FPRAS for Total Variation Distance in High Dimensions

Sutanu Gayen

(Based on a Joint Work with Arnab Bhattacharyya, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran)

Indian Institute Technology Kanpur

July 27, 2023

Sutanu Gayen (IITK)

FPRAS for TV Distance

High-Dimensional Statistical Models

Probabilistic graphical models

Deep generative models (GANs, VAEs, normalizing flows, etc)

Probabilistic Circuits

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

Distance Estimation/Testing

Central Question

Given two models \mathcal{M}_1 and \mathcal{M}_2 decide whether their distributions are close or far with respect to a certain distance function.

- Additive testing: dist $(\mathcal{M}_1, \mathcal{M}_2) \leq \varepsilon$ or $> 2\varepsilon$.
 - Equivalent to additive estimation: $(dist(\mathcal{M}_1, \mathcal{M}_2) \pm \varepsilon)$
- Multiplicative testing: dist $(\mathcal{M}_1, \mathcal{M}_2) \leq \delta$ or $> (1 + \varepsilon)\delta$ for some δ such as 1/2.
 - Equivalent to multiplicative estimation: $dist(\mathcal{M}_1, \mathcal{M}_2)(1 \pm \varepsilon)$
- Efficient algorithms: $poly(\varepsilon^{-1}, size(M_1), size(M_2))$ time, succeeds with 2/3 probability

Distance Functions

- Several different choices: *f*-divergences, integral probability metrics, Wasserstein distances
- *f*-divergences: $\mathbb{E}_{x \sim P}\left(f\left(\frac{Q(x)}{P(x)}\right)\right)$ for some function f(t) such that f(1) = 0.

distance	notation	$\mathbf{f}(\mathbf{t})$	formula			
total variation	$\mathrm{TV}(P,Q)$	$\frac{1}{2} t-1 $	$\frac{1}{2}\sum_{x\in\Omega} P(x)-Q(x) $			
squared Hellinger	$\mathrm{H}^2(P,Q)$	$\frac{1}{2}(\sqrt{t}-1)^2$	$\frac{1}{2}\sum_{x\in\Omega}\left(\sqrt{P(x)}-\sqrt{Q(x)}\right)^2$			
Kullback-Leibler	$\mathrm{KL}(P,Q)$	$\log t$	$\sum_{x \in \Omega} P(x) \log \frac{Q(x)}{P(x)}$			
chi-squared	$\chi^2(P,Q)$	$(t-1)^2$	$\sum_{x \in \Omega} \frac{(P(x) - Q(x))^2}{P(x)}$			

Sutanu Gayen (IITK)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Total Variation Distance: Properties

$$TV(P,Q) = \frac{1}{2} \sum_{x \in \Omega} |P(x) - Q(x)|$$

=
$$\max_{S \subseteq \Omega} [P(S) - Q(S)]$$

=
$$\max_{f:\Omega \to [0,1]} (\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{x \sim Q}[f(x)]]$$

- Only f-divergence which is also an Integral Probability Metric (satisfies triangle inequality)
- Max. difference between the probabilities of P and Q for any event
- 1-2* (min. error for distinguishing P and Q by a single sample)
- Minimum probability that $X \neq Y$ among all couplings (X, Y)between P and Q

- Goldreich, Sahai, and Vadhan (1999, 2003) showed that the TV distance is hard to additively approximate for distributions samplable by Boolean circuits.
- Canonne and Rubinfeld (2014) showed how to additively approximate the TV distance for models with efficient inference and sampling.

$$TV(P,Q) = \sum_{x \in \Omega: P(x) > Q(x)} (P(x) - Q(x)) = \mathbb{E}_{x \sim P} \left[\mathbb{1}_{P(x) > Q(x)} (P(x) - Q(x)) \right]$$

Sutanu Gaven (IITK)

FPRAS for TV Distance

RTA Workshop 2023

TV Distance of High-dimensional Models

$$\mathrm{TV}(P,Q) = \frac{1}{2} \sum_{x \in \Omega} |P(x) - Q(x)|$$

- A naive computation takes $O(\Omega)$ time, intractable over $\{0,1\}^n$
- Surprisingly, the complexity of TV distance computation between <u>high-dimensional probabilistic models</u> has not been studied before <u>our work</u>.
- Also, <u>multiplicative approximation</u> algorithms for TV distance has not been studied before.

