FPRAS for Total Variation Distance in High Dimensions

Sutanu Gayen

(Based on a Joint Work with
Arnab Bhattacharyya, Kuldeep S. Meel, Dimitrios Myrisiotis, A.
Pavan, N. V. Vinodchandran)

Indian Institute Technology Kanpur

$$
\text { July 27, } 2023
$$

High-Dimensional Statistical Models

Probabilistic graphical models
Deep generative models (GANs, VAEs, normalizing flows, etc)

Probabilistic Circuits

Distance Estimation/Testing

Central Question

Given two models \mathcal{M}_{1} and \mathcal{M}_{2} decide whether their distributions are close or far with respect to a certain distance function.

- Additive testing: $\operatorname{dist}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) \leq \varepsilon$ or $>2 \varepsilon$.
- Equivalent to additive estimation: $\left(\operatorname{dist}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) \pm \varepsilon\right)$
- Multiplicative testing: $\operatorname{dist}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) \leq \delta$ or $>(1+\varepsilon) \delta$ for some δ such as $1 / 2$.
- Equivalent to multiplicative estimation: $\operatorname{dist}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right)(1 \pm \varepsilon)$
- Efficient algorithms: $\operatorname{poly}\left(\varepsilon^{-1}, \operatorname{size}\left(M_{1}\right)\right.$, size $\left.\left(M_{2}\right)\right)$ time, succeeds with $2 / 3$ probability

Distance Functions

- Several different choices: f-divergences, integral probability metrics, Wasserstein distances
- f-divergences: $\mathbb{E}_{x \sim P}\left(f\left(\frac{Q(x)}{P(x)}\right)\right)$ for some function $f(t)$ such that $f(1)=0$.

distance	notation	$\mathbf{f}(\mathbf{t})$	formula
total variation	$\operatorname{TV}(P, Q)$	$\frac{1}{2}\|t-1\|$	$\frac{1}{2} \sum_{x \in \Omega}\|P(x)-Q(x)\|$
squared Hellinger	$\mathrm{H}^{2}(P, Q)$	$\frac{1}{2}(\sqrt{t}-1)^{2}$	$\frac{1}{2} \sum_{x \in \Omega}(\sqrt{P(x)}-\sqrt{Q(x)})^{2}$
Kullback-Leibler	$\mathrm{KL}(P, Q)$	$\log t$	$\sum_{x \in \Omega} P(x) \log \frac{Q(x)}{P(x)}$
chi-squared	$\chi^{2}(P, Q)$	$(t-1)^{2}$	$\sum_{x \in \Omega} \frac{(P(x)-Q(x))^{2}}{P(x)}$

Total Variation Distance: Properties

$$
\begin{aligned}
\operatorname{TV}(P, Q) & =\frac{1}{2} \sum_{x \in \Omega}|P(x)-Q(x)| \\
& =\max _{S \subseteq \Omega}[P(S)-Q(S)] \\
& =\max _{f: \Omega \rightarrow[0,1]}\left(\mathbb{E}_{x \sim P}[f(x)]-\mathbb{E}_{x \sim Q}[f(x)]\right)
\end{aligned}
$$

- Only f-divergence which is also an Integral Probability Metric (satisfies triangle inequality)
- Max. difference between the probabilities of P and Q for any event
- $1-2 *$ (min. error for distinguishing P and Q by a single sample)
- Minimum probability that $X \neq Y$ among all couplings (X, Y) between P and Q

Prior Work

- Goldreich, Sahai, and Vadhan $(1999,2003)$ showed that the TV distance is hard to additively approximate for distributions samplable by Boolean circuits.
- Canonne and Rubinfeld (2014) showed how to additively approximate the TV distance for models with efficient inference and sampling.

$$
\mathrm{TV}(P, Q)=\sum_{x \in \Omega: P(x)>Q(x)}(P(x)-Q(x))=\mathbb{E}_{x \sim P}\left[1_{P(x)>Q(x)}(P(x)-Q(x))\right]
$$

TV Distance of High-dimensional Models

$$
\operatorname{TV}(P, Q)=\frac{1}{2} \sum_{x \in \Omega}|P(x)-Q(x)|
$$

- A naive computation takes $O(\Omega)$ time, intractable over $\{0,1\}^{n}$
- Surprisingly, the complexity of TV distance computation between high-dimensional probabilistic models has not been studied before our work.
- Also, multiplicative approximation algorithms for TV distance has not been studied before.

