Kinetic Theory of Gases and Thermodynamics

Bedanga Mohanty

School of Physical Sciences
NISER, Jatni, Orissa

Course on Kinetic Theory of Gasses and Thermodynamics - P101

Course Content

Suppose to be 12 lectures.

- Kinetic Theory of Gases

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic
Potential
Third Law of
Thermodynamics
Phase diagram

Course Content

Suppose to be 12 lectures.

- Kinetic Theory of Gases

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of

thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Third Law of Thermodynamics

Phase diagram

- Principles of thermodynamics, thermodynamic state, extensive/intensive variables.

Course Content

Suppose to be 12 lectures.

- Kinetic Theory of Gases

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Third Law of Thermodynamics

Phase diagram

■ Principles of thermodynamics, thermodynamic state, extensive/intensive variables.

- internal energy, Heat, work

Suppose to be 12 lectures.

- Kinetic Theory of Gases

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of
thermodynamics
Reversible and
Irreversible
processes
First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Third Law of Thermodynamics

Phase diagram

■ Principles of thermodynamics, thermodynamic state, extensive/intensive variables.
■ internal energy, Heat, work
■ First law of thermodynamics, heat engines
■ Second law of thermodynamics, entropy

- Thermodynamic potentials

Suppose to be 12 lectures.

- Kinetic Theory of Gases

■ Principles of thermodynamics, thermodynamic state, extensive/intensive variables.
■ internal energy, Heat, work
■ First law of thermodynamics, heat engines
■ Second law of thermodynamics, entropy
■ Thermodynamic potentials
References:

- Thermodynamics, kinetic theory and statistical thermodynamics by Francis W. Sears, Gerhard L. Salinger
■ Thermodynamics and introduction to thermostatistics, Herbert B. Callen
- Heat and Thermodynamics: an intermediate textbook by Mark W. Zemansky and Richard H. Dittman

Suppose to be 12 lectures.

- Kinetic Theory of Gases

■ Principles of thermodynamics, thermodynamic state, extensive/intensive variables.
■ internal energy, Heat, work
■ First law of thermodynamics, heat engines
■ Second law of thermodynamics, entropy
■ Thermodynamic potentials
References:

- Thermodynamics, kinetic theory and statistical thermodynamics by Francis W. Sears, Gerhard L. Salinger
■ Thermodynamics and introduction to thermostatistics, Herbert B. Callen
- Heat and Thermodynamics: an intermediate textbook by Mark W. Zemansky and Richard H. Dittman

About 5-7 Tutorials
One Quiz (10 Marks) and 2 Assignments (5 Marks)
End Semester Exam (40 Marks)

- Developed by Boltzmann, Maxwell and Clausius in later half of 19th Century
We discuss a simplified model, but it describes the basic ideas and experimental findings correctly.

Assumptions

- Gas made of atoms or molecules described by rigid balls of radius r_{0}.
- Developed by Boltzmann, Maxwell and Clausius in later half of 19th Century
We discuss a simplified model, but it describes the basic ideas and experimental findings correctly.

Assumptions

- Gas made of atoms or molecules described by rigid balls of radius r_{0}.
- The atoms or molecules move with statistically distributed velocities inside the gas container.

■ Developed by Boltzmann, Maxwell and Clausius in later half of 19th Century
We discuss a simplified model, but it describes the basic ideas and experimental findings correctly.

Assumptions

- Gas made of atoms or molecules described by rigid balls of radius r_{0}.
- The atoms or molecules move with statistically distributed velocities inside the gas container.
- Collisions of gas atoms or molecules with each other or with the walls follow laws of energy and momentum conservation.

■ Developed by Boltzmann, Maxwell and Clausius in later half of 19th Century
We discuss a simplified model, but it describes the basic ideas and experimental findings correctly.

Assumptions

- Gas made of atoms or molecules described by rigid balls of radius r_{0}.
- The atoms or molecules move with statistically distributed velocities inside the gas container.
- Collisions of gas atoms or molecules with each other or with the walls follow laws of energy and momentum conservation.
- Collisions are elastic.

