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Families of Thermodynamic Equations. II. The Case of Eight Characteristic Functions 
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Department of Chemistry, Stanford University, Stanford, California 94305 

(Received 18 February 1971; revised paper received 11 November 1971) 

The geometrical methods of Koenig and of Prins for resolving into families a certain class of thermo­
dynamic equations involving four characteristic functions, are extended to the next higher case, of eight 
characteristic functions. The extension consists of operations upon a regular octahedron analogous to 
those upon a square ("the thermodynamic square") in the former case. In the present case, the number 
of distinct equations in a family may be 48,24, 12,8,6,3, 1. Some examples of physical interest are described. 

INTRODUCTION 

In 1935 the present author published in this journal 
a method for resolving an important class of thermo­
dynamic equations into families.1 This method consists 
in writing any equation of the class in a so-called "stand­
ard form" (a device for generating the correct algebraic 
signs) and thereupon transforming it by the elements 
of a certain substitution group of order 8, derivable 
from geometrical operations upon a square. The class 
of equations thus resolvable pertains to a single phase 
of k~ 1 components in equilibrium, and consists of all 
the equations deducible from the familiar equations2 

variables, and loses sight of the geometrical and group­
theoretical aspects that have concerned the other au­
thors in the field and will concern us here. 

Buckley5 in 1944 contributed a derivation, based in 
part on Lie's theory of contact transformations, of the 
substitution group discovered by Koenig. 1 

Hayes6 in 1946 enlarged the picture by showing that 
the families found by Koenig can be generated by a 
certain group of 32 substitutions, and moreover with­
out recourse to the above-mentioned standard form. 
This is possible through the fact that Hayes's 32 sub­
stitutions are not limited, as are Koenig's 8, to pure 
permutations, but, on the contrary, allow changes of 
sign. A=U-TS, 

G=U-TS+PV, 

H=U+PV, 

In 1947 Prins/ without knowledge of the previous 
work just reviewed,ll rediscovered Hayes's group of 32 

(1) substitutions, and listed a subset of 8 (not a group) 
k which generates Koenig's families without recourse to 

dU=TdS-PdV+ L J.l.idni (2) the standard form. In a further paper, of 1948, Prins,8 
i=1 now with knowledge of Koenig's and McKay's work 

by mathematical operations, in conjunction with only (but apparently not of Hayes's), derived his subset of 
the assumption that of the 2k+8 variables appearing 8 substitutions by geometrical operations upon a square 
in (1) and (2), any k+2 may be taken as independent, similar to that put forward by Koenig.12 Hereby the 
that fulfill the following two conditions: The set of correct signs are generated by requiring the "extensive 
k+2 may not (i) include a set whose members are variables V and S" (respectively attached to two 
interrelated through (1) (e.g., A, U,T,S;orU,A,G,H; adjacent vertices of the square) to change sign13 in 
etc.); (ii) be of the type A, B, J.l.i, where A and B are crossing the line connecting the midpoints of the two 
respectively members of the pairs T, Sand P, V. 3 (opposite) sides belonging initially to U and G and 

The subject thus initiated has been further developed remaining fixed as the square is rotated. We shall refer 
by, chiefly, McKay,4 Buckley,5 Hayes,6 Prins/·8 and to this derivation as the "Prins method." 
Callen.9 To set the present paper in proper perspective Callen9 in his text of 1960 introduced the term 
we shall summarize the contributions of these authors. "thermodynamic square" for a diagram equivalent to 
For this purpose it will be convenient to note that of Koenig's,14 and pointed out that such diagrams are 
the four characteristic functions in (1) and (2) (i.e., not limited to the four characteristic functions U, A, 
U, A, G, H) any three (as here A, G, H) are the G, H with the associated conjugate pairs T, S, and 
Legendre transforms-constructed from the two conju- P, V, but are indeed applicable to any four character­
gate pairs of variables T, S, and P, V-of the remain- istic functions whatever, linked through Legendre trans­
ing fourth (here U).IO formations constructed from two conjugate pairs of 

