N(1720) 3/2+**** uud,udd 1680-1750 (≈ 1725) 1,0 3/2 1/2 8

N(1875) 3/2−*** uud,udd 1850-1920 (≈ 1875) 1,0 3/2 1/2 8

N(1880) 1/2+*** uud,udd 1830-1930 (≈ 1880) 1,0 1/2 1/2 4

N(1895) 1/2−**** uud,udd 1870-1920 (≈ 1895) 1,0 1/2 1/2 4

N(1900) 3/2+**** uud,udd 1890-1950 (≈ 1920) 1,0 3/2 1/2 8

N(2060) 5/2−*** uud,udd 2030-2200 (≈ 2100) 1,0 5/2 1/2 12

N(2100) 1/2+*** uud,udd 2050-2150 (≈ 2100) 1,0 1/2 1/2 4

N(2120) 3/2−*** uud,udd 2060-2160 (≈ 2120) 1,0 3/2 1/2 8

N(2190) 7/2−**** uud,udd 2140-2220 (≈ 2180) 1,0 7/2 1/2 16

N(2220) 9/2+*** uud,udd 2200-2300 (≈ 2250) 1,0 9/2 1/2 20

N(2250) 9/2−**** uud,udd 2250-2320 (≈ 2280) 1,0 9/2 1/2 20

N(2600) 11/2−*** uud,udd 2250-2750 (≈ 2600) 1,0 11/2 1/2 24

5*** - Existence is very likely and/or quantum numbers are not well-determined
*** - Existence is certain
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Table 13: Data For ∆-Baryons

Baryons
Properties

Quark
Content

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

∆(1232)3/2+

∆++ uuu

1230-1234 (≈ 1232)

2

1/2

3/2 (3/2)

8
∆+ uud 1 3/2 (1/2)
∆0 udd 0 3/2 (-1/2)
∆− ddd -1 3/2 (-3/2)

∆(1600) 3/2+**** uuu,uud
udd,ddd

1500-1640 (≈ 1570) 2,1,0,-1 3/2 3/2 16

∆(1620) 1/2−**** uuu,uud
udd,ddd

1590-1630 (≈ 1610) 2,1,0,-1 1/2 3/2 8

∆(1700) 3/2−**** uuu,uud
udd,ddd

1690-1730 (≈ 1710) 2,1,0,-1 3/2 3/2 16

∆(1900) 1/2−*** uuu,uud
udd,ddd

1840-1920 (≈ 1860) 2,1,0,-1 1/2 3/2 8

∆(1905) 5/2+**** uuu,uud
udd,ddd

1855-1910 (≈ 1880) 2,1,0,-1 5/2 3/2 24

∆(1910) 1/2+**** uuu,uud
udd,ddd

1850-1950 (≈ 1900) 2,1,0,-1 1/2 3/2 8

∆(1920) 3/2+*** uuu,uud
udd,ddd

1870-1970 (≈ 1920) 2,1,0,-1 3/2 3/2 16

∆(1930) 5/2−*** uuu,uud
udd,ddd

1900-2000 (≈ 1950) 2,1,0,-1 5/2 3/2 24

∆(1950) 7/2+**** uuu,uud
udd,ddd

1915-1950 (≈ 1930) 2,1,0,-1 7/2 3/2 32

∆(2200) 7/2−*** uuu,uud
udd,ddd

2150-2250 (≈ 2200) 2,1,0,-1 7/2 3/2 32

∆(2420) 11/2+**** uuu,uud
udd,ddd

2300-2600 (≈ 2450) 2,1,0,-1 11/2 3/2 48
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Table 14: Data For Λ-Baryons

