Exploring the QCD landscape with high-energy nuclear collisions

Bedanga Mohanty VECC, Kolkata

Outline

QCD Phase Diagram Experimental Study of QCD Phase Diagram Summary

Phase Transitions

Physical systems undergo phase transitions when external parameters such as the temperature (T) or a chemical potential (μ) are tuned.

Systems following Quantum Chromodynamics (QCD) - No exception

Associated chemical potential

```
\begin{array}{rcl} \mbox{Conserved Quantities: Baryon Number} & \sim & \mu_B \\ & & \mbox{Electric Charge} & \sim & \mu_Q \sim \mbox{small} \\ & & \mbox{Strangeness} & \sim & \mu_S \sim \mbox{small} \end{array}
```

In principle a four dimensional phase diagram

A simpler version : T vs. μ_B

QCD Phase Diagram

Phase diagram is a type of graph used to show the equilibrium conditions between the thermodynamically distinct phases

Water : Atomic Precisely known

QCD (Hadrons -- Partons) Theory and Experimental approaches

QCD: High Temperature

T_c≈170±8 MeV, ε_c≈1 GeV/fm³

Lattice QCD predicts a transition to Quark Gluon Plasma at high temperature

$$\varepsilon_{QCD} = \frac{\pi^2}{30} \left[2 \times 8 + \frac{7}{8} 2 \times 2 \times 3 \times 3 \right] T^4$$

gluon spin, color quark spin, color, flavor

Order Of Phase Transition at $\mu_{\rm B} \sim 0$

No significant volume dependence (8 times difference in volumes) Phase transition at high T and μ_B = 0 is a cross over

Lattice results on electroweak transition in standard model is an analytic cross-over for large Higgs mass

K. Kajantie et al., PRL 77, 2887-2890,2006

QCD Critical Point

2nd order point in the PD, where the 1st order transition lines ends

First Principle QCD Calculations on Lattice:

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)}$$

M : Dirac Matrix S_G : Gluonic action

Issue for non zero μ , Det M is not positive definite

QCD Phase Diagram: Theoretical

Establishing The Phase Boundary

Strategy:

(I) Establish observables which give different values in the two phases (partonic and hadronic)

(II) Vary beam energy of collisions and look for transition in the observable

Signature of QCD transition

Strong Collectivity at RHIC

STAR, PRL 95, 122301 (2005) PHENIX, PRL 98, 162301 (2007)

ı 1/24

Dynamical Charge Correlations

STAR:PRL 103 (2009) 251601; STAR: 0909.1717

Signature of QCD transition

Experimentally:

- o Charge asymmetry observed in STAR experiment.
- o Parity even observable.
- o Physical background limited to studies with available models.
- o RHIC Beam Energy Scan program to be used to check the turning off of the signal.

Theoretically:

- o Consistent with Local Parity
 - Violations in Strong Interactions
- o De-confined phase needed.
- o Chirally symmetric phase needed.
- K. Fukushima et al, PRD 78, 074033 (2008)

Locating The QCD Critical Point

In the fields of observation chance favors only the prepared mind. -- Louis Pasteur

Strategy:

- (I) Establish observables for critical point (CP) which has sound theoretical basis and reflects the signatures at CP.
- (II) Expectations from the observable from non critical point physics should be understood.
- (III) Vary beam energy of collisions and look for non-monotonic dependence of the observable.

Signature of Critical Point

 $T > T_C$ $T \sim T_C$ $T < T_C$

Critical Opalescence as observed in CO₂ liquid-gas transition

T. Andrews. Phil. Trans. Royal Soc., 159:575, 1869

- Distributions become non Gaussian
- Correlation length diverges
- Susceptibilities diverges
- Long wavelength fluctuations or low momentum fluctuations important

Measure Of Non-Gaussian Nature

Higher Moments of Net-Protons

Distributions non Gaussian at QCP

Moments and Correlation length (ξ)

 $< (\delta N)^2 > \sim \xi^2$ $< (\delta N)^3 > \sim \xi^{4.5}$ $< (\delta N)^4 > - 3 < (\delta N)^2 >^2 \sim \xi^7$

Value limited in heavy-ion collisions Finite size effects $\xi < 6$ fm Critical slowing down, finite time effects $\xi \sim 2 - 3$ fm Higher moments higher sensitivity

M. A. Stephanov, PRL 102, 032301 (2009)
B. Berdnikov, K. Rajagopal, Phys. Rev. D 61, 105017 (2000)
M. Cheng et al, PRD 79, 074505 (2009)
B. Stokic et al, PLB 91, 192 (2009)
R. Gavai & S. Gupta PRD 78, 114503 (2008)

Link to Lattice QCD and QCD Models Kurtosis x Variance $\sim \chi^{(4)} / [\chi^{(2)} T^2]$ Skewness x Sigma $\sim [\chi^{(3)} T] / [\chi^{(2)} T^2]$ R. Gavai & S. Gupta, arXiv:1001.3796

Net-proton Number Fluctuations

~ Singularity in charge and baryon number susceptibilities

 $Q = B/2 + I_3$

$$\begin{split} \chi_Q &\sim \ (1/VT) < (\delta Q)^2 > = (1/4) \ \chi_{B\,+} \ \chi_I \\ &\sim (1/VT) < \delta \ (N_{p\text{-pbar}})^2 > \end{split}$$

iso-spin blindness of σ field

Y. Hatta et al,PRL 91, 102003 (2003)

Non monotonic variation of products of higher moments with beam energy

Theory Expectations

Lattice QCD

(R. Gavai, S. Gupta, arXiv:1001.3796)

m₂ equivalent to Kurtosis x Variance At CP : Systems falls out of equilibrium will lead to deviations from Lattice QCD

CP Model

(C. Athanasiou, M. Stephanov, K. Rajagopal,

arXiv:1006.4636 and PRL 102 (2009) 032301)

Beam Energy (GeV)	Kurtosis x Variance (net protons) with $\xi \sim 3$ fm and CP (No CP ~ 1)
200	~ 2.5
62	~ 35
19	~ 3700
7.7	~ 29600

Observable and Non-CP Physics

Kurtosis x Variance: (Desirable features for CP Search)

o Constant as a function of beam energy

o Constant as a function of collision centrality/impact parameter

o No difference between net-baryon and net-proton

o Effect of resonance decay small

o Similar values for Transport, Mini-jets, Coalescence models

o Unity for Thermal model

Data: Net-Proton Distribution

25

20/24

30

Moments: Net-Proton Distribution

Consistent with CLT expectations (lines)

Energy Dependence: $\kappa\sigma^2$

Observations indicate CP not located for $\mu_{\rm B}$ < 200 MeV

23/24

Summary

With the starting of LHC ($\mu_B \sim 0$) we have unique opportunity to understand the properties of matter governed by quark-gluon degrees of freedom at unprecedented initial temperatures achieved in the collisions.

To make the QCD phase diagram a reality equal attention needs to be given to high baryon density region.

These two complementary programs will make our understanding clearer on:

characterization of quark-gluon matter at varying baryon density
 finding the QCD critical point and
 establishing the QCD phase boundary.