Sutanu Gayen (IITK)

FPRAS for TV Distance

Notations and Preliminaries

Binary Product Distributions

Joint distribution of n independent coin flips, Ω = {0,1}ⁿ.
P = P₁ ⊗ P₂ ⊗ ... P_n.

• Inference and sampling is trivial.

• $P[x_1,\ldots,x_n] = P_1(x_1)\ldots P_n(x_n)$ where $P_i = \operatorname{Bern}(p_i)$

• Non-binary product distributions, $\Omega = [k]^n$.

김 국가 김 국가 그에요.

Notations and Preliminaries

Approximation algorithms

- FPTAS: fully polynomial time multiplicative approximation algorithm for computing TV(P,Q)
- FPRAS: fully polynomial time *randomized* multiplicative approximation algorithm for computing TV(P,Q)

FPRAS for TV Distance

Recent Development

- Hardness of Computing the TV Distance between Product Distributions and FPTAS for Special Cases.
 [Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, Vinodchandran; IJCAI 2023, arXiv:2206.07209]
- FPRAS for Computing the TV Distance between Product Distributions.

[Feng, Guo, Jerrum; SIAM SOSA 2023, TheoretiCS 2023, arXiv:2208.00740]

 Hardness and FPRAS for Computing the TV Distance between Bayesian Networks.
 [Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, Vinodchandran; 2023+]

Outline

Introduction

- Hardness of Computing the TV Distance between Product Distributions and FPTAS for Special Cases
 - Hardness
 - FPTAS for Distance to Uniformity for Binary Product Distributions
- FPRAS for Computing the TV Distance between Arbitrary Product 3 Distributions

4 Computing the TV Distance between Bayesian Networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hardness of Computing the TV Distance between Product Distributions and FPTAS for Special Cases

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

Hardness

It is #P-hard in general to exactly compute the TV distance between two binary product distributions P and Q.

FPTAS for special cases

We give an FPTAS for the TV distance between an arbitrary binary product distribution P and the uniform distribution Q = U.

ABA ABA BIS AQA

Hardness

Hardness

It is #P-hard in general to exactly compute the TV distance between two binary product distributions P and Q.

#SubsetProd

Given positive integers a_1, \ldots, a_n and T, find

$$\left| \left\{ S \subseteq [n] : \prod_{i \in S} a_i = T \right\} \right|.$$

(Known to be #P-hard)

$\# P {\rm MFE} {\rm Quals}$

Given a binary product distribution P with biases p_1, \ldots, p_n and a $0 \le v \le 1$, find

$$|\{x \in \{0,1\}^n : P(x) = v\}|.$$

$\# SubsetProd \leq \# PmFEquals \leq TV$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

< ∃⇒

• Given an instance of #SUBSETPROD: a_1, \ldots, a_n and T, define an instance of #PMFEQUALS as follows:

$$p_i = \frac{a_i}{a_i + 1}$$
 and $v = T \cdot \prod_i (1 - p_i)$

• Then,

$$\prod_{i \in S} a_i = T \iff P(1_S) = v$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

$\#PMFEQUALS \leq TV$

- Given p₁,..., p_n and v, find |{x ∈ {0,1}ⁿ : P(x) = v}|
 assume: v < 2⁻ⁿ (other case: v > 2⁻ⁿ)
- Define distributions \widehat{P} and \widehat{Q} on (n+1) bits as follows:

• Define distributions P' and Q' on (n+2) bits as follows:

• β is small depending on the granularity of precision

Claim

$$TV(P',Q') = TV(\hat{P},\hat{Q}) + |\{x \in \{0,1\}^n : P(x) = v\}| \cdot 2\beta v$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Approximation Algorithms for TV(P,Q)

- Zero vs non-zero testing is easy!
- Factor *n*-approximation is easy!
 - $\operatorname{TV}(P_i, Q_i) \leq \operatorname{TV}(P, Q) \leq \sum_i \operatorname{TV}(P_i, Q_i)$

