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A Simple Derivation of the Maxwell-Boltzmann Law
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The Maxwell-Boltzmann law is derived in a direct and simple way from the usual postulates
that the mechanical system has a discrete system of allowed states and that each of these states
has equal a priori weight in calculation of statistical averages.

'HE Maxwell-Boltzmann distribution law
plays such a fundamental role in the entire

theory of thermal phenomena that it is important
to have as simple an approach to it as possible.
In this paper, a method of derivation is presented
which is believed to be essentially new' and which
shows in an extremely simple manner the use of
the assumptions involved.

There are only two basic assumptions 'needed:

(1) The dynamical system in question is governed
by quantum mechanics and, being a closed sys-
tem, has, therefore, a discrete spectrum of
allowed energy levels, (2).in calculating statistical
averages, each state corresponding to one
linearly independent wave function orthogonal
to all the others, that is, consistent with known
features of the problem, is to be given the same
weight.

Let us first consider the case of a large number
E of noninteracting molecules in a cubical box of
edge I.and volume V =L'. The wave function for
an allowed state of a single molecule is

( 2 $ ' l7rg fsmg
u~„„(x,y, s) =

~

—
~

sin - — sin sin
EV) L L

(&)
L

and the corresponding energy is

W(l m n) = (/P/8pL') (P+nl'+ e'). (2)

The allowed states for N noninteracting mole-

~ ¹teadded in proof:—Since this was written, I have
noticed that a similar derivation is given by Kennard in
his new book Kinetic Theory of Gases, p. 390. I have also
had an interesting discussion with Professor G. E.
Uhlenbeck, who remarks that the approach followed here
is essentially a modern version of part of Maxwell's work
as presented, for example, in Jeans' Dynamical Theory of
Gases Chapter V, p. 119 et seg. He also remarked on its
connection with the discussion of statistical distribution of
energy among a'small number of particles as w'orked out
for a problem in nuclear physics in a paper by Uhlenbeck
and Goudsmit, pp. 201—211 in the Zeeman Verhandelingen
(Martinus Nijhoff, The Hague, 1935).

cules in a box will have as wave functions a
continued product of such one-particle wave
functions (1) and the total energy of the X par-
ticles will be a sum of such one-particle energy
expressions (2). Neglecting the symmetry re-
strictions on the wave function which would give
rise to Einstein-Bose and Fermi-Dirac statistics,
there will be one state of the system for each pos-
sible complete set of quantum numbers consisting
of N individual sets (f, m, n ), where a= 1, 2,
~ ~ -, X and the 3N quantum numbers l, rn, n
range independently over all positive integral
values.

It is important to know the total number of
states of the system whose total energy is equal
to or less than H/' for values of I/I/' large compared
to the interval between energy levels. This is
found by the method that has often been used in
statistical mechanics. We introduce a 3X dimen-
sional space. In this space the state of the system
whose quantum numbers are l&nz&n&, l2mmn2, ~ ~

l~m~n~ is associated with the point having this
set of positive integers for Cartesian coordinates.
There is thus one state per unit volume in this
space. The number of states for which the energy
is less than 8" is thus equal to 2 '~ times the
volume of a 3X dimensional sphere of radius
(8pL'W/h') &.

Denoting the number of states for the N par-
ticle system whose energy is less than W' by
C~(W), it is evident from dimensional considera-
tions alone that C~(W) is proportional to W'~"
which fact is all that is needed in the derivation
of the distribution law to be given below. From
geometry it is known that the volume of an n
dimensional sphere of radius r is
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and, therefore, the exact formula for C~(W) is

(2~pW)lI. '~

~3N
ri ( 2

Let us define an amount of energy called kT by
the equation

(7)W=3NkT/2.

Then, since X is very large, we can recognize that
the first factor is equal to the exponential factor
of the Boltzmann distribution, so

P (w) dw e ""rw**dw, -

which is the usual Maxwellian distribution of
velocities.

This mode of derivation brings out clearly that
the m' factor arises from the fact that there are
more states of the single molecule available in
unit energy range at higher energies than at lower
energies, whereas the exponential factor arises
from the fact that if the single molecule gets
more energy, there is necessarily less left for the
other X molecules, and thus they are required to
be in a range of energy where fewer states per
unit energy range are available for them.