Baryons
Properties

Quark
Content

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

Λ**** uds 1115.683 ± 0.006 0 1/2 0 2

Λ(1405) 1/2−**** uds 14051.3
1.0 0 1/2 0 2

Λ(1520) 3/2−**** uds 1518-1520 (≈ 1519) 0 3/2 0 4

Λ(1600) 1/2+**** uds 1570-1630 (≈ 1600) 0 1/2 0 2

Λ(1670) 1/2−**** uds 1670-1678 (≈ 1674) 0 1/2 0 2

Λ(1690) 3/2−**** uds 1685-1695 (≈ 1690) 0 3/2 0 4

Λ(1800) 1/2−*** uds 1750-1850 (≈ 1800) 0 1/2 0 2

Λ(1810) 1/2+*** uds 1740-1840 (≈ 1790) 0 1/2 0 2

Λ(1820) 5/2+**** uds 1815-1825 (≈ 1820) 0 5/2 0 6

Λ(1830) 5/2−**** uds 1820-1830 (≈ 1825) 0 5/2 0 6

Λ(1890) 3/2+**** uds 1870-1910 (≈ 1890) 0 3/2 0 4

Λ(2100) 7/2−**** uds 2090-2110 (≈ 2100) 0 7/2 0 8

Λ(2110) 5/2+*** uds 2050-2130 (≈ 2090) 0 5/2 0 6

Λ(2350) 9/2+*** uds 2340-2370 (≈ 2350) 0 9/2 0 10

Table 15: Data For Singly Charmed-Baryons

Baryons
Properties

Quark
Content

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

Λ+
c **** udc 2286.46± 0.14 1 1/2 0 2

Λc(2595)+*** udc 2592.25± 0.28 1 1/2 0 2

Λc(2625)+*** udc 2592.25± 0.28 1 3/2 0 4

Σc(2455)****
Σc(2455)++ uuc 2453.97± 0.14 2

1/2
1(1)

6Σc(2455)+ udc 2452.9± 0.4 1 1(0)
Σc(2455)0 ddc 2453.75± 0.14 0 1(-1)

Σc(2520)***
Σc(2455)++ uuc 2518.41+0.21

−0.19 2
3/2

1(1)
12Σc(2455)+ udc 2517.5± 2.3 1 1(0)

Σc(2455)0 ddc 2518.48± 0.20 0 1(-1)

Ξc***
Ξ+
c usc 2467.94+0.17

−0.20 1
1/2

1/2(1/2)
4

Ξ0
c dsc 2470.90+0.22

−0.29 0 1/2(-1/2)

Ξ′c***
Ξ′+c usc 2578.4± 0.5 1

1/2
1/2(1/2)

4
Ξ′0c dsc 2579.2± 0.5 0 1/2(-1/2)

Ξc(2645)***
Ξc(2645)+ usc 2645.56+0.24

−0.30 1
3/2

1/2(1/2)
8

Ξc(2645)0 dsc 2646.38+0.20
−0.23 0 1/2(-1/2)
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Table 16: Data For Σ-Baryons

Baryons
Properties

Quark
Content

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

Σ****
Σ+ uus 1189.37± 0.07 1

1/2
1(1)

6Σ0 uds 1192.642± 0.024 0 1(0)
Σ− dds 1197.449± 0.030 -1 1(-1)

Σ(1385)3/2+****
Σ(1385)+ uus 1382.80± 0.35 1

1/2
1(1)

6Σ(1385)0 uds 1383.7± 1.0 0 1(0)
Σ(1385)− dds 1387.2± 0.5 -1 1(-1)

Σ(1660) 1/2+*** uus,uds
dds

1580-1640 (≈ 1660) 1,0,-1 1/2 1 6

Σ(1670) 3/2−**** uus,uds
dds

1665-1685 (≈ 1675) 1,0,-1 3/2 1 12

Σ(1750) 1/2−*** uus,uds
dds

1700-1800 (≈ 1750) 1,0,-1 1/2 1 6

Σ(1775) 5/2−**** uus,uds
dds

1770-1780 (≈ 1775) 1,0,-1 5/2 1 18

Σ(1910) 3/2−*** uus,uds
dds

1870-1950 (≈ 1910) 1,0,-1 3/2 1 12

Σ(1915) 5/2+**** uus,uds
dds

1900-1935 (≈ 1915) 1,0,-1 5/2 1 18

Σ(2030) 7/2+**** uus,uds
dds

2025-2040 (≈ 2030) 1,0,-1 7/2 1 24

Table 17: Data For Ξ and Ω-Baryons

Baryons
Properties

Quark
Content

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

Ξ****
Ξ0 uss 1314.86± 0.20 0

1/2
1/2(1/2)

4
Ξ− dss 1321.71± 0.07 -1 1/2(-1/2)

Ξ(1530) 3/2+****
Ξ(1530)0 uss 1531.80± 0.32 0

3/2
1/2(1/2)

