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NOTES AND DISCUSSIONS

Why is the Legendre transformation its own inverse?
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Austria

(Received 30 November 2012; accepted 28 February 2013)
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The Legendre transformation is a mathematical concept of
great significance to physics. In mechanics and field theory,
it provides the transition between Hamiltonian and
Lagrangian descriptions, and in thermodynamics it relates
the different thermodynamic potentials. Nevertheless, with
very few exceptions (notably Ref. 1), the Legendre transfor-
mation is introduced in passing and with little emphasis; this
leaves the impression of a sleight-of-hand. The feeling that
some essential point might be missing from the standard
description provided the motivation for the present consider-
ations. In the following, we state the definition of the
Legendre transform G(y) of a function F(x) and provide a
simple argument for the symmetry between F and G.

Let us assume that the function F(x) is continuously differ-
entiable, with a derivative

f ðxÞ � F0ðxÞ; (1)

that is strictly monotonically increasing. This condition guar-
antees that the function f(x) has a unique inverse g(y),

y ¼ f ðxÞ () x ¼ gðyÞ; (2)

and the Legendre transform of F(x) is then defined as

GðyÞ � ½xy� FðxÞ�x¼gðyÞ: (3)

If we now perform the same operation on G(y) so that

z � G0ðyÞ and HðzÞ � ½yz� GðyÞ�y¼hðzÞ; (4)

where h is the function inverse to G0, a short calculation
reveals that z¼ x, h¼ f, and H¼F, i.e., one has returned to
the original function.

This is, of course, perfectly sufficient as a proof of involu-
tivity, but a physicist would prefer a more intuitive explana-
tion, ideally in terms of geometry. The standard geometric
interpretation of the Legendre transform proceeds by consid-
ering the graph of the convex function F(x) and its tangents.
This is a correct pictorial account of Eq. (3) that can be used
to give a geometric proof (see, e.g., Ref. 2), but it does not
make the symmetry between F, f, and x and G, g, and y mani-
fest. Let us therefore look at the graph of the monotonic
function f(x) instead.

We first assume that x and f(x) are positive (see Fig. 1).
The same curve can be interpreted as the graph of g(y) with
respect to the y-axis. Expressed in a symmetric manner, the
curve shows the locus of all pairs (x, y) with y¼ f(x) or,
equivalently, x¼ g(y). Now consider the rectangle bounded
by the coordinate axes and their parallels through such a

point (x, y). The area of that rectangle is A¼ xy, and the
curve cuts this rectangle into two parts with areas ~F and ~G.
From Fig. 1, it is clear that

~F ¼
ðx

x0

f ðx̂Þ dx̂; ~G ¼
ðy

y0

gðŷÞ dŷ (5)

and

~F þ ~G ¼ xy (6)

with x0 ¼ 0 if the graph intersects the y-axis at y0 � 0, and
y0 ¼ 0 if the graph intersects the x-axis at x0 � 0. Clearly, ~F
is a function of x with ~F

0ðxÞ ¼ f ðxÞ ¼ F0ðxÞ, hence

FðxÞ ¼ ~FðxÞ þ c; GðyÞ ¼ ~GðyÞ � c; (7)

for some real constant c. So F is, up to a constant, the area
under the graph of f, and G is, up to minus that constant, the
area under the graph of g, and the symmetry is manifest.

What if our assumptions x � 0 and y � 0 are not satisfied?
For x � 0 and y � 0, the argument is essentially unmodified
because (� x)(� y)¼ xy. But for xy < 0, consider Fig. 2.
Here, we have fixed two arbitrary constant values x0, y0 in
such a way that x0 > x > 0 and y0 < y < 0 for the range of
pairs (x, y) we want to consider. Denote by A0 the area deter-
mined by the coordinate axes, the vertical line through x0,
the horizontal line through y0, and the curve. We then have

A0 ¼ �xyþ ~F þ ~G; (8)

Fig. 1. The graph of y¼ f(x) for the case x > 0 and y > 0.
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with

~F ¼ �
ðx0

x

f ðx̂Þ dx̂; ~G ¼
ðy

y0

gðŷÞ dŷ: (9)

Up to the constant A0, which can be absorbed in the redefini-
tions of ~F to F and ~G to G, ~F and ~G again add up to xy.

The fact that the present picture requires redefinitions of
functions by constants is directly related to the interpretation

of F(x) and G(y) as integrals of f(x) and g(y), respectively.
As always, integrals are well-defined only up to equivalences
of the type F � ~F, with “�” meaning “equal up to a constant
function.” This geometric description fits nicely with our
physical interpretation, where the predictions do not change
if quantities like the Hamiltonian or thermodynamic poten-
tials are redefined by constants.