It is now a simple calculation to normalize (8)
and find that

P(w)dw= (2/7r&)e "~'r(w/kT)~d(w/kT) (9)

Now let us consider a system consisting of
(N+1) noninteracting molecules in the box and
ask for the probability that the extra molecule
have an energy between w and m+dm when all
we know of the system is that the total energy is
S'. The probability„according to the statistical
postulate, will be proportional to the number of
states of the composite system for which m lies
between m and m+dm and hence the energy m»

of the other N molecules lies between W—m and
W—w —dw. Therefore, writing P(w)dw for the
probability that the energy of the extra molecule
lie in this range, we have

P(w) dw ~ C~'(W —w) Ci'(w) dw, (5)

where C~'(w) is the derivative of C~(w) with
respect to w. Using only that part of (4) which
makes C~(W) proportional to W'~", we have

P(w)dw (1 —w/W) '~~'-'w~dw. (6)

and to calculate that the mean energy of a single
molecule is

wA„= 3kT/2. (10)

Physically, the X molecules in the composite
system can be regarded as the perfect gas ther-
mometer with which the single molecule is in
thermal equilibrium.

Next, we can consider a slight generalization of
the foregoing discussion, which leads to the Boltz-
mann distribution for systems having such a
widely spaced set of allowed levels that they can-
not be ha, ndled by means of a continuous C(w)
function.

We consider a composite system as before,
which consists of N molecules in a box and in
addition, the arbitrary quantized system whose
allowed energy levels will be written m&, m», ~

m, ~ ~ ~ with the corresponding statistical weights
(order of degeneracy) g&, g&, , g . We suppose
that the total energy of the composite system is
known to lie between 5' and S'+ 6 H/' and ask for
the probability that the quantized part be found
in the o;th energy level, assuming that all states
of the composite system with total energy be-
tween S' and 8'+SLAV are equally probable.

The probability of finding the quantized part
in the nth energy level will, therefore, be pro-
portional to

P(W.) C~'( W—w. )g.5 W,

which is also

P(w. ) (1—w. /W) '~"-'g. b W.

As before, we may introduce the energy kT de-
fined by (7) and recognize that the first factor is
essentially equal to e "~'~~ if X is a very large
number. Therefore, we have

P(w ) ~g s m~/kT—

which is the familiar Boltzmann distribution law
for systems having quantized energy levels. As
before, we recognize the fact that the probability
is proportional to g, the number of states of the
quantized system of energy m, and the exponen-
tial factor representing the dependence on m of
the density of states of the X molecules in a box
which constitute the perfect gas thermometer-
thermostat with which the quantized system is in
equilibrium.
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With the derivation of the Boltzmann law ac-
complished, one can proceed to develop the
theory of the thermal properties of matter in the
usual way'by introducing the partition function

S(T) = Pg S aa/kT (12)

from which the mean energy at temperature T is
calculated by the formula

d logs
e(T) = —k

d(1/T)
(13)

The uses of the partition function are so well

known that it will not be necessary here to repeat
that part of the development.

In deriving the distribution law for the distri-
bution of translational energy of a single molecule
in equilibrium with N molecules, the assumption
was made that the energy of the (N+1) mole-
cules is precisely known to be lK Looking back
over the argument leading to (8), we see that the
argument would have been essentially unaltered
had we assumed that the composite system's
energy had a value between W and W+8W.

Actually, when we have a gas at temperature
T it will have a distribution-in-energy of its total
energy, which we may derive by assuming the N
molecules in a box to be part of a much larger
composite system which includes N' more mole-
cules where N' is very large compared to ¹ In
that case we find that the distribution in energy
of the N molecules is given by

P(W)dW e a/k TT//'~/k 'dT//--(14)

Dk = (s/ —wA~)2A~ = 3N(kT)2/2. (16)

Hence the fractional fluctuation in energy of the

where kT is defined by W=3N'kT/2 which is
supposed to be negligibly different from
3(N'+N)kT/2 since N')&N. From (14) we may
calculate the mean energy of the system of N
molecules in thermal equilibrium with the larger
system. It comes out

e = 3Nk T/2,

which justifies the identification of T with the
usual absolute temperature on the perfect gas
scale. Similarly one may calculate the mean-
square deviation from the mean of the energy of
the ¹ molecules

¹ molecules is
a/wA, ——(3N/2)--*, (17)

which is extremely small when N is large. This
justifies the neglect of the distribution in energy
of the N molecules in the argument leading to
(8) by which the distribution in energy of one
molecule was found.