8
Ξ(1530)− dss 1535.0± 0.6 -1 1/2(-1/2)

Ξ(1820) 3/2−*** uss,dss 1950± 15 0,-1 3/2 1/2 8

Ω−**** sss 1672.45± 0.29 -1 3/2 0 4

Ω0
c*** ssc 2695.2± 1.7 0 1/2 0 2
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14.4 Mesons

Like the Baryons, Mesons have also been grouped into various families based on quark content and
iso-spin adn only those whose existence is certain have been tabulated. Further, this list only contains
the list of Baryons upto a mass of ∼ 2400 MeV.6

Table 18: Data For Light Flavoured-Mesons

Mesons
Properties

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

π*
π+ 139.57039± 0.00018 1

0
1(1)

3π0 134.9768± 0.0005 0 1(0)
π− 139.57039± 0.00018 -1 1(-1)

η* 547.862± 0.017 0 0 0 1

f0(500)* 400-500 0 0 0 1

ρ(770)* 775.26± 0.25 1,0,-1 1 1 9

ω(782)* 782.65± 0.12 0 1 0 3

ηprime(958)∗ 957.78± 0.06 0 0 0 1

f0(980)∗ 990± 20 0 0 0 1

a0(980)* 980± 20 1,0,-1 0 1 3

φ(1020)* 1019.461± 0.016 0 1 0 3

h1(1170)* 1166± 6 0 1 0 3

b1(1235)* 1229.5± 3.2 1,0,-1 1 1 9

a1(1260)* 1230± 40 1,0,-1 1 1 9

f2(1270)* 1275.5± 0.8 0 2 0 5

f1(1285)* 1281.9± 0.5 0 1 0 3

η(1295)* 1294± 4 0 0 0 1

π(1300)* 1300± 100 1,0,-1 0 1 3

a2(1320)* 1316.9± 0.9 1,0,-1 2 1 15

f0(1370)* 1200− 1500 0 0 0 1

π1(1400)* 1354± 25 1,0,-1 1 1 9

η(1405)* 1316.9± 0.9 0 0 0 1

h1(1415)* 1416± 8 0 1 0 3

f1(1420)* 1426.3± 0.9 0 1 0 3

ω(1420)* 1410± 60 0 1 0 3

a0(1450)* 1474± 19 1,0,-1 0 1 3

ρ(1450)* 1465± 25 1,0,-1 1 1 9

6*-Well Established
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Mesons
Properties

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

η(1475)* 1475± 4 0 0 0 1

f0(1500)* 1506± 6 0 0 0 1

f ′2(1525)* 1517.4± 2.5 0 2 0 5

π1(1600)* 1600+15
−11 1,0,-1 1 1 9

a1(1640)* 1655± 16 1,0,-1 1 1 9

η2(1645)* 1617± 5 0 2 0 5

ω(1650)* 1670± 30 0 1 0 3

ω3(1670)* 1667± 4 0 3 0 7

π2(1670)* 1670.6+2.9
−1.2 1,0,-1 2 1 15

φ(1680)* 1680± 20 0 1 0 3

ρ3(1690)* 1688.8± 2.1 1,0,-1 3 1 21

ρ(1700)* 1720± 20 1,0,-1 1 1 9

a2(1700)* 1705± 40 1,0,-1 2 1 15

f0(1710)* 1704± 12 0 0 0 1

π(1800)* 1810+9
−11 1,0,-1 0 1 3

φ3(1850)* 1854± 7 0 3 0 7

η2(1870)* 1842± 8 0 2 0 5

π2(1880)* 1874+26
−5 1,0,-1 2 1 15

f2(1950)* 1936± 12 0 2 0 5

a4(1970)* 1967± 16 1,0,-1 4 1 27

f2(2010)* 2011+60
−80 0 2 0 5

f4(2050)* 2018± 11 0 4 0 9

φ(2170)* 2160± 80 0 1 0 3

f2(2300)* 2297± 28 0 2 0 5

f2(2340)* 2345+50
−40 0 2 0 5

Table 19: Quark Content For Light Flavoured-Mesons

Mesons
Properties

Charge
|e−|

Iso-Spin
(~)

Quark
Content

M1(π, b, ρ, a)
M+

1 1 1(1) ud̄

M0
1 0 1(0) (uū− dd̄)/

√
(2)