McKay4 in 1935 treated, for the one-phase system variables. Among Callen's examples of this extension 
mentioned above, the general case in which, in addition are cases pertaining to elasticity and to magnetic and 
to the pairs T, S, and P, V, one or more of the pairs electric fields. 
J.l.i, ni (i=l···k) may enter into the Legendre trans- The object of the present paper is to show that the 
formations acting upon U. The number of character- geometrical methods of Koenig and Prins for four 
istic functions then arising is 22+n, where n is the num- characteristic functions linked through two conjugate 
ber of the pairs J.l.i, ni so entering (whence O~n~k). pairs of variables can be extended to the next higher 
McKay's method depends upon a generalized notation case, namely that of eight characteristic functions linked 
requiring distinction between extensive and intensive through three conjugate pairs. The extension comes 
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about through operations upon a regular octahedron 
analogous to those upon a square in the previous case. 
The feasibility of this extension was pointed out by 
the present author in 1937.15 Its value lies less in the 
technique it supplies for generating formulas than in 
its revelation of "the symmetry of the equations of 
thermodynamics, a keen sense of which is helpful to 
any student of the sUbject."16 

We shall treat in detail not the most general case of 
eight characteristic functions, but only what we shall 
call the "leading case." This will be recognized as the 
nearest analogue of the familiar case of the four char­
acteristic functions U, A, G, H, and to include the 
physically most interesting cases of eight characteristic 
functions. To show that our treatment is easily ex­
tended to other cases we shall do it for the set of eight 
consisting of the entropy S and its seven Legendre 
transforms (Massieu-type functions) derivable from 
the leading case. 

THE LEADING CASE 

Definition and Examples 

By the "leading case" we shall mean the class of 
cases of eight characteristic functions for which two 
of the associated three conjugate pairs of variables are 
T, S, and P, V, and the third consists (like the two 
mentioned) of one extensive and one intensive variable, 
and beyond this is determined by the nature of the 
class member. This third pair we shall denote in gen­
eral by Y, X. It will be expedient to assign these letters 
in a particular way, as follows. We note that of the 
Gibbsian equations for the eight characteristic func­
tions, four will contain a term of the form ± Y dX and 
the other four a term of the form TXdY. We shall 
choose Y and X such that these terms in fact appear 
as +YdX and -XdY. This choice still permits either 
of the two variables Y, X to be the extensive one, and 
we shall see examples of both kinds shortly. 

Of the eight characteristic functions, any seven are, 
of course, the Legendre transforms-constructed from 
the three conjugate pairs mentioned-of the remaining 
eighth. As this eighth it will be expedient to choose the 
particular one whose total differential is given by 
TdS - PdV + Y dX + LilLidni, and thereupon to refer to 
it as the "primitive" characteristic function. We shall 
see from examples that this primitive characteristic 
function usually turns out to be the energy of the sys­
tem (as one might expect), but not always. If it is 
the energy, we shall denote this (as before) by U and 
so shall have the Gibbsian equation 

dU=TdS-PdV+YdX+ LlLidni, 
i 

(3) 

where in the last term i runs from 1 to k save when the 
pair Y, X is taken to be ILl, n1, in which case, if k> 1, 
we shall have i=2·· ·k. And hereupon we shall denote 
the seven characteristic functions based on U by A, 

G, H, U', A', G', H' and define these according to 

U'=U-YX, 

A=U-TS, 

G=U-TS+PV, 

H=U+PV, 

A'=A-YX, 

G'=G-YX, 

H'=H-YX. (4) 

If on the other hand the primitive characteristic func­
tion is not the energy, we shall denote that function 
by U* and the characteristic functions based on it by 
A *, G*, H*, U*', etc. And then we shall have equations 
derivable from (3) and (4) by adding asterisks. 

The class of equations resolvable into families by 
the methods to be set forth consists of all the equations 
deducible from Eqs. (3) and (4)-or from their ana­
logues in U*, etc.-by mathematical operations, in 
conjunction with only the assumption that of the 
2k+ 14 variables involved (or 2k+ 12 in the special 
case that Y, X is ILl, nl; see Example 4 below), any 
k+3 . (or k+2) may be taken as independent, that 
fulfill the following two conditions: the set of k+3 
(or k+2) may not (i) include a set whose members 
are in terrela ted through (4); (ii) be of the type A, B, 
C, lLi where A, B, C are respectively members of the 
three pairs T, S; P, V; Y, X. The function of condition 
(ii) is to exclude the sets T, P, Y, ILi and T, P, X, lLi 
from use as independent variables. This is necessary 
because, according as Y or X is intensive, independent 
variation of T, P, Y, lLi or T, P, X, lLi is impossible 
physically, as may be seen from the Gibbs-Duhem 
equation implied by (3), which, if Y is intensive reads 

SdT- VdP+XdY+ L nidlLi=O (5) 
i 

and if X is intensive, has -YdX in place of +XdY. 
We shall now illustrate the leading case by four ex­

amples of physical interest. 

