Introduction to the cylindrical co-ordinate system

Bedangadas Mohanty
School of Physical Sciences

2 February, 2021

Cylindrical co-ordinate system

Idea: Given Cartesian Co-ordinates (x, y, z), apply Polar co-ordinates to x and y and leave the z co-ordinate alone.

Cylindrical co-ordinates

$$
\begin{align*}
& x=r \cos \phi \\
& y=r \sin \phi \tag{1}\\
& z=z
\end{align*}
$$

$r=$ Distance from 0 to P
$\phi=$ Angle between (x, y) and x-axis
$z=$ Height of (x, y, z)

Figure: Cylindrical co-ordinate system

Example 1

Important:

$x^{2}+y^{2}=r^{2}$
(Used to simplify calculation)

Example 2

Draw $r=1 \rightarrow \sqrt{x^{2}+y^{2}}=1$ (Cylinder)

Point r is much simpler than saying $x^{2}+y^{2}=1$

Use in problem cylindrical coordinate whenever you see $x^{2}+y^{2}$ or a cylinder or a cone

Example 3

$$
\iiint_{E} y^{2} d x d y d z
$$

E region between cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=2$.
z values from r to 2 . Intersect $z=2$ and $z=r$ where $r=2$ is the radius of the disc.
r values from 0 to 2 and
 ϕ from 0 to 2π.

$$
\begin{aligned}
\iiint y^{2} d x d y d z & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2}(r \sin \phi)^{2} d z r d r d \phi \\
x & =r \cos \phi \\
y & =r \sin \phi \\
d x & =\cos \phi d r-r \sin \phi d \phi \\
d y & =\sin \phi d r+r \cos \phi d \phi
\end{aligned}
$$

Jacobian for the transformation (x, y) to (r, ϕ)

$$
\begin{aligned}
d x d y & =d r d \phi\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi}
\end{array}\right| \\
& =d r d \phi\left|\begin{array}{cc}
\cos \phi & -r \sin \phi \\
\sin \phi & r \cos \phi
\end{array}\right| \\
& =r\left|\cos ^{2} \phi+\sin ^{2} \phi\right| d r d \phi \\
& =r d r d \phi
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} r^{3}(\sin \phi)^{2} d z d r d \phi \\
= & \int_{0}^{2 \pi}(\sin \phi)^{2} d \phi \int_{0}^{2} r^{3} d r \int_{r}^{2} d z \\
= & \int_{0}^{2 \pi} \int_{0}^{2}(2-r) r^{3}(\sin \phi)^{2} d r d \phi \\
= & \int_{0}^{2 \pi}(\sin \phi)^{2} d \phi \int_{0}^{2}(2-r) r^{3} d r=\frac{8 \pi}{5}
\end{aligned}
$$