I first presented this material in informal talks on March
15, 2012 in Vienna and on June 4, 2012 in Heidelberg. Af-
ter completion of the present manuscript I became aware
of Ref. 3, which is dated June 29, 2012 (submission)/
August 22, 2012 (publication), and has some overlap in
content. I am grateful to Johanna Knapp for pointing out
this reference to me. One of the referees remarked that the
present argument was also developed in a lecture available
on Youtube.4

a)Electronic mail: skarke@hep.itp.tuwien.ac.at
1R. K. P. Zia, E. F. Redish, and S. R. McKay, “Making sense of the

Legendre transform,” Am. J. Phys. 77, 614–622 (2009).
2V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed.

(Springer, 1989), p. 63.
3H.-J. Hoffmann, “A new interpretation of Legendre’s transformation and

consequences,” Mater. Werkstofftech. 43, 687–698 (2012).
4L. Susskind, Modern Physics: Classical Mechanics (Stanford, 2007),

Lecture 6 (2007), <http://www.youtube.com/watch?v=14Yhzbn96Bc>.
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In 1860, James Clerk Maxwell published a derivation1 of
what we now call the Maxwellian velocity distribution, the
distribution of molecular speeds in an ideal gas in thermal
equilibrium. The essential ingredient was an assumption,
motivated by symmetry and mathematical considerations,
that the velocity-space number density of molecules as a
function of speed must factor into separate, identical func-
tions of the Cartesian velocity components. That is, the num-
ber of molecules in velocity space volume element
dvx dvy dvz must be given by an expression of the form

NFðvÞ dvx dvy dvz ¼ Nf ðvxÞf ðvyÞf ðvzÞ dvx dvy dvz; (1)

where N is the total number of molecules. This posit of fac-
torability leads directly to the conclusion that the velocity
space density function

FðvÞ ¼ f ðvxÞf ðvyÞf ðvzÞ (2)

is proportional to e�Av2

, where v ¼ ðv2
x þ v2

y þ v2
z Þ

1=2
is the

speed and A is a constant. For, by differentiation of Eq. (2),
we have

@F

@vx
¼ dF

dv

vx

v
¼ df ðvxÞ

dx
f ðvyÞf ðvzÞ; (3)

which, upon dividing by vxFðvÞ ¼ vxf ðvxÞf ðvyÞf ðvzÞ, gives

1

vF

dF

dv
¼ 1

vxf ðvxÞ
df ðvxÞ

dvx
¼ 1

vyf ðvyÞ
df ðvyÞ

dvy

¼ 1

vzf ðvzÞ
df ðvzÞ

dvz
; (4)

where the last two equalities follow by symmetry. Given the
mathematical independence of the velocity components,
each of the equal terms must in fact be constant. Upon inte-
gration, one finds

FðvÞ ¼ Ce�Av2

; (5)

where A and C are positive constants. (The exponential eþAv2

would also be a solution but it blows up at high speeds.)
Integrations over velocity space, together with elementary
considerations regarding the pressure of an ideal gas, suffice
to determine A¼m/2kT, with m the molecular mass, k
Boltzmann’s constant, and T the absolute temperature. And
thus, out pops the Boltzmann factor e�mv2=2kT as if by magic.

Maxwell later acknowledged2 that the reasoning behind
this early derivation “may appear precarious.” Writing

Fig. 2. The graph of y ¼ f(x) for the case x > 0 and y < 0.
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several decades later, in a historical note within a treatise on
the dynamical theory of gases, Jeans stated3 that “[t]his proof
must be admitted to be unsatisfactory” and identified the
assumption of independence of the velocity components, that
is, the factorability assumption, as the problem. In a subse-
quent work4 Jeans’ disclaimer was slightly different: “This
proof … is now generally agreed to be unsatisfactory.” The
implication is that its inadequacy was well-recognized.

Nevertheless, one finds little by way of cogent refutation of
Maxwell’s method in the historical literature. Garber et al.5

refer without elaboration to “the problems that now seem so
obvious in his first derivation of the distribution function ….”
Brush6 states that “Maxwell later realized that the validity of
the second [i.e., factorability] assumption was not obvious.”
In a later work Brush7 says, “Maxwell’s first proof … was
not persuasive to other physicists,” that he “simply asserted
that the distribution function must satisfy certain abstract
mathematical properties, such as spatial isotropy.” Cropper8

writes that Maxwell’s “reasoning was severely abstract and
puzzling to his contemporaries, who were looking for more-
mechanical details.” Such mild disclaimers leave open the
possibility that Maxwell’s original derivation possessed suffi-
cient validity for pedagogical purposes; because the method
is so simple, the temptation is great.