Notations and Preliminaries

Binary Product Distributions

- Joint distribution of n independent coin flips, $\Omega=\{0,1\}^{n}$.
- $P=P_{1} \otimes P_{2} \otimes \ldots P_{n}$.
- Inference and sampling is trivial.
- $P\left[x_{1}, \ldots, x_{n}\right]=P_{1}\left(x_{1}\right) \ldots P_{n}\left(x_{n}\right)$ where $P_{i}=\operatorname{Bern}\left(p_{i}\right)$
- Non-binary product distributions, $\Omega=[k]^{n}$.

Notations and Preliminaries

Approximation algorithms

- FPTAS: fully polynomial time multiplicative approximation algorithm for computing $\operatorname{TV}(P, Q)$
- FPRAS: fully polynomial time randomized multiplicative approximation algorithm for computing $\operatorname{TV}(P, Q)$

Recent Development

- Hardness of Computing the TV Distance between Product Distributions and FPTAS for Special Cases.
[Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, Vinodchandran; IJCAI 2023, arXiv:2206.07209]
- FPRAS for Computing the TV Distance between Product Distributions.
[Feng, Guo, Jerrum; SIAM SOSA 2023, TheoretiCS 2023, arXiv:2208.00740]
- Hardness and FPRAS for Computing the TV Distance between Bayesian Networks.
[Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, Vinodchandran; 2023+]

Outline

(1) Introduction
(2) Hardness of Computing the TV Distance between Product Distributions and FPTAS for Special Cases

- Hardness
- FPTAS for Distance to Uniformity for Binary Product Distributions
(3) FPRAS for Computing the TV Distance between Arbitrary Product Distributions

44 Computing the TV Distance between Bayesian Networks

Hardness of Computing the TV Distance between Product Distributions and FPTAS for Special Cases

Our Contribution

Hardness

It is \#P-hard in general to exactly compute the TV distance between two binary product distributions P and Q.

FPTAS for special cases

We give an FPTAS for the TV distance between an arbitrary binary product distribution P and the uniform distribution $Q=U$.

Hardness

Hardness

It is \#P-hard in general to exactly compute the TV distance between two binary product distributions P and Q.

\#SubsetProd

Given positive integers a_{1}, \ldots, a_{n} and T, find

$$
\left|\left\{S \subseteq[n]: \prod_{i \in S} a_{i}=T\right\}\right|
$$

(Known to be \#P-hard)

\#PmFEqUALS

Given a binary product distribution P with biases p_{1}, \ldots, p_{n} and a $0 \leq v \leq 1$, find

$$
\left|\left\{x \in\{0,1\}^{n}: P(x)=v\right\}\right| .
$$

$$
\# \text { SubsetProd } \leq \# \text { PMFEquals } \leq \text { TV }
$$

$\#$ SubsetProd $\leq \#$ PmfEQuals

- Given an instance of \#SubsetProd: a_{1}, \ldots, a_{n} and T, define an instance of \#PmFEquals as follows:

$$
p_{i}=\frac{a_{i}}{a_{i}+1} \quad \text { and } \quad v=T \cdot \prod_{i}\left(1-p_{i}\right)
$$