A B +
 A B +
 A

FPTAS for Distance to Uniformity for Binary Product Distributions

We give an FPTAS that returns $(1 \pm \varepsilon) \text{TV}(P, U)$ where U is the uniform distribution over $\{0, 1\}^n$. w.l.o.g. $\frac{1}{2} < p_i < 1$ for every *i*.

$$\begin{aligned} \operatorname{TV}(P,U) &= \sum_{x \in \{0,1\}^n} \max\left(0, P(x) - 1/2^n\right) \\ &= \sum_{S \subseteq [n]} \max\left(0, \prod_{i \in S} p_i \prod_{i \notin S} (1-p_i) - 1/2^n\right) \\ &= \prod_{i \in [n]} (1-p_i) \sum_{S \subseteq [n]} \underbrace{\max\left(0, \prod_{i \in S} \frac{p_i}{1-p_i} - \prod_{i \in [n]} \frac{1}{2(1-p_i)}\right)}_{Y_S} \end{aligned}$$

ABA ABA BIS AQA

Approximating $\sum_{S \subseteq [n]} Y_S$

- $Y_S > 0$ lies in some range [m, M] for each S (depending on precision)
- We create $u = \log_{1+\varepsilon} \frac{M}{m}$ levels: $[m(1+\varepsilon)^j, m(1+\varepsilon)^{j+1}]$ depending on the contribution of Y_S .
- Let n_j be the count of sets $S \subseteq [n]$ which contributes in the range $[m, m(1 + \varepsilon)^j]$
 - $(n_{j+1} n_j)$ sets contribute in the range $[m(1 + \varepsilon)^j, m(1 + \varepsilon)^{j+1}]$
 - ► $\sum_{j} (n_{j+1} n_j) m (1 + \varepsilon)^j$ is a $(1 + \varepsilon)$ -factor approximation of $\sum_{S \subseteq [n]} Y_S$

ABA ABA BE AQA

Reorganization trick

$$\sum_{j} (n_{j+1} - n_j) m (1 + \varepsilon)^j = \sum_{j} (n_u - n_j) \left((1 + \varepsilon)^{j+1} - (1 + \varepsilon)^j \right)$$

It suffices to approximate $(n_u - n_j)!$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

Approximating $(n_u - n_j)$

•
$$n_u = 2^n, n_j = \#$$
 sets with $Y_S \le m(1 + \varepsilon)^j$.

• Therefore, $(n_u - n_j) = \#$ sets with $Y_S > m(1 + \varepsilon)^j > 0$

$$\left\{S \subseteq [n]: \prod_{i \in S} \frac{p_i}{1 - p_i} > \underbrace{m(1 + \varepsilon)^j + \prod_{i \in [n]} \frac{1}{2(1 - p_i)}}_{A}\right\}$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023 21 / 45

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Reduction to #KNAPSACK

• Define weights
$$w_i = \log \frac{p_i}{1-p_i} > 0$$
 for every $i \in [n]$.
• $\left\{ S : \prod_{i \in S} \frac{p_i}{1-p_i} > A \right\} = \left\{ S : \sum_{i \in S} w_i > \log A \right\}$
• $\left| \left\{ S \subseteq [n] : \sum_{i \in S} w_i > \log A \right\} \right| = \underbrace{\left| \left\{ T \subseteq [n] : \sum_{j \in T} w_j \le B \right\} \right|}_{\#\text{KNAPSACK}}$
• $T = [n] \setminus S$, $B = \sum_{i \in [n]} w_i - \log A$

[Gopalan, Klivans, Meka] [Stefanovic, Vempala, Vigoda] Use existing FPTAS for #KNAPSACK.

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

Extensions for Binary Product Distributions

- \bullet FPTAS when Q has constantly many different biases
- FPRAS when $p_i \geq \frac{1}{2}, q_i \leq p_i$ for every i

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

★ E ▶ ★ E ▶ E E P Q Q

FPRAS for Computing the TV Distance between Arbitrary Product Distributions

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

24 / 45

ELE NOR

Gives an FPRAS for computing the TV distance between any two product distributions P and Q. (could be non-binary but we focus on binary for simplicity).