■ Developed by Boltzmann, Maxwell and Clausius in later half of 19th Century
We discuss a simplified model, but it describes the basic ideas and experimental findings correctly.

Assumptions

- Gas made of atoms or molecules described by rigid balls of radius r_{0}.
- The atoms or molecules move with statistically distributed velocities inside the gas container.
- Collisions of gas atoms or molecules with each other or with the walls follow laws of energy and momentum conservation.
- Collisions are elastic.
- Any interaction between the balls only occur during the collision (direct touch). For distances $d>2 r_{0}$ no interactions.

Model of Ideal Gas

How does the interaction potential look like ?

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of

thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic
Potential
Third Law of Thermodynamics

Phase diagram

How does the interaction potential look like?
When is the model called as ideal gas: if $r_{0} \ll\langle d\rangle$ - mean distance between the atoms. This implies: Atomic volume \ll Volume of the container V .

How does the interaction potential look like?
When is the model called as ideal gas: if $r_{0} \ll\langle d\rangle$ - mean distance between the atoms. This implies: Atomic volume \ll Volume of the container V.

- $\mathrm{V}(\mathrm{r})=0$ for $|r|>2 r_{0}$
- $\mathrm{V}(\mathrm{r})=\mathrm{inf}$ for $|r| \leq 2 r_{0}$

Example

Pressure 1 bar and temperature 300 K (room temperature) $1 \mathrm{~cm}^{3}$ of a gas $\sim 3 \times 10^{19}$ molecules. The $\langle d\rangle \sim 3 \mathrm{~nm}$.
For helium atom $r_{0} \sim 0.05 \mathrm{~nm}$.
$r_{0} /\langle d\rangle \sim 0.017 \ll 1$.
Helium gas at 1 bar pressure and room temperature can be regarded as ideal gas.

Basic equations

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of thermodynamics

Reversible and Irreversible processes

First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Third Law of Thermodynamics

Phase diagram

Further Assumptions:

- Atoms treated as point mass

Basic equations

Entropy

Further Assumptions:

- Atoms treated as point mass

■ Only take into account translational energy

Further Assumptions:

- Atoms treated as point mass

■ Only take into account translational energy

- Neglect rotational and vibrational contributions

Further Assumptions:

- Atoms treated as point mass

■ Only take into account translational energy
■ Neglect rotational and vibrational contributions
Let there be N molecules in a volume V . The number density $n=$ N/V.

Further Assumptions:

- Atoms treated as point mass

■ Only take into account translational energy
■ Neglect rotational and vibrational contributions
Let there be N molecules in a volume V . The number density $n=$ N/V.

■ Now consider only a part n_{x} of all molecules per cm^{3} in a cubical volume.

Further Assumptions:

- Atoms treated as point mass

■ Only take into account translational energy

- Neglect rotational and vibrational contributions

Let there be N molecules in a volume V . The number density $n=$ N/V.

■ Now consider only a part n_{x} of all molecules per cm^{3} in a cubical volume.

■ They are moving with velocity v_{x} along X

Further Assumptions:

- Atoms treated as point mass

■ Only take into account translational energy
■ Neglect rotational and vibrational contributions
Let there be N molecules in a volume V . The number density $n=$ N/V.

■ Now consider only a part n_{x} of all molecules per cm^{3} in a cubical volume.

■ They are moving with velocity v_{x} along X
■ Each molecule has mass m.

Basic equations

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of thermodynamics

Reversible and

Irreversible

 processes
First law of

Thermodynamics
Second law of Thermodynamics

Entropy

Thermodynamic Potential

Basic equations

Thermodynamics
State Variables
Zeroth law of

thermodynamics

Reversible and
Irreversible
processes
First law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Third Law of Thermodynamics

Phase diagram

- Number of molecules hitting the surface area A in the time interval Δt (inside the cuboid): $\mathrm{Z}=n_{x} v_{x} \Delta t A$.
- Number of molecules hitting the surface area A in the time interval Δt (inside the cuboid): $\mathrm{Z}=n_{x} v_{x} \Delta t A$.
- The momentum transfered: $\Delta p_{x}=2 m v_{x}$ (elastic collisions).
- Force $=\frac{\text { change in momentum }}{\text { time interval }}=Z \frac{\Delta p_{x}}{\Delta t}=2 Z m v_{x} / \Delta t$.