- Then,

$$
\prod_{i \in S} a_{i}=T \Longleftrightarrow P\left(1_{S}\right)=v
$$

$\#$ PMFEQUALS $\leq \mathrm{TV}$

- Given p_{1}, \ldots, p_{n} and v, find $\left|\left\{x \in\{0,1\}^{n}: P(x)=v\right\}\right|$
- assume: $v<2^{-n}$ (other case: $v \geq 2^{-n}$)
- Define distributions \widehat{P} and \widehat{Q} on $(n+1)$ bits as follows:
- $\widehat{p}_{i}=p_{i}$ for $i \in[n], \widehat{p}_{n+1}=1$
- $\widehat{q}_{i}=\frac{1}{2}$ for $i \in[n], \widehat{q}_{n+1}=v \cdot 2^{n}$ (other case: $1 /\left(v \cdot 2^{n}\right)$)
- Define distributions P^{\prime} and Q^{\prime} on $(n+2)$ bits as follows:
- $p_{i}^{\prime}=p_{i}$ for $i \in[n], p_{n+1}^{\prime}=1, p_{n+2}^{\prime}=\frac{1}{2}+\beta$
- $q_{i}^{\prime}=\frac{1}{2}$ for $i \in[n], q_{n+1}^{\prime}=v \cdot 2^{n}\left(\right.$ other case: $1 /\left(v \cdot 2^{n}\right)$), $q_{n+2}^{\prime}=\frac{1}{2}-\beta$
- β is small depending on the granularity of precision

Claim

$\operatorname{TV}\left(P^{\prime}, Q^{\prime}\right)=\operatorname{TV}(\widehat{P}, \widehat{Q})+\left|\left\{x \in\{0,1\}^{n}: P(x)=v\right\}\right| \cdot 2 \beta v$

Approximation Algorithms for $\mathrm{TV}(P, Q)$

- Zero vs non-zero testing is easy!
- Factor n-approximation is easy!
- $\operatorname{TV}\left(P_{i}, Q_{i}\right) \leq \operatorname{TV}(P, Q) \leq \sum_{i} \operatorname{TV}\left(P_{i}, Q_{i}\right)$

FPTAS for Distance to Uniformity for Binary Product

 DistributionsWe give an FPTAS that returns $(1 \pm \varepsilon) \operatorname{TV}(P, U)$ where U is the uniform distribution over $\{0,1\}^{n}$. w.l.o.g. $\frac{1}{2}<p_{i}<1$ for every i.

$$
\begin{aligned}
\operatorname{TV}(P, U) & =\sum_{x \in\{0,1\}^{n}} \max \left(0, P(x)-1 / 2^{n}\right) \\
& =\sum_{S \subseteq[n]} \max \left(0, \prod_{i \in S} p_{i} \prod_{i \notin S}\left(1-p_{i}\right)-1 / 2^{n}\right) \\
& =\prod_{i \in[n]}\left(1-p_{i}\right) \sum_{S \subseteq[n]} \underbrace{\max \left(0, \prod_{i \in S} \frac{p_{i}}{1-p_{i}}-\prod_{i \in[n]} \frac{1}{2\left(1-p_{i}\right)}\right)}_{Y_{S}}
\end{aligned}
$$

Approximating $\sum_{S \subseteq[n]} Y_{S}$

- $Y_{S}>0$ lies in some range $[m, M]$ for each S (depending on precision)
- We create $u=\log _{1+\varepsilon} \frac{M}{m}$ levels: $\left[m(1+\varepsilon)^{j}, m(1+\varepsilon)^{j+1}\right]$ depending on the contribution of Y_{S}.
- Let n_{j} be the count of sets $S \subseteq[n]$ which contributes in the range $\left[m, m(1+\varepsilon)^{j}\right]$
- $\left(n_{j+1}-n_{j}\right)$ sets contribute in the range $\left[m(1+\varepsilon)^{j}, m(1+\varepsilon)^{j+1}\right]$
- $\sum_{j \subseteq[n]}\left(n_{j+1}-n_{j}\right) m(1+\varepsilon)^{j}$ is a $(1+\varepsilon)$-factor approximation of

Reorganization trick

$$
\sum_{j}\left(n_{j+1}-n_{j}\right) m(1+\varepsilon)^{j}=\sum_{j}\left(n_{u}-n_{j}\right)\left((1+\varepsilon)^{j+1}-(1+\varepsilon)^{j}\right)
$$

It suffices to approximate $\left(n_{u}-n_{j}\right)$!