In fact, the derivation is simply not valid and obtaining the
correct result can only be regarded as a fluke. Otherwise,
once one understands the nature and significance of the
Boltzmann factor e�E=kT , with the energy E appearing in the
exponent, it would be necessary to believe that Maxwell had
derived, from the most general considerations only tenuously
related to dynamics, that kinetic energy is proportional to ve-
locity squared. That is too good to be true, and indeed it is
not true relativistically.

Furthermore, precisely analogous considerations would
lead us to conclude falsely that the only possible potential
energy function must be simple harmonic. In Maxwell’s own
words, “Now the existence of the velocity x [i.e., vx] does not
in any way affect that of the velocities [vy] or [vz], since these
are all at right angles to each other and independent.” One
might just as well claim that the coordinate x does not affect
the coordinates y or z, for the same reasons. Then by the same
argument, one infers that the number of molecules in volume
element dx dy dz is given by an expression of the form

NFðrÞ dx dy dz ¼ Nf ðxÞ f ðyÞ f ðzÞ dx dy dz; (6)

where r ¼ ðx2 þ y2 þ z2Þ1=2
is the radial coordinate. This

posit of factorability leads to the conclusion that the spatial
density function F(r) is proportional to e�Br2

with B a posi-
tive constant. The upshot, considering that e�Br2

must be the
Boltzmann factor e�UðrÞ=kT , with U(r) the potential energy
function, is that U(r) must be proportional to r2. But there is
no reason in reality why potential energy might not be some
other function of r.

If a vector can take on a continuous range of magnitudes
and point in any direction in three-dimensional space, then
of course its Cartesian components are “independent” in the
sense that they cannot be related by an equation with
constant coefficients. But the sense of independence that
Maxwell required was something quite different, namely,
that the relative probability of different values of one compo-
nent is not affected by the values of the other components. It
so happens that the velocity components in a non-relativistic
ideal gas do, statistically, possess this latter sense of inde-

pendence, but it is from our prior development and under-
standing of the Boltzmann factor that we learn this. In the
Boltzmann factor, what is divided by kT is the energy. The
kinetic energy is the sum of separate functions of vx, vy, and
vz. Therefore, the Boltzmann factor itself factors into sepa-
rate functions of vx, vy, and vz. For particles constrained to
move in one dimension, the Boltzmann factor would still
lead us to the correct speed distribution, but Maxwell’s deri-
vation could not even get off the ground as it requires more
than one independent velocity component.

In a relativistic gas, the kinetic energy does not decom-
pose into a sum of independent functions of the Cartesian ve-
locity components, and the relative probability of different
values of one component does depend on the values of the
others. This latter statement is demonstrated by the fact that
while any one of the velocity components might, with equal
probability, exceed c=

ffiffiffi
2
p

(c being the speed of light), all
three cannot do so together. If vx exceeds c=

ffiffiffi
2
p

, the probabil-
ity of either vy or vz doing so is reduced to zero. It is worth
emphasizing that the problem is not that Maxwell’s original
derivation is non-relativistic. There is no dynamics in it, rela-
tivistic or otherwise. The relativistic case represents a dis-
proving counter-example, not merely a limitation in scope.

Unfortunately, Maxwell’s original derivation has been
enlisted frequently in the pedagogical literature, usually with
attribution to Maxwell, sometimes not. Sometimes, it is accom-
panied by a vague or mild disclaimer of the sort mentioned al-
ready in the historical literature; other times, no indication is
given that it might be problematic. It has appeared in textbooks
and books aimed at students,9–20 in this journal,21 in an ency-
clopedia of physics,22 and on numerous web sites. Among the
authors who have deployed this derivation, Richlet15 correctly
notes that Maxwell’s “reasoning was in fact incomplete
because the assumed isotropy of the gas does not necessarily
imply the statistical independence of the variables along differ-
ent directions of space.” But he does not elaborate.

Writing three decades ago in the Journal of Chemical
Education, Dunbar23 cogently criticizes the use of this deri-
vation. He questions whether it is obvious that the probabil-
ity distribution for, say, vy must be independent of whether
vx is high or low, and he points out that the assumption is
not true relativistically. Dunbar’s paper thus partially antici-
pates the arguments presented in this one. Dunbar in turn
refers to an older text by Chapman and Cowling,24 who
also questioned the independence/factorability assumption.
Nevertheless, the continued use of this unsound method of
derivation indicates that the message has not been widely
enough received. Perhaps the more thorough refutation pre-
sented here will help.

The author is indebted to Balázs Gyenis for sharing
an unpublished manuscript, “Maxwell and the Normal Dis-
tribution,” which helpfully placed Maxwell’s original deriva-
tion in a historical context and identified salient literature
references.
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