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Abstract. The operation of Micro Pattern Gaseous Detectors (MPGDs) has often suffered
from effects such as distortion of the electric field due to space charge, despite their widespread
use in particle-physics and nuclear-physics experiments, astro-particle research, medical imaging,
material science etc. To keep distortions due to space-charge at a manageable level, a lower ion
feedback is required while maintaining substantial detector gain and good resolution. Thus, a
proper optimization of the detector geometry, field configuration and gas mixtures are required
to have a higher electron transparency and lower ion backflow. In our work, Garfield simulation
framework has been adopted as a tool to evaluate the fundamental features of Gas Electron
Multiplier (GEM). Our study begins with the computation of electrostatic field and its variation
with different geometrical and electrical parameters using the neBEM toolkit. Different efficient
algorithms have been implemented to increase the computational efficiency of the field solver.
Finally, ion backflow and electron transparency of single and quadruple GEMs with different
geometry and field configurations suitable for the ALICE-TPC, have been studied.

1. Introduction

ALICE at the LHC is planning a major upgrade of its detector systems, including the main
tracking device, Time Projection Chamber, to cope with an increase of the LHC luminosity
after 2018 [1]. This implies replacement of the present Multi Wire Proportional Counter
(MWPC) based readout system of the TPC by continuously operated amplification scheme.
The Micro-Pattern Gaseous Detectors (MPGDs) [2] are among the possible options as tracking
and triggering detectors in highly luminous environments. The ALICE-TPC collaboration are
currently working on the adoption of the Gas Electron Multiplier (GEM) [3] as the readout
system of the TPC [4]. The new readout chambers will employ stacks of four GEM foils for gas
amplification and anode pad readout. However, several questions related to the operation of the
GEM have to be answered before it can be finally chosen as the possible solution. The major
challenge is to have a low ion feedback in the drift volume to keep distortions due to space-
charge at a manageable level [5]. At the same time, to retain the specific energy loss for a good
particle identification, the fraction of primary electrons that partcipate in the avalanche process,
should be large. With a proper optimization of the detector geometry, field configuration and
gas mixtures, a high electron transparency, as well as, low ion backflow can be obtained.
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Keeping the requirement in mind, in the present work, the electron transparency and ion
backflow fractions of GEM-based detectors have been numerically estimated. We initiated with
the computation of electrostatic field and its variation with different geometrical and electrical
parameters. Parallel processing and other efficient algorithms have been implemented to increase
the computational efficiency of the field solver. Detailed studies have been carried out in order to
optimize various aspects of the simulation framework so that complex physics problems can be
approached keeping the demand of computational resources at an acceptable level. The effects of
detector geometry, electric and magnetic field on electron transparency and ion backflow fraction
have been carried out extensively. To begin with, single GEM configurations have been studied
in detail. A good understanding of the complex physics process in this device has allowed us
to deal with relative ease the quadruple GEM configurations, which is being considered as a
possible option for the ALICE TPC. In this manner, it has been possible for us to achieve a
understanding of the likely optimum configurations of the quadruple GEMs.

2. Simulation Tools

Garfield [6] simulation framework which provides interface to other software packages, such as
neBEM (nearly exact Boundary Element Method) [7], HEED [8] and Magboltz [9], has been
used for the present work. neBEM is the toolkit to compute 3D electrostatic field whereas,
HEED has been used for primary ionization calculation and Magboltz for computing electron
and ion transport properties in gas.

3. Numerical Models

(a) (b) (c)

Figure 1: Model for (a) single and quadruple GEM with (b) aligned and (c) misalgned holes

The geometrical parameters of GEM-based detectors, used in the numerical work, are listed
in table 1. The model of a basic GEM cell built using Garfield, is shown in figure 1(a). It
represents a GEM foil, having two bi-conical shaped holes placed in a staggered manner along
with a readout anode and a drift plane on either sides of the foil. The distance between top
surface of the GEM and the drift plane is called the drift gap whereas that between the lower
surface and the readout plate is named induction gap. In comparison to single GEM, in case of
multi GEM detector, several GEM foils are placed in between the drift and the read-out plane.
The naming scheme used in this work, numbers the foils in the increasing order towards the
anode plate. The top most GEM is called GEM I and the others are GEM II, GEM III and so
on. The gap in between GEM I and II is called transfer gap I and that between GEM II and
III is called transfer gap II etc. For example, the simulation models of two different quadruple
GEM devices are shown in figure 1. Among the four foils, GEM I and GEM IV, have the pitch
of 140 µm (denoted as S), whereas the middle two foils have a larger pitch of 280 µm (denoted as
LP). This arrangement, denoted S-LP-LP-S, employs asymmetric transfer fields and foils with
low optical transparency and, thus, allows to block ions efficiently. Two different geometrical
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variation in case of four GEM foils have been considered. In the first case (QGemI), the central
hole of the basic unit from all the four GEM foils are perfectly aligned (figure 1(b)). In the
other case (QGemII), as shown in figure 1(c), the first and the last foils (S) are aligned with
each other whereas the second and third foils (LP) are misaligned with them. The basic cell
structure then has been repeated along both positive and negative X and Y-Axes to build the
actual dimension of the real detector. With the help of these models, the field configuration
of the detectors have been simulated using appropriate voltage settings. These are followed by
the simulation of electron transmission and ion backflow fraction in Ne : CO2 : N2 (90:10:5) gas
mixture.