Coupling interpretation of TV(P,Q)

A coupling between P and Q is a joint distribution (X, Y) such that $X \sim P$ and $Y \sim Q$.

$$TV(P,Q) = \min_{\text{couplings } (X,Y) \text{ between } P,Q} \Pr[X \neq Y]$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ■ ● ●

Optimal Coupling O Given TV(P,Q)

•
$$\operatorname{TV}(P,Q) = 1 - \sum_{w \in \Omega} \min(P(w), Q(w)) = \Pr_O(X \neq Y)$$

• Make sure,
$$\Pr_O[X = Y] = \sum_{w \in \Omega} \min(P(w), Q(w))$$

• define $\Pr_O[X = Y = w] = \min(P(w), Q(w))$

Optimal Coupling O

$$\begin{aligned} \Pr[X = x, Y = y] &= \min(P(w), Q(w)) & \text{(if } X = Y = w) \\ &= 0 & \text{(if } P(x) < Q(x) \text{ or } Q(y) < P(y)) \\ &= \frac{(P(x) - Q(x))(Q(y) - P(y))}{\text{TV}(P, Q)} & \text{(otherwise)} \end{aligned}$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▲ 표 ▶ ▲ 표 ▶ ▲ 표 ▶ ● ٩.00

- Computing $\sum_{w\in\Omega}\min\left(P(w),Q(w)\right)$ is hard for product distributions
- Is the coordinate wise optimal coupling C also optimal overall?
 - Let (X_i, Y_i) be the optimal coupling for (P_i, Q_i) . Is the coupling $C = ((X_1, \ldots, X_n), (Y_1, \ldots, Y_n))$ optimal?
 - ▶ If so, computing $\Pr_C(X = Y)$ is easy! Since $(X_i, Y_i) \perp (X_j, Y_j)$.
- No! Let us see an example.

Globally Optimal $(O) \neq$ Coordinate-wise Optimal (C)

$$(X_1, X_2) \sim P = \operatorname{Bern}\left(\frac{1}{2} + \delta\right) \otimes \operatorname{Bern}\left(\frac{1}{2} - \delta\right)$$

 $(Y_1, Y_2) \sim Q = \operatorname{Bern}\left(\frac{1}{2}\right) \otimes \operatorname{Bern}\left(\frac{1}{2}\right)$

$$C_{1} : \Pr[X_{1} = 0, Y_{1} = 0] = \frac{1}{2} - \delta \qquad C_{2} : \Pr[X_{2} = 0, Y_{2} = 0] = \frac{1}{2}$$
$$\Pr[X_{1} = 1, Y_{1} = 1] = \frac{1}{2} \qquad \qquad \Pr[X_{2} = 1, Y_{2} = 1] = \frac{1}{2} - \delta$$
$$\Pr[X_{1} = 0, Y_{1} = 1] = 0 \qquad \qquad \Pr[X_{2} = 0, Y_{2} = 1] = \delta$$
$$\Pr[X_{1} = 1, Y_{1} = 0] = \delta \qquad \qquad \Pr[X_{2} = 1, Y_{2} = 0] = 0$$

Sutanu Gaven (IITK)

FPRAS for TV Distance

RTA Workshop 2023 28 / 45

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三目目 のへで

Coordinate-wise Optimal Coupling $(C = C_1 \otimes C_2)$

X ₁	$\mathbf{X_2}$	Y ₁	\mathbf{Y}_{2}	Pr	X ₁	$\mathbf{X_2}$	\mathbf{Y}_1	\mathbf{Y}_{2}	Pr
0	0	0	0	$\frac{1}{2}\left(\frac{1}{2}-\delta\right)$	1	0	0	0	$\frac{\delta}{2}$
0	0	0	1	$\delta\left(\frac{1}{2}-\delta\right)$	1	0	0	1	δ^2
0	0	1	0	0	1	0	1	0	0
0	0	1	1	$\left(\frac{1}{2} - \delta\right)^2$	1	0	1	1	$\delta\left(\frac{1}{2}-\delta\right)$
0	1	0	0	0	1	1	0	0	$\frac{1}{4}$
0	1	0	1	0	1	1	0	1	$\frac{\delta}{2}$
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	$\frac{\frac{1}{2}\left(\frac{1}{2}-\delta\right)}{2}$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三目目 のへで