Example 1 

The system of interest consists of two fluid phases 
and a plane interface formed by their contact, all in 
equilibrium. The energy U of this system is subject to 
a Gibbsian equation which reads 

dU= TdS-PdV+udfl+ L IL;dni' (6) 
i 

where u and Q denote, respectively, the tension, and 
the area of the interface, and the other letters on the 
right refer (like U) to the entire system. Eq. (6) is a 
special case of (3) with 

Y=u, X=fl. (7) 

Hence, U is the primitive member of a set of eight 
characteristic functions of which the seven others are 
obtained by inserting (7) into (4). Note that here X is 
extensive. 
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Example 2 

The system of interest consists of a homogeneous 
portion of a dielectric fluid a in equilibrium, and ar­
ranged as follows (i) a lies between the plates of a 
plane electrostatic condenser of variable charge, and 
of plate area very great compared with the plate sepa­
ration, which are both fixed; (ii) a touches both plates; 
and that part of the surface of a not touching either 
plate-call this the "free surface" of a-is normal to 
both plates and relatively distant from their rims· 
(iii) between the plates all the space not filled with ~ 
has the permittivity of empty space; (iv) the volume V 
of a can be varied only by moving the free surface of a. 
Under these constraints the electric field strength has 
the same value B at all points between the plates, 
while the electric displacement has the value ~B or f:oB 

according as the point (between the plates) lies inside 
or outside of a-where ~ and f:o denote the permiUiv­
ities of a and empty space respectively. The energy 
U of this system is subject to a Gibbsian equation 
which reads 

dU=TdS-PdV+Jd'J)+ L,/-lidni. (8) 
i 

In this equation, 'J) denotes the electric displacement in 
a (equal to ~B as just noted); J is defined by 

J=BV/411", 

and P is a "pressure" defined by 

P= Pl)a-B'J)/47r+f:oB2/811", 

(9) 

(10) 

where P pa denotes the force per unit area on the free 
surface of a.17 Eq. (8) is a special case of (3) with 

Y=J, X='J). (11) 

Hence, U is the primitive member of a set of eight 
characteristic functions of which the seven others are 
obtained by inserting (11) into (4). Note that here X 
is intensive. But there is a further possibility. Obviously 
useful would be a set of characteristic functions for 
which, in the conjugate pair P, V, the member P 
would be simply Ppa rather than the quantity defined 
by (10). It turns out that the primitive member U* of 
such a set is defined by 

U*= U-f:oB2V /811". 

For from (12), (8), (9), and (10) we find 

dU*= TdS-PdV+BdI+ L, /-lidni, 
i 

where 

(12) 

(13) 

P=P1JU , (14) 

1= ('J)V-f:oBV)/411"= (~-f:o)J. (1S) 

And so, the seven remaining characteristic functions 
are obtained by inserting 

Y=B, X=I, (16) 

into the Eqs. (4) taken with asterisks. Note that here 
X is extensive. 

Example 3 

The system of interest consists of a homogeneous 
portion of fluid a in equilibrium, and arranged as fol­
lows (i) a forms a cylindrical core within a uniformly 
wound solenoid of variable current, and of length very 
great compared to the cross section, which are both 
fixed; (ii) the cross section of a is smaller than that of 
the solenoid; (iii) within the solenoid, all the space not 
filled by a has the permeability of empty space; (iv) 
the volume of a can be varied only by moving the 
mantel of its (cylindrical) surface normal to itself. 
Under these constraints the magnetic field strength 
has the same value X at all points within the solenoid, 
while the magnetic induction has the value 11X or 110JC 
according as the point (within the solenoid) lies inside 
or outside of a-where 11 and 110 denote the permeabil­
ities of a and of empty space respectively (we use 11 
instead of the more customary J.I because we use /-Ii for 
chemical potential). This system is the magnetic ana­
logue of the electrostatic system of Example 2, and is 
subject to equations obtainable from (8) to (16) by 
replacing B, 'J), ~, ~o by X, 03, 11, 11o-where 03 denotes 
the magnetic induction in a (equal to 11X as just noted), 
and Ppa now denotes the force per unit area on the 
cylinder-mantel of a. And so we have again two sets of 
eight characteristic functions: U, A, etc. and U*, 
A*, etc.18 