M−1 -1 1(-1) dū

M2(η, η′, h, ω, φ, f, f ′) 0 0 c1(uū− dd̄) + c2(ss̄)
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Table 20: Data For Strange-Mesons

Mesons
Properties

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

K
K± 493.677± 0.016 1,-1 0 1/2

4
K0, K̄0 497.611± 0.013 0 0 1/2

K∗0 (700) 824± 30 1,0,-1 0 1/2 (Two Sets) 4

K*(892)
K∗± 891.66± 0.26 1,-1 1 1/2

12
K∗0, K̄∗0 895.55± 0.20 0 1 1/2

K1(1270) 1253± 7 1,0,-1 1 1/2 (Two Sets) 12

K1(1400) 1403± 7 1,0,-1 1 1/2 (Two Sets) 12

K∗(1410) 1414± 15 1,0,-1 1 1/2 (Two Sets) 12

K∗0 (1430) 1425± 50 1,0,-1 0 1/2 (Two Sets) 4

K∗2 (1430)
K∗±2 1427.3± 1.5 1,-1 2 1/2

20
K∗02 , K̄∗02 1432.4± 1.3 0 2 1/2

K∗(1680) 1718± 18 1,0,-1 1 1/2 (Two Sets) 12

K2(1770) 1773± 8 1,0,-1 2 1/2 (Two Sets) 20

K∗3 (1780) 1776± 7 1,0,-1 3 1/2 (Two Sets) 28

K2(1820) 1819± 12 1,0,-1 2 1/2 (Two Sets) 20

K∗4 (2045) 2045± 7 1,0,-1 4 1/2 (Two Sets) 36

Table 21: Data For Charmed-Mesons

Mesons
Properties

Mass
(MeV)

Charge
|e−|

Spin
(~)

Iso-Spin
(~)

Degrees Of
Freedom

D
D± 1869.65± 0.05 1,-1 0 1/2

4
D0, D̄0 1864.83± 0.05 0 0 1/2

D∗(2010)± 2010.6± 0.05 1,0,-1 1 1/2 6

D∗0(2300)0 2300± 19 1,0,-1 0 1/2 2

D1(2420)0 2420.8± 0.5 1,0,-1 1 1/2 6

D±S 1968.34± 0.37 1,-1 0 0 1
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Table 22: Quark Content For Charmed And Strange-Mesons

Mesons
Properties

Charge
|e−|

Iso-Spin
(~)

Quark
Content

S (Strange)
S1(K,K∗)

S+
1 1 1/2(1/2) us̄
S−1 -1 1/2(-1/2) ūs

S2(K,K∗)
S0

2 0 1/2(-1/2) ds̄
S̄0

2 0 1/2(1/2) d̄s

C (Charmed)
C1(D,D∗)

C+
1 1 1/2(1/2) cd̄

C−1 -1 1/2(-1/2) c̄d

C2(D,D∗)
C0

2 0 1/2(-1/2) cū
C̄0

2 0 1/2(1/2) c̄u

DS (charmed and strange)
D+
S 1 0 cs̄

D−S -1 0 c̄s

• Here are some final comments on the available degrees of freedom for Baryons and Mesons. If
we look at a Baryon/Meson characterised by spin S and Iso-spin I, then:

Degrees Of Freedom − (2S + 1)(2I + 1)

• However, if we want to know the number of possible intrinsic quark configurations for a given
baryon (for all spin configurations) then for:

– Baryons with 3 different quarks:

#(Quark Configurations) = (4C3)(23)(3!) = 192

– Baryons with 2 different quarks:

#(Quark Configurations) = (4C2)(2 ∗ 3)(3) = 108

– Baryons with 0 different quarks:

#(Quark Configurations) = (4C1)(4)(1) = 16

– For Mesons:

#(Quark Configurations) = (4C1 ∗4 C1)(4)(3) = 192

• The first factor represents no. of ways of combining quarks (quarks-anti-quarks for mesons), the
second factor is for spin and the third is the color factor for quarks as Baryons and Mesons must
be a color singlet.
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[5] Statistical Mechanics,Second Edition,Kerson Huang,MIT