Overall Optimal Copling (O)

X ₁	X ₂	\mathbf{Y}_1	$\mathbf{Y_2}$	\Pr	\mathbf{X}_1	$\mathbf{X_2}$	\mathbf{Y}_1	\mathbf{Y}_{2}	Pr
0	0	0	0	$rac{1}{4} - \delta^2$	1	0	0	0	δ^2
0	0	0	1	0	1	0	0	1	$\delta(1-\delta)$
0	0	1	0	0	1	0	1	0	$\frac{1}{4}$
0	0	1	1	0	1	0	1	1	δ^2
0	1	0	0	0	1	1	0	0	0
0	1	0	1	$\left(\frac{1}{2} - \delta\right)^2$	1	1	0	1	0
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	$\frac{1}{4} - \delta^2$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

We will multiplicatively approximate the ratio: Pr_C[X≠Y]/Pr_C[X≠Y].
Pr_C [X ≠ Y] can be exactly computed.

$$\Pr_{C} [X \neq Y] = 1 - \Pr_{C} [X = Y]$$
$$= 1 - \prod_{i \in [n]} \Pr_{C_{i}} [X_{i} = Y_{i}]$$
$$= 1 - \prod_{i \in [n]} (1 - \operatorname{TV}(P_{i}, Q_{i}))$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

★ E ▶ ★ E ▶ E E P Q Q

31 / 45

A B +
 A B +
 A

Estimator

• Let Π be the distribution of $X \sim C \mid X \neq Y$. i.e. $\Pi(w) = \Pr_C [X = w \mid X \neq Y]$

• Let

$$f(w) := \frac{\Pr_O\left[X \neq Y \land X = w\right]}{\Pr_C\left[X \neq Y \land X = w\right]}$$

Claim

$$\mathbb{E}_{w \sim \Pi} \left[f(w) \right] = \frac{\Pr_O \left[X \neq Y \right]}{\Pr_C \left[X \neq Y \right]}$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\mathbb{E}_{w \sim \Pi} \left[f(w) \right] = \sum_{w \in \Omega} \Pr_C \left[X = w \mid X \neq Y \right] \cdot \frac{\Pr_O \left[X \neq Y \land X = w \right]}{\Pr_C \left[X \neq Y \land X = w \right]}$$
$$= \sum_{w \in \Omega} \frac{\Pr_C \left[X = w \land X \neq Y \right]}{\Pr_C \left[X \neq Y \right]} \cdot \frac{\Pr_O \left[X \neq Y \land X = w \right]}{\Pr_C \left[X \neq Y \land X = w \right]}$$
$$= \sum_{w \in \Omega} \frac{\Pr_O \left[X \neq Y \land X = w \right]}{\Pr_C \left[X \neq Y \right]}$$
$$= \frac{\Pr_O \left[X \neq Y \right]}{\Pr_C \left[X \neq Y \right]}$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

Properties of the Estimator

- Sampling $w \sim \Pi$ is efficient
- Computing f(w) is efficient

۲

 $0 \le f(w) \le 1$

$$\frac{1}{n} \le \mathbb{E}_{w \sim \Pi} \left[f(w) \right] \le 1$$

$$\Pi(w) = \Pr_{C} \left[X = w \mid X \neq Y \right]$$
$$f(w) := \frac{\Pr_{O} \left[X \neq Y \land X = w \right]}{\Pr_{C} \left[X \neq Y \land X = w \right]}$$
$$\mathbb{E}_{w \sim \Pi} \left[f(w) \right] = \frac{\Pr_{O} \left[X \neq Y \right]}{\Pr_{C} \left[X \neq Y \right]}$$

FPRAS using monte-carlo sampling.