Table 1: GEM design parameters.

Polymer substrate 50 µm
Copper thickness 5 µm
Outer hole diameter 70 µm
Inner hole diameter 50 µm
Hole to hole pitch 140 / 280 µm
Drift Gap 3 mm
Transfer gap 2 mm
Induction gap 2 mm

Table 2: Voltage of Quadruple GEM.

Drift Field 0.4 kV/cm
∆VGEMI 275 V
Transfer Field I 4 kV/cm
∆VGEMII 235 V
Transfer Field II 2 kV/cm
∆VGEMIII 284 V
Transfer Field III 0.1 kV/cm
∆VGEMIV 345 V
Induction Field 4 kV/cm

For the calculation of electron transmission, 10,000 electrons have been injected in the drift
gap in random positions. These electrons are made to drift towards the GEM foil using the
Microscopic tracking routine. In this procedure, a electron drift path goes through millions
of collisions such as elastic or inelastic collision, excitation, ionization, attachment etc. The
electron transmission has been estimated as the ratio between the number of electrons that
reach the anode plate to that created in the drift volume.

The electrons during their drift produce avalanche inside the GEM foil. The ions created
during the avalanche process, as well as the primary ions, have been considered for the calculation
of ion backflow. The fraction of total ions that drift back to drift volume, gives the desired
estimation.

4. Results

4.1. Field Solver

A commonly accepted approach to solve electrostatic problems for arbitrary three-dimensional
geometries is the Boundary Element Method (BEM). A novel formulation of the BEM, the nearly
exact BEM (neBEM) solver was developed to resolve some of the major drawbacks of usual BEM.
The neBEM uses exact integration of the Greens function and its derivative in its formulation. In
this approach, these integrations for rectangular and triangular elements having uniform charge
density have been obtained as a closed-form analytical expressions using symbolic mathematics.
Thus, these foundation expressions account for truly distributed nature of charge density on
a given element. The major advantage achieved through the use of the proposed closed-form
expressions is that the accuracy is enhanced throughout the physical domain including near-field
region without using any special formulation in any part of the domain. During the course of
this work, the neBEM toolkit has been improved significantly. The major challenge in these
developments has been to increase the efficiency of the solver, while maintaining its precision.

Code parallelization: Recently, we have successfully implemented Open Multi-Processing
(OpenMP) for the neBEM field solver. It is an Application Programming Interface (API)
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for multi-platform shared memory multiprocessor programming. We have tested these
implementations on 2, 4 and 8 cores. The observed reduction in the computational time has
been found to be significant while the precision of the solution has been found to be preserved.
In the following table 3, we present a comparison of the time taken to solve charge densities for
typical problems of single GEM detector involving 1126 number of elements and 116 repetitions
of the basic structure.

Adaptive Modelling: In adaptive meshing the solution is usually attempted at a given spatial
discretization and the solver is expected to increase or decrease the meshing to meet the desired
accuracy specifications. For neBEM, we have presently implemented an algorithm which allows
us to ignore the finer variations of charge densities on a primitive provided (i) it is not on the
base device and (ii) it is at a far enough location so that the influence of the average charge
density on the primitive is equivalent to the influence that is estimated preserving the real charge
density variation on the primitive. The effect of using different values of primAfter on the same
problem of GEM detector has been listed in table 4. In the present case, it has been noted that
setting primAfter = 5 has negligible effect on the evaluated potential and field for this device.

Fast Volume: As is expected, the time to estimate potential and field for a complex device is
significant. Reduction of time taken to estimate the electrostatic properties becomes increasingly
important when complex processes such as Avalanche, Monte-Carlo tracking and Micro-Tracking
are being modelled. In order to model these phenomena within a reasonable span of time, we
have implemented the concept of using pre-computed values of potential and field at large
number of nodal points in a set of suitable volumes. These volumes are chosen such that they
can be repeated to represent any region of a given device and simple trilinear interpolation is
used to find the properties at non-nodal points. The associated volume is named as the Fast
Volume and in the table 5, in case of GEM detector, the potential and fields estimated by direct
evaluation and those using FastVol have been compared.

Table 3: Effect of OMP.

Core 1 20.67 min
Core 2 11.32 min
Core 4 6.02 min
Core 8 4.77 min

Table 4: Effect of AM.

PrimAfter 0 1.47 min
PrimAfter 10 0.97 min
PrimAfter 5 0.60 min
PrimAfter 2 0.58 min

Table 5: Effect of FastVol.