■ Number of molecules hitting the surface area A in the time interval Δt (inside the cuboid): $Z=n_{x} v_{x} \Delta t A$.
■ The momentum transfered : $\Delta p_{x}=2 m v_{x}$ (elastic collisions).
$■$ Force $=\frac{\text { change in momentum }}{\text { time interval }}=Z \frac{\Delta p_{x}}{\Delta t}=2 Z m v_{x} / \Delta t$.
■ Pressure on the wall $=$ Force $/$ Area $=2 m n_{x} v_{x}^{2}$.
■ Not all molecules will have the same velocity. The mean square value of velocities $\left\langle v_{x}^{2}\right\rangle=\overline{v_{x}^{2}}=\frac{1}{N} \int N\left(v_{x}\right) v_{x}^{2} d v_{x}$
■ $N\left(v_{x}\right)$ is the number of molecules in the volume V with velocity component v_{x} in the interval v_{x} to $v_{x}+d v_{x}$.

■ Number of molecules hitting the surface area A in the time interval Δt (inside the cuboid): $\mathrm{Z}=n_{x} v_{x} \Delta t A$.
■ The momentum transfered : $\Delta p_{x}=2 m v_{x}$ (elastic collisions).
$■$ Force $=\frac{\text { change in momentum }}{\text { time interval }}=Z \frac{\Delta p_{x}}{\Delta t}=2 Z m v_{x} / \Delta t$.
■ Pressure on the wall $=$ Force $/$ Area $=2 m n_{x} v_{x}^{2}$.
■ Not all molecules will have the same velocity. The mean square value of velocities $\left\langle v_{x}^{2}\right\rangle=\overline{v_{x}^{2}}=\frac{1}{N} \int N\left(v_{x}\right) v_{x}^{2} d v_{x}$
■ $N\left(v_{x}\right)$ is the number of molecules in the volume V with velocity component v_{x} in the interval v_{x} to $v_{x}+d v_{x}$.
■ On the average $1 / 2$ molecules move in the positive X-direction and the other $1 / 2$ in negative X-direction.

Basic equations

- Pressure exerted by all molecules in the X-direction on the wall in Y-Z plane: $P=\frac{1}{2} n 2 m \overline{v_{x}^{2}}=n m \overline{v_{x}^{2}}$.
- Under stationary condition, the velocities of the molecules are isotropically distributed. This means each direction has equal probability.
- Pressure of a gas is isotropic.
- Mean momentum transfer is same or equal in all directions: $\overline{v_{x}^{2}}$ $=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}}$
- Pressure exerted by all molecules in the X-direction on the wall in Y-Z plane: $P=\frac{1}{2} n 2 m \overline{v_{x}^{2}}=n m \overline{v_{x}^{2}}$.
- Under stationary condition, the velocities of the molecules are isotropically distributed. This means each direction has equal probability.
- Pressure of a gas is isotropic.
- Mean momentum transfer is same or equal in all directions: $\overline{v_{x}^{2}}$ $=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}}$
- The pressure, $P=\frac{1}{3} n m \overline{v^{2}}=\frac{2}{3} n \frac{1}{2} m \overline{v^{2}}=\frac{2}{3} \overline{E_{k i n}}$.
- $\overline{E_{k i n}}=\frac{1}{2} m \overline{v^{2}}$ is the mean kinetic energy per molecule.
- $P V=\frac{2}{3} N \frac{1}{2} m \overline{v^{2}}$
- We have earlier studied that the product of $P V$ depends on temperature - Boyle or Boyel-Mariotte's law.
- Look at $P V=\frac{2}{3} N \frac{1}{2} m \overline{v^{2}}$, This implies mean kinetic energy depends on temperature.
- We have earlier studied that the product of $P V$ depends on temperature - Boyle or Boyel-Mariotte's law.
- Look at $P V=\frac{2}{3} N \frac{1}{2} m \overline{v^{2}}$, This implies mean kinetic energy depends on temperature.
- We can then define absolute temperature as a quantity that is proportional to $\overline{E_{k i n}}$.
- Temperature (in units of Kelvin) is defined through the relation: $\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} K T$. Where K is the Boltzmann constant with the value 1.38054×10^{-23} Joule/K.
- Then we get $P V=N K T$, this is the generalisation of the Boyles law.