[6] https://pdg.lbl.gov/

[7] Excluded volume effect for the nuclear matter equation of state by D.H. Rischke, M.I. Gorenstein*,
H. Stocker, W. Greiner

[8] Equations of state for real gases on the nuclear scale, Volodymyr Vovchenko

[9] Criticality in a hadron resonance gas model with the van der Waals interaction Subhasis Samanta
and Bedangadas Mohanty School of Physical Sciences, National Institute of Science Education
and Research, HBNI, Jatni - 752050, India

[10] PHYSICAL REVIEW C 96, 044904 (2017), Bulk properties of the medium produced in relativistic
heavy-ion collisions from the beam energy scan program

[11] PHYSICAL REVIEW C 102, 034909 (2020), Strange hadron production in Au + Au collisions
at
√
sNN = 7.7, 11.5, 19.6, 27, and 39 GeV

[12] ‘THERMUS [’A Thermal Model Package for ROOT’],S. Wheaton and J. Cleymans, hep-
ph/0407174

[13] PHYSICAL REVIEW C 102, 024902 (2020), Constraining the particle production mechanism in
Au + Au collisions at

√
sNN = 7.7, 27, and 200 GeV using a multiphase transport model

[14] PHYSICAL REVIEW C 72, 064901 (2005), Multiphase transport model for relativistic heavy ion
collisions, Zi-Wei Lin, Che Ming Ko,Bao-An L, Bin Zhang,Subrata Pal

[15] Measurements of event-by-event fluctuation of anisotropic flow in pp, p+Pb and Pb+Pb collisions
with the ATLAS detector. A Dissertation presented by Peng Huo

[16] Study of particle correlation and fluctuation from nucleus-nucleus collisions to proton-proton
collisions with the ATLAS detector at the LHC A Dissertation presented by Mingliang Zhou

[17] CONCEPTS OF HEAVY-ION PHYSICS Ulrich Heinz Department of Physics, The Ohio State
University, Columbus, OH 43210, USA

[18] QGP Meet 2008 : Presentation by Bedanga Mohanty

163


	Abstract
	Abbreviations Used

	Classification Of Sub-Atomic Particles
	On The Basis Of Spin
	On the Basis Of Internal Composition
	On the Basis Of Fundamental Interactions
	Classification Of Leptons
	Classification Of Quarks
	Classification Of Elementary Particles
	On The Basis Of Life-Time Of Particles
	As Excitations Of Some Other Elementary Particles[4]

	Solving The Ideal Fermi Gas
	Quantum Particle In A Box
	Basic Tools Required To Solve The Problem
	Concept Of Density Of States
	Attacking The Problem Via Grand Canonical Ensemble (GCE)[5]

	Solution At Zero Temperature, T=0
	Extremely Relativistic Case: E=|c|
	General Relativistic Case: E=2c2 + m2c4
	Non Relativistic Case (NR): E=p22m

	Solution At T =0:Finite Temperature Effects
	Scheme For Low Temperature Expansion Of The Fermi-Integrals
	Deriving The Thermodynamics Using The Low Temperature Expansion(NR)
	Deriving The Thermodynamics Using The Low Temperature Expansion(UR)
	Analysis Of The Results Obtained


	Solving The Ideal Bose Gas
	Quantum Particle In A Box
	Basic Tools Required To Solve The Problem
	Concept Of Density Of States
	Attacking The Problem Via Grand Canonical Ensemble (GCE)

	Photons
	Phonons In Solids
	Study Of Non-Relativistic Massive Bosons
	The High Temperature Limit
	The Low-Temperature Limit
	Bose-Einstein Condensation As Self-Consistent First Order Phase Transition


	Development Of Approximation Schemes
	Classical Cluster Expansion
	Attacking The Problem Using Graph Theory
	Second- Virial coefficients For Some Useful Potentials
	Variation In Number And Energy Density In Imperfect Gas When Compared To Ideal Gas

	Quantum Cluster Expansion
	Second-Virial Coefficient For Radial Potential In Quantum Expansion
	Machinery To Calculate The Difference In Density Of States: g(k)-g(0)(k)
	Variation In Number And Energy Density In Imperfect Gas When Compared To Ideal Gas


	Imperfect Gases At Low Temperatures
	Machinery To Handle Quantum Gases
	Handling The Hard-Sphere Potential
	Extending The Concept To A General Finite Potential
	Extension To A N-Particle System

