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Fia. 1. Experimental arrangement (not to scale; see Ref. 6).

circle. We check this by watching for any precession as
the radius of the circle reduces with time. The students
photograph the motion of the pendulum from the side
with the strobe camera for slightly more than one cycle,
with the region of overlap of the series of exposures oc-
curring when the bob is nearest the camera. The camera
has been positioned carefully by the instructor to minimize
optical distortion in the half angle of the cone 6, viz., with
its film plane vertical and lens slightly above the center of
the thread.® Figure 2 is an actual photo obtained as de-
scribed above with speed 3000 film, lens setting /5.6,
shutter setting on bulb, and strobe shutter set at 1/60 sec.

Fie. 2. Actual photo of conieal pendulum,

AND DISCUSSIONS

In the laboratory frame, two forces act on the ball: the
tension in the string and the weight of the ball. Because
the motion of the ball occurs in a horizontal plane, the
vertical components of the two forces must be equal and
opposite, i.e., F cos#=mg; but there is an unbalanced
horizontal force F.=F sinf=mg tanf. The resulting
motion of the ball in the plane is observed to be uniformly
cireular, so that ¥, should be equal to mv?/R.

From the photograph the student measures the angle
of the cone 20, either by projecting the film? if Polaroid
projection film has been used, or by using a measuring
eyepiece” if Polaroid speed 3000 film has been used, and
counts the number of exposures in one cycle to find the
period 7. He then calculates and compares mg tand with
mRw?=47nl sineT2,

Alternatively, one may determine ¢ from this experi-
ment.8 Solving for ¢ leads to

g =w¥ cosf (1 cosf is the height).

The principal source of error in this experiment seems
to be in connection with the angle 0, partly because the
orbit may not be a true circle and partly because it is
difficult to measure 26 to better than % deg. 7' can be
determined to better than $9, by counting the exposures
in one revolution and interpolating between the overlapped
exposures. With careful work an over-all error of =1%
is possible.

1 We use the MCI Kinematics-Dynamics Camera attachment to
provide the stroboscopic effect. The attachment fits our Polaroid Model
110B camera. It contains a 600-rpm synchronous motor driving a
shutter disk. Three shutter disks were provided: one precut for 60 expo-
sures/sec and two blanks. (Available from MCI Inc., 2324 First St.,
Livermore, Calif. 94550.)

2 D. L. Enlow and P. A. Schroeder, Am. J. Phys. 85, 651 (1967).

3 B. Huggins, Physics I (W. A. Benjamin Company, Ine., N. Y.,
1965).

¢+ W. E. Hazen ef al., Am. J. Phys. 87, 174 (1959).

5 W. W. McCormick, Laboratory Experiments in Physics (MacMillan
Co., N. Y., 1966).

6 Prof. B. Stewart of the MSU Mathematics Department first
showed us that for the film plane vertical, the angle on the film will be
the same as the true angle of the cone provided h1/h2=P/(P*—RH)12,

7 Bausch and Lomb 7 X measuring magnifier with protractor scale.

8 F, Wunderlich, Am. J. Phys. 34, 1199 (1966).
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The thermodynamic square! provides a convenient
reminder of the Maxwell relations, which are available for
transforming partial derivatives in thermodynamics. Any
given square, however, deals only with two thermody-
namic degrees of freedom.

When there are three degrees of freedom, one may
draw three squares, one for each pair of degrees of freedom.
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There is, however, a single figure, namely the octahedron,
which can incorporate all 12 Maxwell relations in a
natural and convenient manner. For example, suppose
that the differential of the energy is given by the expression

AU =TdS8—pdV +-Hdm
and that the differentials of the seven other potentials are

AU =TdS —pdV —mdH,
dE=TdS+Vdp-Hdm,

dE' =TdS+Vdp—mdH,
dF = —8dT —pdV +Hdm,

dF' = —8dT —pdV —mdH,
dG=—8dT+Vdp-+Hdm,

d@ = —8dT+Vdp ~mdH.

Then the associated thermodynamic octahedron is as
shown in Fig. 1.

To construct the octahedron, one first assigns the
variables to vertices so that conjugate variables occupy
opposite vertices. One then assigns each potential to that
face which is bounded by the three variables on which it
depends. Each variable in the figure is assigned the sign
which it bears in the above equations (i.e., in those in
which it does not occur as a differential).

One may note that the octahedron contains three
squares and that these are the three thermodynamic
squares alluded to above. The Maxwell relations may be
read off in the usual manner; for instance

amn/aS |g=—0T/4H |g,

where on both sides of the equation we also hold either
V or p constant (depending on whether we assume the
Maxwell relation to bhave arisen from differentiation of
U’ or of E').

1
+

Fia. 1. Thermodynamic cctahedron.

1 H. B. Callen, Thermodynamics {(John Wiley & Sons, Inc., New York,
1960}, pp. 119-121.
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Koestler and Smith,! extending the work of Borneas,?
attempted recently at a generalization of classical Hamil-
tonian mechanics, based on a Lagrangian

L qi v+ e, qulm, <o qz®)
(1)
k=1,2, -«e,r m=0,1, «++, 5,
which is dependent on the time, the generalized coordinates
qr(t) and their higher derivatives ¢z (¢).

The first-cited authors stress repeatedly “the lack of a
fundamental definition relating canonically conjugate co-
ordinates and momenta for this generalized mechanies.”
In their work “it appears impossible to define such co-
ordinates and momenta in a general sense.”

These statements contradict the fact that a consistent
theory of a generalized mechanics was fully developed at
early as 1848 by Ostrogradsky.? A very convenient way to
realize which quantities should be considered as canonically
conjugate follows from the variation of the action function,
including the variation of the end points. Indeed, after
successive integrations, the latter ean be put in the form

'B 'B T s=1
8 / Lit= / pr8qdt+ 20 2 [pemsqr™ T, (2)
A A

k=1 m=0

which indicates that the rs independent variables

—m— ; k=1,2, ««e,r
s—m—1 9V aL 7 4 b
g

pm= 2 (1) i
par o) BT 0,1, eee, s—1

are the momenta conjugate to the rs coordinates qm = q; ™,
Extending the notation for m= —1, the r Euler equations
can be written:

pit= Z (—08/08)i (aL/oqi?) =0

=0

k=1,2, -+, 7. (4)

The reduction of the Euler equations to a linear Hamil-
tonian system of order 2rs can befound, e.g., in the standard
treatise of Whittaker,* where the labeling gy =qiim,
Pi"=Prim places all the generalized coordinates as well as
the generalized momenta on the same footing. From this it
is obvious that all the techniques of the Hamiltonian
theory can be applied in a phase space of 2rs dimensions.
In particular, the Poisson brackets are

T

[u, v]= Z i (_au_ﬂ _ ﬂ.ﬂ) (5)

k=1 m—0 \OQ¥™ Opx™  Opi™ g™

The treatment of Koestler and Smith is induced by an
inadequate labeling of the canonical variables, resulting in