■ Each molecule can move in 3-directions, $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \Rightarrow \mathbf{3}$ degrees of freedom for translation.

- We had discussed $\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}}$

■ We had discussed $\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} K T$.
■ Hence the mean kinetic energy of a molecule at temperature T is $\overline{E_{k i n}}=\frac{1}{2} K T$ per degrees of freedom.

■ Each molecule can move in 3-directions, $X, Y, Z \Rightarrow 3$ degrees of freedom for translation.
■ We had discussed $\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}}$
■ We had discussed $\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} K T$.
■ Hence the mean kinetic energy of a molecule at temperature T is $\overline{E_{k i n}}=\frac{1}{2} K T$ per degrees of freedom.
■ Law: In a gas that is kept sufficiently long at a constant temperature T, the energy of the atoms or molecules is uniformly distributed by collisions over all degrees of freedom. Therefore each molecule has on the average the energy $\overline{E_{k i n}}=f$ $\left(\frac{1}{2}\right) K T$; where f is the number of degrees of freedom accessible to the molecules.

Students should closely look at the derivation of velocity distribution by Maxwell.
J. C. Maxwell, Illustrations of dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Reprinted in The Scientific Papers of James Clerk Maxwell, edited by W. D. Niven (Cambridge U.P., Cambridge, UK, 1890), Vol. I. pp. 377-391.
There is an interesting discussion as he himself called the reasoning May appear precarious.
Also look at alternate ways of derivation by E. U. Condon - Physical Review 54 (1938) 937.
Tutorials \# 1

- Consider a molecule of mass m of ideal gas. $E=E_{k i n}+\epsilon^{i n t}$; $E_{k i n}=\frac{p^{2}}{2 m}, p=$ momentum and $\epsilon^{i n t}$ is the internal energy (non-translational), could be rotational or vibrational etc. $\epsilon^{\text {int }}$ does not depend on r and p and is a contant factor.
- The probability of finding a molecule with a position vector \vec{r} to $\vec{r}+\mathrm{d} \vec{r}$ and momentum \vec{p} to $\vec{p}+\mathrm{d} \vec{p}$ is: $P(r, p) d^{3} r d^{3} p$.
- $P(r, p) d^{3} r d^{3} p \propto \operatorname{Exp}\left(-\frac{E_{k i n}}{K T}\right) d^{3} r d^{3} p$; The first term is a Boltzmann factor and second part is Volume term.
- Consider a molecule of mass m of ideal gas. $E=E_{k i n}+\epsilon^{\text {int }}$; $E_{k i n}=\frac{p^{2}}{2 m}, p=$ momentum and $\epsilon^{i n t}$ is the internal energy (non-translational), could be rotational or vibrational etc. $\epsilon^{\text {int }}$ does not depend on r and p and is a contant factor.
■ The probability of finding a molecule with a position vector \vec{r} to $\vec{r}+\mathrm{d} \vec{r}$ and momentum \vec{p} to $\vec{p}+\mathrm{d} \vec{p}$ is : $P(r, p) d^{3} r d^{3} p$.
■ $P(r, p) d^{3} r d^{3} p \propto \operatorname{Exp}\left(-\frac{E_{K i n}}{K T}\right) d^{3} r d^{3} p$; The first term is a Boltzmann factor and second part is Volume term.
■ Under similar considerations, the number of molecules between \vec{r} to $\vec{r}+\mathrm{d} \vec{r}$ and velocities \vec{v} to $\vec{v}+\mathrm{d} \vec{v}(\vec{v}=\vec{p} / \mathrm{m})$ is: $f(r, v) d^{3} r d^{3} v=C \operatorname{Exp}\left(-\frac{m v^{2}}{2 K T}\right) d^{3} r d^{3} v ; C$ is the constant of proportionality.
■ C can be determined from $\int_{r} \int_{v} f(r, v) d^{3} r d^{3} v=N$ (total number of particles).