Problem Without With
Charge density 1 min 32 min
Field Map 41 hr 4 min
Avalanche 2 days 19 sec

4.2. Electron Transmission

Electron transmission can be presented as a function of two mechanisms: electron focusing and
transverse diffusion. Electron focusing depends not only on the field ratio, but also on different
geometrical parameters. On the other hand, the transverse diffusion is mainly affected by the
electric field and the gas composition. Besides that, the electron attachment coefficient, can
also influence transmission. For a single GEM detector, the total electron transmission (ǫtot)
can be identified as the multiplication of two efficiencies, the collection efficiency (ǫcoll) and the
extraction efficiency (ǫext). These two efficiencies are defined as follows:

ǫcoll =
Electrons reached inside the GEM foil

Electrons created in drift volume
; ǫext =

Electrons reached the readout plane

Electrons present inside the GEM foil
(1)

The variations of ǫcoll, ǫext and ǫtot under different field configurations have been plotted in
figure 2. For a fixed VGEM and EInduction, ǫcoll decrease with the increase of the drift field,
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(a) (b)

Figure 2: Variation of (a) ǫcoll, ǫext and IBF with EDrift and (b) EInduction; (b) ǫtot and IBF
with VGEM . Effect of pitch and magnetic field are shown in (b).

Table 6: ǫcoll and ǫext of quadruple GEMs.

Geometry B (T) ǫcollI ǫextI ǫcollII ǫextII ǫcollIII ǫextIII ǫcollIV ǫextIV

QGemI 0 0.989 0.349 0.067 0.310 0.151 0.135 0.929 0.372
QGemI 0.5 0.993 0.354 0.071 0.305 0.142 0.130 0.930 0.374
QGemII 0.5 0.893 0.391 0.069 0.313 0.175 0.128 0.928 0.360

whereas at a fixed VGEM and EDrift, the increase of induction field, increases ǫext as shown in
figure 2(a). The change of VGEM only has effect on ǫcoll and thus ǫtot (figure 2(b)). It is also
seen from figure 2(b), for the same voltage configuration, the smaller pitch GEM foils is better
in terms of higher electron transmission, whereas 0.5 T magnetic field plays no significant effect
on it.

The voltage configuration, used for quadruple GEM detectors, are listed in table 2. For the
multi-GEM detectors, the electron transmission can be also identified as the multiplication of
collection and extraction efficiencies of the individual GEM foils. ǫcoll and ǫext of individual
GEM foils for a quadruple GEM detectors (QGemI) have been listed in table 6. No significant
effect of the magnetic field on ǫtot has been observed till now.

4.3. Ion Backflow Fraction

The backflow fraction mainly depends on the field ratio and the transverse spread of the electron
avalanche. Thus, a proper optimization of the field in the drift volume, GEM hole and induction
regions is necessary to prevent those ions from entering the drift volume. The ion backflow of a
single GEM can be reduced by decreasing EDrift (figure 2(a) because less number of field lines
will get out of the hole into the drift volume. At higher EDrift, the ratio between EDrift and EGEM

is large resulting in the drift of more number of ions into the drift volumm. No significant effect
of EInduction has been observed except at the higher EInduction (figure 2(a)). At higher EGEM,
the ratio between EDrift and EGEM is small and thus a large fraction of ions is collected at the
top surface of the GEM foil. From figure 2(b), it is also seen that the GEM foil with standard
pitch of 140 µm gives less backflow fraction, whereas no significant effect of 0.5T magnetic field
on backflow has been observed.

A better suppression of the backflow can be achieved by using multiple GEM structures. The
ion collection efficiencies of four foils for the two different geometry have been listed in table 7.
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Table 7: ion collection of quadruple GEM detectors.

Geometry B (T) GEMI GEMII GEMIII GEMIV Drift

QGemI 0 0.025 0.004 0.013 0.932 0.027
QGemII 0.5 0.023 0.004 0.013 0.930 0.028
QGemII 0.5 0.059 0.005 0.012 0.923 0.001

The backflow for the first case is ∼ 2.7%, whereas the misaligned holes decrease its value to
∼ 0.1%. The effect of magnetic field has been studied in conjuction with the case when there is
no magnetic field. No effect of 0.5T field on overall backflow fraction has been observed.

5. Conclusion

In the present work, the electron transmission and ion backflow fraction for different GEM-
based detectors have been evaluated numerically. Several modifications have been made in the
simulation framework to make it significantly efficient and, as a result, suitable to study the
complex physics problems of such devices. Efficiency of the field-solver has been enhanced to a
great extent. Detailed studies have been carried out in order to optimize various aspects of the
simulation framework so that complex physics problems can be approached keeping the demand
of computational resources at an acceptable level, without losing on the precision front. Study
of single GEM detectors shows that higher electron transmission and lower backflow fraction
can be obtained with higher GEM voltage, lower drift field and higher induction field. GEM
foils with larger pitch gives better electron transmission, as well as less backflow fraction. Multi-
GEM devices are found to be better in terms of lower backflow fraction though the electron
transmission is affected adversely. Several studies on quadruple GEM detectors with various
geometry and field configuration have been performed. No significant effect of 0.5T magnetic
field has been observed. Further work is necessary to achieve a comprehensive understanding as
well as to find out an optimal geometry and field configuration in the context of the ALICE-TPC
upgrade scenario.
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