Example 4 

The system of interest consists of a single phase in 
equilibrium, just as in the case of the four characteristic 
functions in Eqs. (1) and (2). But now we transcribe 
(2) to the form 

dU= TdS-PdV+/-Ildnl+ L, J.lidni (17) 
i 

with i running from 2 to k-and so indicate that we 
mean to have the conjugate pair /-II, nl enter into the 
Legendre transformations upon U. Then (17) IS a 
special case of (3) with 

Y=/-II, (18) 

Hence, we have eight characteristic functions consist­
ing of U and the seven obtained by inserting (18) into 
(4). Note that here X is extensive. 

The Thermodynamic Octahedron 

Figure 1 shows the octahedron we shall use for the 
present leading case. We shall call it the "thermo­
dynamic octahedron," in analogy to the term "thermo­
dynamic square" mentioned above. The six vertices of 
the octahedron are assigned to the six variables T, S, 
P, V, Y, X in such wise that the two variables, respec­
tively, at the ends of each diagonal, are conjugate. 
Thereupon the eight faces are assigned to the eight 
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characteristic functions in such wise that each of the 
latter is framed by the variables "natural" to it; that 
is, when the primitive function is U we assign the faces 

SVX to U, SVY to U', 

VTX to A, 

TPXtoG, 

PSX to H, 

VTY to A', 

TPYtoG', 

PSY to H', (19) 

and when the primitive function is U* we assign the 
faces similarly to U*, A*, etc. This labeling is indi­
cated in Fig. 1 by the eight arrows. The center of the 
octahedron is assigned to the 2k variables (or 2k-2 
for Example 4 above) Jl.i, ni. The hexagon within the 
octahedron indicates the plane which passes through 
the midpoints of the edges SV, VX, XT, TP, PY, YS, 
and so, cuts the octahedron into two congruent halves. 
We shall call this plane the "Prins boundary" because it 
constitutes the extension to the thermodynamic octa­
hedron of the line introduced by Prins as described 
above to obtain the correct signs from the thermo­
dynamic square. Note that on removing the diagonal 
YX froP1. Fig. 1, the octahedron and its Prins boundary 
collapse to give the square and line just mentioned. 

From the thermodynamic octahedron we shall now 
derive first the substitutions of the Prins type,s and 
then those of the Koenig type. l We adopt this order 
because the latter substitutions are briefly describable 
in terms of the former, but not vice versa. 

Extension of the Prins Method 

In Fig. 1, disregard the Prins boundary until further 
notice, and suppose all the letters to be rigidly attached 
to their respective parts (vertices, faces, center) of the 
octahedron. Consider then all the distinct figures gener­
ated from Fig. 1 by rotation, and coinciding with it in 
respect of vertices (and so of faces and center) but not 
of all the attached letters. The number of figures so 
derivable from Fig. 1 is evidently 23. Next, generate 
24 further figures by SUbjecting all of the 24 now on 
hand (Fig. 1 and the 23 derived from it by rotation) 
to reflection in one and the same plane normal to one 
of the diagonals of the octahedron in Fig. 1, e.g., a plane 
normal to the diagonal VP. Hereupon modify the 48 
figures now on hand by using the Prins boundary as 
follows: Require the Prins boundary not to take part 
in the rotations and reflections mentioned, but rather 
to lie, in each of the 47 figures generated, parallel to 
the Prins boundary in Fig. 1; then in each figure either 
leave each of the three letters S, P, X with an implicit 
plus sign (as in Fig. 1), or give it a minus sign, accord­
ing as the letter lies, in that figure, on the same side of 
the Prins boundary as in Fig. 1, or on the opposite 
side. For example, in the figure obtained by rotating 
Fig. 1 about the diagonal XY clockwise by 90°, the 
three letters will read -S, P, X; and in the figure ob­
tained by reflecting Fig. 1 in a plane normal to the 