■ Using the pervious equation and as all component of velocity are equally probable, we can write $C V\left[\int_{\infty}^{\infty} \int_{V} \operatorname{Exp}\left(-\frac{m v_{z}^{2}}{2 K T}\right) d v_{z}\right]^{3}=N$
■ $\int_{\infty}^{\infty} \operatorname{Exp}\left(-\frac{m v_{z}^{2}}{2 K T}\right) d v_{z}=\sqrt{\frac{2 K T}{m}} \int_{\infty}^{\infty} \operatorname{Exp}\left(-y^{2}\right) d y=\sqrt{\frac{2 \pi K T}{m}}$.
■ So, $C=\frac{N}{V}\left(\frac{m}{2 \pi K T}\right)^{3 / 2}$.
$\square f(r, v) d^{3} r d^{3} v=n\left(\frac{m}{2 \pi K T}\right)^{3 / 2} \operatorname{Exp}\left(-\frac{m v^{2}}{2 K T}\right) d^{3} r d^{3} v$
■ f is only function of velocity, if we assume distribution of molecular velocities are uniform in space. This is called the Maxwell - Boltzmann velocity probability distribution.

■ Using the pervious equation and as all component of velocity are equally probable, we can write $C V\left[\int_{\infty}^{\infty} \int_{v} \operatorname{Exp}\left(-\frac{m v_{z}^{2}}{2 K T}\right) d v_{z}\right]^{3}=N$
■ $\int_{\infty}^{\infty} \operatorname{Exp}\left(-\frac{m v_{z}^{2}}{2 K T}\right) d v_{z}=\sqrt{\frac{2 K T}{m}} \int_{\infty}^{\infty} \operatorname{Exp}\left(-y^{2}\right) d y=\sqrt{\frac{2 \pi K T}{m}}$.
■ So, $C=\frac{N}{V}\left(\frac{m}{2 \pi K T}\right)^{3 / 2}$.
■ $f(r, v) d^{3} r d^{3} v=n\left(\frac{m}{2 \pi K T}\right)^{3 / 2} \operatorname{Exp}\left(-\frac{m v^{2}}{2 K T}\right) d^{3} r d^{3} v$
■ f is only function of velocity, if we assume distribution of molecular velocities are uniform in space. This is called the Maxwell - Boltzmann velocity probability distribution.
$■$ What is of interest is the number density $n(v) \mathrm{d} v$ of all molecules per unit volume with velocities between v and $v+\mathrm{d} v$.
■ $n(v) \mathrm{d} v=f(v) 4 \pi v^{2} \mathrm{~d} v=n\left(\frac{m}{2 \pi K T}\right)^{3 / 2} 4 \pi v^{2} \operatorname{Exp}\left(-\frac{m v^{2}}{2 K T}\right) d v-$ Maxwell - Boltzmann velocity distribution.

One is a symmetric distribution, Gaussian in Shape and extends to $-\infty$ to ∞. The other is range $v \geq 0$ (no negative value), asymmetric as there is a factor v^{2}.

$$
\mathrm{f}(\mathrm{u})=\left(\frac{\mathrm{m}}{2 \pi \mathrm{kT}}\right)^{1 / 2} \mathrm{e}^{-\mathrm{mu}} \mathrm{u}^{2} / 2 \mathrm{kT}
$$

In the above formula u denotes one of the velocity components.

Note well: the MB distribution is strongly peaked around $u=0$. The width of the distribution is related to the square root of the temperature.

Experiments: Usually flux density is measured, $N=n(v) v$ - Number of particles reaching detector per unit time. Then the velocity distribution of flux density is $N(v)=n v f(v)$ - now the dependence is v^{3} not v^{2}.