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

A B K

1 = 1 - 1 - C

Computing the TV Distance between Bayesian Networks

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

ъ

≡ = ∽へで 35 / 45

- A joint distribution over X_1, \ldots, X_n that is a product of conditional probabilities (as opposed to marginal probabilities as in a product distribution)
- Defined with respect to a DAG G over [n]
- Notations:
 - $\Pi(i)$ = parents of node i
 - nde(i)= non-desecondants of node i
 - $\bullet X_S = \{X_i\}_{i \in S}$
 - ▶ $\max_i |\Pi(i)|$ is called the in-degree of the Bayes net

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = • • • • •

Bayesian Networks Factorization

$$\Pr[X_1, \dots, X_n] = \prod_{i \in [n]} \Pr[X_i \mid X_{\Pi(i)}]$$

• Any node X_i is independent of its non-desendants conditioned on its parents

$$X_i \bot X_{nde(i)} \mid X_{\Pi(i)}$$

$$\implies \Pr[X_i, X_{nde(i)} \mid X_{\Pi(i)}] = \Pr[X_i \mid X_{\Pi(i)}] \Pr[X_i \mid X_{nde(i)}]$$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

Image: A matrix

Example

 $\Pr[R, S, G] = \Pr[R] \Pr[S \mid R] \Pr[G \mid S, R]$

FPRAS for TV Distance

RTA Workshop 2023

A D > A D >

TV Approximation for Bayes Nets

Let $P[X_1, \ldots, X_n]$ and $Q[Y_1, \ldots, Y_n]$ be two Bayes nets over the same DAG G over [n]. Return:

 $d \in (1 \pm \varepsilon) \mathrm{TV}(P, Q)$

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

▲ Ξ ▶ < Ξ ▶ Ξ Ξ </p>

- Deciding $\mathrm{TV}(P,Q) = 0$ or not is NP-hard for Bayes nets of indegree 2
- We give an FPRAS for TV(P, Q) for Bayes nets of indegree 1 (tree distributions)
- More generally, FPRAS whenever inference is feasible (computing $\Pr[X_i] = 1$ is feasible e.g. fixed treewidth)

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = • • • • •

- Given a sat formula, create two Bayes nets P and Q = U such that TV(P, Q) counts the number of satisfying assignments
- The Bayes net mimicks the formula computation. Inputs are *n* random bits.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ●目目 のへの

A Coarse Multiplicative Approximation for Trees

 $\mathrm{TV}(P,Q)$

 $\leq \sum_{i \in [n]} \sum_{a \in 0, 1^{|\Pi(i)|}} \Pr_P[X_{\Pi(i)} = a] \operatorname{TV}(P[X_i \mid X_{\Pi_i} = a], Q[Y_i \mid Y_{\Pi_i} = a])$

$$\leq 2\sum_{i\in[n]} \mathrm{TV}(P[X_i, X_{\Pi(i)}], Q[Y_i, Y_{\Pi(i)}])$$

TV(P,Q) $\geq TV(P[X_i, X_{\Pi(i)}], Q[Y_i, Y_{\Pi(i)}])$

Therefore, $\max_i \text{TV}(P[X_i, X_{\Pi(i)}], Q[Y_i, Y_{\Pi(i)}])$ is a 2*n*-factor approximation.

Sutanu Gayen (IITK)

FPRAS for TV Distance

RTA Workshop 2023

42 / 45

★ ■ ▶ ★ ■ ▶ ■ ■ ■ • • • • • • •

Proof Sketch: FPRAS

- We give an estimator for $\frac{\Pr_O[X \neq Y]}{\Pr_C[X \neq Y]}$. Infer: $\Pr_C[X \neq Y]$
- Except now, C is not the product coupling
 - If we couple each factor individually, it need not be a valid coupling overall!
- C is a partial coupling, a joint distribution over (X, Y):
 - corresponding factors are still coupled:

$$\Pr[X_i = Y_i = w | X_{\Pi(i)} = a, Y_{\Pi(i)} = b] = \min\{\Pr[X_i = w | X_{\Pi(i)} = a], \Pr[Y_i = w | Y_{\Pi(i)} = b]\}$$

• Only $X \sim P$.

The 4 Required properties of [Feng, Guo, Jerrum] still goes through!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you!

Questions?

Sutanu Gayen (IITK)

FPRAS for TV Distance

-RTA Workshop 2023

-

44 / 45

1 = 990