FIG. 1. "Thermo­
dynamic octahedron" 
with "Prins boundary," 
to generate substitu­
tions appropriate to 
eight characteristic 
functions. 

s 

v 

T 

p 

diagonal VP, the three letters will read S, -P, X. 
Finally, generate a set of 48 substitutions by super­
posing upon Fig. 1, in turn, each of the 48 figures as 
they now stand. The order in which the figures are 
taken is of course immaterial. We have chosen an order 
which produces regularities in Table 1. This table 
gives substitution no. n (n= 1·· ·48) as the substitu­
tion of Row 1 by Row n. It applies to the usual case 
that the primitive characteristic function is U. If that 
function is U* the first eight columns will have aster­
isks. 

Any equation based, as above described, on Eqs. (3) 
and (4), when transformed by the 48 substitutions of 
Table I, yields the corresponding family of equations. 
Four further features of the Prins method as here ex­
tended deserve mention. 

1. A substitution given by two rows of Table I of 
which neither is the first (corresponding to super­
position of two figures both different from Fig. 1) may 
be one of the 48 substitutions in question (e.g., Row 
2 by Row 3 gives Row 1 by Row 2) or may not be 
(e.g., Row 3 by Row 4; but we shall see shortly that 
such substitutions generate correct family members). 
This implies that the 48 substitutions in question do 
not form a group-a feature in which they resemble 
Prins's 8 substitutions for the case of 4 characteristic 
functions. But, as in the latter case, this aesthetic lack 
is compensated by the practical advantage of direct 
applicability. 

2. In using the thermodynamic octahedron to ob­
tain substitutions of the Prins type we are not re­
stricted to taking Fig. 1 as that upon which the 48 
figures are to be superposed: We may on the contrary 
replace Fig. 1 for this purpose by any of the other 47. 
This means that if we rearrange Table I so that each 
of its Rows 2 to 48 becomes in turn the first row, the 
47 further sets of substitutions so defined, though not 
identical with those of Table I, will be valid in that 
they generate the same families. 

3. We are not restricted to the above choice of S, 
P, X for the variables undergoing change of sign on 
crossing the Prins boundary (d. Ref. 13). With the 
latter located as in Fig. 1 any of the other seven triples 
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Row 
No. 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

17 
18 
19 
20 

21 
22 
23 
24 

25 
26 
27 
28 

29 
30 
31 
32 

33 
34 
35 
36 

37 
38 
39 
40 

41 
42 
43 
44 

45 
46 
47 
48 

U A 
H U 
G H 
A G 

U' A' 
U U' 
A U 
A' A 

H' U' 
H H' 
U H 
U' U 

G' A' 
H' G' 
U' H' 
A' U' 

G G' 
H G 
H' H 
G' H' 

A A' 
G A 
G' G 
A' G' 

A G 
A' A 
0' A' 
G G' 

G H 
G' G 
Il' G' 
Il H' 

G' Il' 
A' G' 
U' A' 
H' U' 

H' Il 
U' H' 
U U' 
Il U 

U' U 
A' U' 
A A' 
U A 

U H 
A U 
G A 
H G 

G H 
A G 
U A 
H U 

A U 
A' A 
U' A' 
U U' 

U H 
U' U 
H' U' 
H H' 

U' H' 
A' U' 
G' A' 
H' G' 

H' H 
G' H' 
G G' 
H G 

G' G 
A' G' 
A A' 
G A 

G' A' 
G G' 
A G 
A' A 

H' G' 
H H' 
G H 
G' G 

U' A' 
H' U' 
G' H' 
A' G' 

U U' 
H U 
H' H 
U' H' 

A A' 
U A 
U' U 
A' U' 

G A 
H G 
U H 
A U 

F. O. KOENIG 

TABLE I. Substitutions of the Prins type for the leading case. 