- Maximum of the distribution will give the most probable velocity v_{p}. Obtained by $\frac{d n(v)}{d v}=0$. This will give $v_{p}=\sqrt{\frac{2 K T}{m}}$ - Tutorial \#2
- Mean velocity $\bar{v}=\int_{0}^{\infty} v f(v) \mathrm{d} v=4 \pi\left(\frac{m}{2 \pi K T}\right)^{3 / 2} \int_{0}^{\infty} v^{3}$ $\operatorname{Exp}\left(-\frac{m v^{2}}{2 K T}\right) d v=4 \pi\left(\frac{m}{2 \pi K T}\right)^{3 / 2}\left(\frac{2 K T}{m}\right)^{2} \int_{0}^{\infty} y^{3} e^{-y^{2}} d y=4 \pi$ $\left(\frac{m}{2 \pi K T}\right)^{3 / 2}\left(\frac{2 K T}{m}\right)^{2} \frac{1}{2}$ - Tutorial \#3
- Mean velocity $\bar{v}=\sqrt{\frac{8 K T}{\pi m}}$
- Relation between v_{p} and $\bar{v}: \bar{v}=\frac{2 v_{p}}{\sqrt{\pi}} \Rightarrow \bar{v}>v_{p}$
- Mean square velocity $\overline{v^{2}}=\int_{0}^{\infty} v^{2} f(v) \mathrm{d} v=\frac{3 K T}{m}$ - Tutorial \#4
- Mean energy per molecule : $\frac{m \overline{v^{2}}}{2}=\frac{3}{2} K T=f K T$. This we have already discussed.

■ Root mean square velocity: $\sqrt{\overline{v^{2}}}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 K T}{m}}=\sqrt{\frac{3}{2}} v_{p}$
■ $v_{p}<\bar{v}<\sqrt{\left\langle v^{2}\right\rangle}$

- Since all velocities can be expressed in terms of v_{p},
$\square n(v) \mathrm{d} v=n \frac{4 v^{2}}{v_{p}^{3} \sqrt{\pi}} \operatorname{Exp}\left(-\frac{m v^{2}}{2 K T}\right) d v=n \frac{4 v^{2}}{v_{p}^{3} \sqrt{\pi}} \operatorname{Exp}\left(-\frac{v^{2}}{v_{p}^{2}}\right) d v$

Properties

Kinetic Theory of Gases

Thermodynamics
State Variables
Zeroth law of thermodynamics

Reversible and

Irreversible

 processesFirst law of Thermodynamics

Second law of Thermodynamics

Entropy

Thermodynamic Potential

Third Law of Thermodynamics

Phase diagram
most probable speed

Temperature dependence - strong dependence, if $\frac{T_{1}}{T_{2}}=1: 4$, the numerical values of \bar{v}, v_{p} and $\sqrt{\overline{v^{2}}}$ change by factor 2 as they are proportional to square root of temperature.

Problem

The density of nitrogen gas N_{2} at room temperature $\mathrm{T}=300 \mathrm{~K}$ at a pressure of 1 bar is $\rho\left(N_{2}\right)=1.2 \mathrm{Kg} / \mathrm{m}^{3}$ and $\mathrm{m}\left(N_{2}\right)=4.67 \times 10^{-26}$ kg .
Calculate: $v_{p}, \bar{v}, \sqrt{\left\langle v^{2}\right\rangle}$ and $\overline{E_{k i n}}$.
$v_{p}=\sqrt{\frac{2 K T}{m}}=422 \mathrm{~m} / \mathrm{sec}$
$\bar{v}=\frac{2 v_{p}}{\sqrt{\pi}}=476 \mathrm{~m} / \mathrm{sec}$
$\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 K T}{m}}=517 \mathrm{~m} / \mathrm{sec}$
We see: $v_{p}<\bar{v}<\sqrt{\left\langle v^{2}\right\rangle}$
Mean kinetic energy of a molecule : $\overline{E_{k i n}}=\frac{3}{2} \mathrm{KT}=6.21 \times 10^{-21} \mathrm{~J}$ Energy density $=n \overline{E_{k i n}}=0.15 \mathrm{~J} / \mathrm{cm}^{3}$.