The distribution law for the case of Fermi-
Dirac statistics' is easily obtained as follows. We
consider the system of ¹ equivalent particles to
which the Fermi statistics is to be applied, as a
single quantized system in equilibrium with a
larger perfect gas-thermometer thermostat. Then
the distribution in energy of its quantized states
is given by application of (11).In other words the
relative probability of each of the independent
states of the N equivalent particles governed by
the Pauli exclusion principle is given by the
Boltzmann factor, e "'~ .

The exclusion principle tells us that no two
particles can be in the same quantum state and,
therefore, if the allowed energy levels of a single
particle are given by m, each allowed level of the
system of N particles will be characterized by a
set of quantum numbers N, one for each single
particle state 0., where N can have only the
values 0 and 1 and Z ¹

=
¹ The total energy is

W=gw. N .

To find the distribution-in-energy of the single
particle in the case of Fermi-Dirac statistics, we
have to calculate the mean value of Np, the
probability of occupation of the Pth state by a
particle. By the Boltzmann principle this is

Os w/kT+ Q —] s w/kT—
N A. =( ~)

s W/kT—
where Zo means the sum over all sets of N's con-
sistent with Z¹=N and having Np =0 while Z~

means summation over all sets of N's having
ZN =N and having Np ——1. If we write

8"= 8'—¹pvp,
this can be written

S a///kTP S W'/kT— —

(Ns)A =
P s W'/kT~s w///kTQ s—W'/kT— —

2 A valuable account of Fermi-Dirac gas theory, together
with its most important field of application, the Sommer-
feld electron theory of metals, is given in the article by
Sommerfeld and Bethe, Handbuch der Physik, Vol. 24/2
(Julius Springer, Berlin, 1933), .p. 333.
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and, therefore,

(&e)A =
A (T)e"e"r+1

in which A(T) =Joe "'" /Pie

Here the parameter A (T) is the ratio of the par-
tition function for an X particle system from
which the state mp is excluded from the set of
allowed single particle states to that for an
(X—1) particle system from which this same
state is excluded.

Evidently, if A(T)))1, then the +1 in the
denominator of (18) will be negligible and (Np)A,

will be approximately equal to e e" times a
factor that is independent of mp. Therefore, in this
limit the distribution law is not appreciably af-
fected by the operation of the Pauli exclusion
principle. On the other hand, if A(T)«1 then
for values of we small enough that A (T)e~'e~ "r&&1,
we shall have (Ne)A„1, that i——s, the low energy
states .are almost certainly occupied by one par-
ticle in each state which means a large departure
from the classical distribution law.

The probability that a single particle have
energy between w and w+dw is, therefore, pro-

portional to the product of the number of states
in this energy range', c'(w)dw multiplied by the
chance that a single particle state of energy m be
occupied which is [Ae~"r+1j ' so the distribu-
tion function is

I'(w)dw c'(w) [Ae~'" +1( 'dw -(20)
which is the familiar form from which the usual
deductions of properties of the Fermi-Dirac gas
may be made.

In conclusion, it is fitting to remark on the
occasion of the seventieth birthday of one of the
greatest teachers and productive workers that
modern theoretical physics has known —Arnold
Sommerfeld. Everyone of my generation grew up
on atomic physics by way of his great Atombtlu
und Spektrallinien, a large group have profited by
the stimulation of his lectures on his American
visits, and a fortunate few of us have derived
boundless stimulation from the opportunity of
working in his Institut fiir theoretische Physik
in the former brighter days. All physicists join in

wishing him a happy birthday and continued
vigor with which to participate in the further
developments of fundamental ideas to which he
has contributed so extensively.
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Transitions Between Levels Spaced Almost Continuously
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The transition probabilities between closely spaced energy levels, when calculated according
to the usual perturbation methods, lead to apparent infinities if the perturbation is finite. A
more appropriate method of approximation which disposes of the infinities is worked out. The
resulting finite transition probabilities are identical with the finite parts of the usual expressions
in first and second order, but additional finite terms appear in orders higher than the second.

HE probabilities of tr'ansition between the
levels of a continuous or almost continuous

energy spectrum can always be treated in an
unambiguous way as far as the first-order (direct)
transitions are concerned, . But the second-order
transitions (through one intermediate state) give
rise to infinite transition probabilities in the
case of a continuous spectrum. Usually one splits
up the resulting terms, in a more or less arbitrary

way, into a finite part that is supposed to
represent the physical facts, and an infinite part
that is neglected without further justification.
This procedure appears all the more ambiguous
when one learns that different approximation
methods lead to different convergent parts of
diverging series. The omission of infinite terms
seems to be based on the hope that the various
infinite members would cancel one another if


