Free Energy

Kinetic Theory c Gases

Thermodynamics

State Variables

Zeroth law of thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Another statement of 2nd Law...

Maxmise Entropy

System+surroundings maximise Entropy S

Compare with mechanical equilibrium

Minimise Energy

System minimises energy

In thermodynamic equilibrium

Minises energy

System minimises energy Free Energy

Free energy or Gibbs free energy G, is the energy available in a system to do useful work and is different from the total energy change of a process. Thus, total energy = utilizable energy + non-utilizable energy $+ \cos \theta + 2 \cos \theta + 2 \cos \theta + 105/112$

Potentials

We want to know the equilibrium behaviour of a material system, for specified surroundings.

We can define state functions, U, H, F and G which are useful for determining thermodynamic equilibrium under different external conditions, and the maximum work that can be extracted from a system when those boundary conditions are changed. They all involve state functions and are independent of the process applied to the system.

Potential	Differential	Variables
entropy S	TdS = dU + PdV	U,V
internal energy U	dU = TdS - PdV	S, V
enthalpy $H = U + PV$	dH=TdS+VdP	S,P
Helmholtz free energy $F = U - TS$	dF = - PdV - SdT	T,V
the Gibbs free energy $G = H - TS$	dG = VdP - SdT	T,P

Kinetic Theory o Gases

Thermodynamics

State Variables

Zeroth law of thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Maxwell Relations

- Kinetic Theory o Gases
- Thermodynamics
- State Variables
- Zeroth law of thermodynamics
- Reversible and Irreversible processes
- First law of Thermodynamics
- Second law of Thermodynamics
- Entropy
- Thermodynamic Potential

- State functions have TWO independent variables.
- Must be relationships between P, V, T and S.
- Equation of state is one material specific.
- Also there are general mathematical relationships: Maxwell
- The four Maxwell's relations are general thermodynamic relations involving P , V , T and S which establish links between different measurable properties of substances; specific heat capacities, compressibilities etc.

Maxwell Relations

- Kinetic Theory c Gases
- Thermodynamics
- State Variables
- Zeroth law of thermodynamics
- Reversible and Irreversible processes
- First law of Thermodynamics
- Second law of Thermodynamics
- Entropy
- Thermodynamic Potential

 Derived from the requirement that the second derivatives of U,H,F,G with respect to their natural variables do not depend on the order of differentiation; – the potentials are state functions.

- Independent variables of the potential from which each Maxwell relation is derived appear in the denominators.
- Cross multiplication of numerators and denominators yields products of pairs of conjugate variables, *∂S ∂T* and *∂P ∂V*.
- The sign can be deduced by recourse to the appropriate potential function.

Differential	Maxwell relation	
dU=TdS-PdV	$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$	
dH=TdS+VdP	$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$	
dF = - PdV - SdT	$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$	
dG=VdP-SdT	$\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$	
	▲□→ ▲圖→ ▲国→ ▲国→	

≣ ∽ ⊂ 108/112

Derivations based on Internal Energy U

Kinetic Theory o Gases

Thermodynamics

State Variables

Zeroth law of thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

- dU = TdS PdV suggests putting U = U(S,V).
 - $dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial V}\right)_S dV$
 - equate coefficients to get: $T = \left(\frac{\partial U}{\partial S}\right)_V$ and $-P = \left(\frac{\partial U}{\partial V}\right)_S$. U is minimised for system at equilibrium with constant V and S boundaries.
 - For isochoric process (constant volume) & no other work is done: dU|_V = TdS|_V = dQ|_V
 - Heat capacity: For reversible, isochoric (constant volume) heat flows: $C_V = \frac{dQ_V}{dT} = \frac{dU_V}{dT} = \left(\frac{\partial U}{\partial T}\right)_V = T \left(\frac{\partial S}{\partial T}\right)_V$

Derivations based on Enthalpy H

Kinetic Theory o Gases

- Thermodynamics
- State Variables
- Zeroth law of thermodynamics
- Reversible an Irreversible processes
- First law of Thermodynamics
- Second law of Thermodynamics
- Entropy
- Thermodynamic Potential

- H = U + P V, dH=dU+PdV+VdP=TdS+VdP suggests putting H = H(S,P).
- $dH = \left(\frac{\partial H}{\partial S}\right)_P dS + \left(\frac{\partial H}{\partial P}\right)_S dP$
- equate coefficients to get: $T = \left(\frac{\partial H}{\partial S}\right)_P$ and $V = \left(\frac{\partial H}{\partial P}\right)_S$. H is minimised for system at equilibrium with constant P and S boundaries.
- For isobaric process (constant pressure) & no other work is done expect mechanical: dH|_P = TdS|_P = dQ|_P
- Heat capacity: For reversible, isobaric (constant pressure) heat flows: $C_P = \frac{dQ_P}{dT} = \frac{dH_P}{dT} = \left(\frac{\partial H}{\partial T}\right)_P = T \left(\frac{\partial S}{\partial T}\right)_P$

Kinetic Theory o Gases

- Thermodynamics
- State Variables
- Zeroth law of thermodynamics
- Reversible and Irreversible processes
- First law of Thermodynamics
- Second law of Thermodynamics

Entropy

Thermodynamic Potential

- F = U TS, dF = dU TdS SdT = TdS PdV TdS SdT = PdV SdT suggests F = F(V,T)
- dF = $\left(\frac{\partial F}{\partial V}\right)_T dV + \left(\frac{\partial F}{\partial T}\right)_V dT$
- equate coefficients to get: $-P = \left(\frac{\partial F}{\partial V}\right)_T$ and $-S = \left(\frac{\partial F}{\partial T}\right)_V$. F is minimised for system at equilibrium with constant V and T boundaries.
- G = H TS, dG = dH TdS SdT = dU + PdV + VdP TdS- SdT = VdP - SdT suggests G = G(P,T)

• dG =
$$\left(\frac{\partial G}{\partial P}\right)_T dP + \left(\frac{\partial G}{\partial T}\right)_P dT$$

■ equate coefficients to get: V = (^{∂G}/_{∂P})_T and -S = (^{∂G}/_{∂T})_P. G is minimised for system at equilibrium with constant P and T boundaries.

TdS Equation

- Kinetic Theory o Gases
- Thermodynamics
- State Variables
- Zeroth law of thermodynamics
- Reversible an Irreversible processes
- First law of Thermodynamics
- Second law of Thermodynamics
- Entropy
- Thermodynamic Potential

- Entropy is hard to measure, so we would like equations which relate it to measurable quantities, e.g. to find S(T,V).
- $\mathsf{T}dS = T\left(\frac{\partial S}{\partial T}\right)_V dT + T\left(\frac{\partial S}{\partial V}\right)_T dV.$
- Knowing $C_V = \left(\frac{\partial U}{\partial T}\right)_V = T \left(\frac{\partial S}{\partial T}\right)_V$ and using Maxwell relation: $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$ gives the relation between entropy and more easily measured quantities

- $TdS = C_V \ dT + T \ \left(\frac{\partial P}{\partial T}\right)_V \ dV$
- Similarly, $TdS = C_P dT T \left(\frac{\partial V}{\partial T}\right)_P dP$