	Imperfect Spinless Bose Gases At Low Temperatures
	Imperfect Spin-1/2 Fermi Gas At Low Temperatures

	The Van-Der Waals Equation Of State
	The Classical Derivation
	Quantum Statistical Formulation Of Equation Of State For Real Gases On Nuclear Scale In GCE
	Effects Of Excluded Volume[7]
	Excluded Volume Effects + Attractive Interactions[8]


	Application To Hadron Resonance Gas
	Data Used
	The Ideal Hadron Resonance Gas
	Looking For Temperature Dependence For Pressure Variable As A function Of Invariant Mass At 0 Chemical Potential
	Graphs For Ideal Hadron Resonance Gas

	Van Der Waals' Excluded Volume Model For Hadron Resonance Gas
	Part 1: Using Formalism As Defined In 7.2.12-7.2.15
	Part 2: Using Formalism As Defined In 7.2.17-7.2.19
	Comparing Results Of Part - I and II:

	Interacting Van Der Waals' Hadron Resonance Gas
	Mesons And Baryons Are Part Of The Same System
	Mesons And Baryons Belong To Different Subsystems
	An Interesting Case

	Conclusions

	Particle Production In Relativistic Heavy Ion (Au-Au) Collisions
	Extracting The Chemical Freeze-Out Parameters
	Particle Yields For Normal Hadrons
	Particle Yields For Strange Hadrons
	Chemical Freeze Out Parameters

	Constraining Particle Production Mechanism Using AMPT Model For sNN=7.7 GeV
	AMPT Model
	Results


	Flow In Relativistic High Energy Collisions
	Collision Geometry
	Anisotropic Flow
	Harmonic Flow
	Harmonic Flow Visualization

	Hydrodynamic Framework
	Initial Conditions
	Relevant Hydrodynamic Equations
	Algorithm Of Particle Production[17]


	Harmonic Flow Coefficients As QGP Signatures
	Analysis Using The AMPT Model
	A Preliminary Check
	Number Of Constituent Quark (NCQ) Scaling:
	vn=2,3 vs pT  Histograms
	Collective Flow in  Mesons

	Analysis Using The Hydrodynamic Simulation
	Setting Up The Scenarios
	Elliptic Flow From Ideal Hydrodynamic Framework

	Results

	Final Conclusions
	Appendix
	Appendix A1: Calculation for internal energy and specific heat for Photons
	Appendix A2: Solving Equation 4.3.21
	Appendix B1: Solving For Internal Energy Of Phonons
	Appendix B2: Solving For Specific Heat Of The Phonon System
	Appendix C1: Solving The General Bose Integrals
	Appendix C2: The Clayperon Equation
	Appendix D1: Towards Van der Waals' Equation From The Virial Equation For Dilute Gases
	Appendix D2: Proving Some Properties Of WN(1,2,@let@token ,N)
	Appendix D3: First Order Calculation Of b2 - b2(0) For Fermions And Bosons
	Appendix E1: Dependence between N-body S-wave Pseudopotential And Hard-Sphere Diameter
	Appendix E2: Energy Eigenvalues For Bose Gases For Pseudopotential Part
	Appendix E3: Energy Eigenvalues For Spin 1/2 Fermi Gases For Pseudopotential Part
	Appendix F1:Reason For =6 As The Appropriate Exponent
	Appendix F2: Explicit Computation Of Thermodynamic Parameters In The Excluded Volume Ideal Gas Model
	Appendix G1: Some More Graphs For Ideal Hadron Resonance Gas
	Appendix G2: Some More Graphs For Van der Waals' Excluded Volume Model For Hadron Resonance Gas
	Appendix G3: Some More Graphs For Van der Waals' Interacting Model For Hadron Resonance Gas
	Appendix H1: Chemical Freeze Out Parameters After Excluding Strange Baryon Contribution
	Appendix H2:AMPT Plots For Corresponding Anti-Particles
	Appendix J1:Azimuthal Distribution (In Momentum Space) For Particles In Default Version
	Appendix J2:Parameterization For Massless Ideal Hadron Gas At 0 Chemical Potential

	Data Tables From Particle Data Group (PDG)[6]
	Leptons :
	Quarks
	Baryons
	Mesons