H' G' A' U' 
G' A' U' H' 
A' U' H' G' 
U' H' G' A' 

H G G' H' 
G G' H' H 
G' H' H G 
H' H G G' 

G A A' G' 
A A' G' G 
A' G' G A 
G' G A A' 

H U A G 
U A G Il 
A G Il U 
G I1 U A 

U U' A' A 
U' A' A U 
A' A U U' 
A U U' A' 

II Il' U' U 
H' U' U Il 
U' U Il H' 
U H Il' U' 

U' H' H U 
Il' Il U U' 
H U U' H' 
U U' H' H 

A' U' U A 
U' U A A' 
U A A' U' 
A A' U' U 

A U H G 
U H G A 
H G A U 
G A U H 

A' A G G' 
A G G' A' 
G G' A' A 
G' A' A G 

G' G H Il' 
G Il Il' G' 
H Il' G' G 
H' G' G H 

A' G' H' U' 
G' H' U' A' 
H' U' A' G' 
U' A' G' H' 

s 
P 
T 
V 

s 
X 
T 
Y 

p 

X 
V 
Y 

p 

s 
V 
T 

X 
S 
Y 
T 

X 
P 
Y 
V 

V 
Y 
P 
X 

T 
Y 
S 
X 

T 
V 
S 
P 

y 

V 
X 
P 

y 
T 
X 
S 

V 
T 
P 
S 

V 
-s 
-p 

T 

y 

-s 
-X 

T 

y 
-p 
-x 

V 

T 
-p 
-s 

V 

T 
-x 
-s 

y 

V 
-x 
-p 

y 

-x 
V 
Y 

-p 

-x 
T 
Y 

-s 
-p 

T 
V 

-s 
-p 

y 

V 
-x 

-s 
y 

T 
-x 

-s 
V 
T 

-p 

x 
X 
X 
X 

V 
V 
V 
V 

s 
s 
s 
s 

y 
y 
y 
y 

p 
p 
p 
p 

T 
T 
T 
T 

T 
T 
T 
T 

p 
p 
p 
p 

y 
y 
y 
y 

s 
s 
s 
s 

V 
V 
V 
V 

X 
X 
X 
X 

T 
V 

-s 
-p 

T 
Y 

-s 
-X 

V 
Y 

-p 
-X 

V 
T 

-p 
-s 

y 
T 

-X 
-s 

y 

V 
-X 
-p 

-p 
-X 

V 
Y 

-s 
-X 

T 
Y 

-s 
-p 

T 
V 

-X 
-p 

y 

V 

-X 
-s 

y 
T 

-p 
-s 

V 
T 

P 
T 
V 
S 

X 
T 
Y 
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given in (19) will do as well, i.e., produce a valid set of 
substitutions. It will be expedient to call any triple 
selected for change of sign the "active triple." 

4. The Prins boundary need not be restricted to the 
choice shown in Fig. 1. Any of the three analogous 
hexagons will do as well, provided we observe the 
following rule for the active triple: According as all 
three variables fall (through rotation andj or reflection 
of the octahedron) on one or on the other side of the 
Prins boundary, they have the signs possessed by the 
corresponding terms in the two Gibbsian equations in 
which all three appear respectively as differentials or 
as derivatives (i.e., coefficients of the differentials of 
their respective conjugates).19 Note that under the 
(implicit) positive signs which the variables S, V, X, 
T, P, Y have in Fig. 1, this rule is obeyed: Thus the 
two possibilities S, P, X and -S, -P, -X required 
by the rule correspond respectively to the. two Gibbsian 
equations 

dH = TdS + V dP+ Y dX + L /Lidni, 
i 

dA'= -SdT-PdV-XdY+ L /Lidni. 
i 

(20) 

And if, for example, in Fig. 1, we change the Prins 
boundary to that defined by the midpoints of VX and 
VT, the triple T, P, Y, if chosen as active, must appear 
in the resulting figure either as - T, P, Y or (equally 
well) as T, -P, - Y. 

Extension of the Koenig Method 

Modify Fig. 1 by deleting the Prins boundary and 
giving minus signs to the three letters S, P, X. From 
this modified Fig. 1, generate 47 other figures by rota­
tions and reflections the same as before. Then generate 
48 substitutions by superimposing upon the modified 
Fig. 1, in turn, each of the 48 figures as they now 
stand. The result may be embodied in a table derivable 
from Table I by giving S, P, and X minus signs through­
out. Any equation based as described on (3) and (4), 
when written in "standard form" and then transformed 
by the 48 substitutions in question, yields the cor­
responding family of equations. 

The necessary standard form is given by the follow­
ing three directives: (i) Define the operator r 1 by 
the condition 

rx1=r -x1=x, (21) 

where x stands for any of the symbols T, S, P, V, Y, X. 
(ii) If the equation to be transformed contains both 
T and S, then enclose either the letter T wherever it 
occurs, or the letter S wherever it occurs, in the oper­
ator r 1; but if the equation contains only T without 
S, or vice versa, leave that letter unchanged. (iii) Treat 
similarly each of the pairs P, V, and Y, X.20 After 
transformation of an equation in standard form has 
been carried out, removal of the symbols r 1 yields the 
equation in ordinary form. Two further features of the 
Koenig method as here extended deserve mention. 

1. In the table derived from Table I as just described, 
the substitution given by any two rows whatever (cor­
responding to the superposition of any two of the 48 
modified figures) is one of the 48 substitutions in ques­
tion. The latter therefore form a group, as do Koenig's 
eight substitutions for the case of four characteristic 
functions. But, as in the latter case, this aesthetically 
pleasing feature entails the practical inconvenience of 
the need for the standard form for transformation. 

2. Instead of giving minus signs to S, P, X in Fig. 1, 
we may give them to their conjugates T, V, Y. The 
resulting table is then to be derived from Table I by 
deleting the minus signs there present, and giving minus 
signs to T, V, Y throughout. 

The Number of Members in a Family 

The equations of greatest physical interest belong to 
families having 48, 24, 12, or 8 members. The remain­
ing possibilities for the number of members per family 
are 6, 4, 3, 1. We give one example of each kind: 

48 members: 

(a UjaVh,x,n; = T(apjaT)v,x,n,-P, (22) 

24 members: 

(aTjaV)s,X,n, = - (apjaS)v,X,n" (23) 

12 members: 
A= U-TS, (24) 

8 members: 

dU=TdS-PdV+YdX+ L/Lidni, (25) 
i 

6 members: 
U-A+G-H=O, (26) 

4 members: 

U-G'= TS-PV+YX, (27) 

3 members: 

U+A+G+H-H'-G'-A'- U'=4YX, (28) 

1 member: 

U-A+G-H+H'-G'+A'- U'=O. (29) 

THE MASSIEU CASE 

The foregoing treatment of the leading case is readily 
extended to other cases. For illustration we shall take 
the entropy S and its seven Legendre transforms de­
rivable from Eq. (3). We may call this the "Massieu 
case" corresponding to the leading case. 

We solve (3) for dS and note that the result can be 
written in the following form analogous to (3) 

dS= (ljT)dU- (Y/T)dX 

+ (PjT)dV+ L: (-/L;jT)dn;. (30) 
; 

Then in analogy to (4) we define the seven further 
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characteristic functions J2 , Ja, J4, J 1', J 2', Ja', Jl according to 

N=S- (PIT) V, 

J 2=S- C1IT)U, N=J2- (PIT) V, 

Ja=S- (lIT)U+(YIT)X, N=Ja- (PIT)V, 

J4=S+(YIT)X, U=J4-(PIT)V. (31) 

We consider then, the substitution 

G H H' G' A' U' S V X T P Y J.li 
(32) 

U X V liT YIT PIT 

From the analogy of (30) and (31) to (3) and (4) 
respectively, it follows that the substitution (32) will 
transform (i) any family of the leading case into a 
corresponding family for the Massieu case; (ii) the 
above Table I into a table of Prins type for the Massieu 
case; (iii) the table of Koenig type for the leading case 
(derived from Table I as described) into a table of 
that type for the Massieu case. The latter table is of 
course to be used in conjunction with a standard form 
based on (21) with x now standing for any of the 
symbols liT, U, YIT, X, PIT, V. 

CONCLUDING REMARK 

In accord with its intention declared at the outset, 
the foregoing discussion centers on the geometrical fea­
tures of the case of 8 characteristic functions. Beyond 
this, it suggests two questions concerning the associ­
ated group-theoretical features. (i) Since the original 
Prins substitutions are a subset of a group of 32 sub­
stitutions,6.7.8 of what group are the extended Prins 
substitutions given in our Table I a subset? (ii) Can 
the group-theoretical features exhibited by the cases of 
four and eight characteristic functions be extended to 
the higher cases (the corresponding geometrical fea­
tures would then occur in hyperspaces of n2::4 dimen­
sions), and if so, how? The author hopes that others 
more knowledgeable than he in group theory will 
answer these questions. 
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