Approximating $\left(n_{u}-n_{j}\right)$

- $n_{u}=2^{n}, n_{j}=\#$ sets with $Y_{S} \leq m(1+\varepsilon)^{j}$.
- Therefore, $\left(n_{u}-n_{j}\right)=\#$ sets with $Y_{S}>m(1+\varepsilon)^{j}>0$

$$
|\{S \subseteq[n]: \prod_{i \in S} \frac{p_{i}}{1-p_{i}}>\underbrace{m(1+\varepsilon)^{j}+\prod_{i \in[n]} \frac{1}{2\left(1-p_{i}\right)}}_{A}\}|
$$

Reduction to \#KnapSACK

- Define weights $w_{i}=\log \frac{p_{i}}{1-p_{i}}>0$ for every $i \in[n]$.
- $\left\{S: \prod_{i \in S} \frac{p_{i}}{1-p_{i}}>A\right\}=\left\{S: \sum_{i \in S} w_{i}>\log A\right\}$
- $\left|\left\{S \subseteq[n]: \sum_{i \in S} w_{i}>\log A\right\}\right|=\underbrace{\left|\left\{T \subseteq[n]: \sum_{j \in T} w_{j} \leq B\right\}\right|}_{\text {\#KNAPSACK }}$
- $T=[n] \backslash S, B=\sum_{i \in[n]} w_{i}-\log A$
[Gopalan, Klivans, Meka] [Stefanovic, Vempala, Vigoda]
Use existing FPTAS for \#KnapSack.

Extensions for Binary Product Distributions

- FPTAS when Q has constantly many different biases
- FPRAS when $p_{i} \geq \frac{1}{2}, q_{i} \leq p_{i}$ for every i

FPRAS for Computing the TV Distance between Arbitrary Product Distributions

[Feng, Guo, Jerrum]

Gives an FPRAS for computing the TV distance between any two product distributions P and Q. (could be non-binary but we focus on binary for simplicity).

Coupling interpretation of $\operatorname{TV}(P, Q)$
A coupling between P and Q is a joint distribution (X, Y) such that $X \sim P$ and $Y \sim Q$.

$$
\mathrm{TV}(P, Q)=\min _{\text {couplings }(X, Y) \text { between } P, Q} \operatorname{Pr}[X \neq Y]
$$

Optimal Coupling O Given $\operatorname{TV}(P, Q)$

- $\operatorname{TV}(P, Q)=1-\sum_{w \in \Omega} \min (P(w), Q(w))=\operatorname{Pr}_{O}(X \neq Y)$
- Make sure, $\operatorname{Pr}_{O}[X=Y]=\sum_{w \in \Omega} \min (P(w), Q(w))$
- define $\operatorname{Pr}_{O}[X=Y=w]=\min (P(w), Q(w))$

Optimal Coupling O

$$
\begin{aligned}
\operatorname{Pr}[X=x, Y=y] & =\min (P(w), Q(w)) \quad(\text { if } X=Y=w) \\
& =0 \quad(\text { if } P(x)<Q(x) \text { or } Q(y)<P(y)) \\
& =\frac{(P(x)-Q(x))(Q(y)-P(y))}{\operatorname{TV}(P, Q)} \quad \text { (otherwise) }
\end{aligned}
$$

Optimal Coupling for Product Distributions

- Computing $\sum_{w \in \Omega} \min (P(w), Q(w))$ is hard for product distributions
- Is the coordinate wise optimal coupling C also optimal overall?
- Let $\left(X_{i}, Y_{i}\right)$ be the optimal coupling for $\left(P_{i}, Q_{i}\right)$. Is the coupling $C=\left(\left(X_{1}, \ldots, X_{n}\right),\left(Y_{1}, \ldots, Y_{n}\right)\right)$ optimal?
- If so, computing $\operatorname{Pr}_{C}(X=Y)$ is easy! Since $\left(X_{i}, Y_{i}\right) \perp\left(X_{j}, Y_{j}\right)$.
- No! Let us see an example.

Globally Optimal $(O) \neq$ Coordinate-wise Optimal (C)

$$
\begin{aligned}
& \left(X_{1}, X_{2}\right) \sim P=\operatorname{Bern}\left(\frac{1}{2}+\delta\right) \otimes \operatorname{Bern}\left(\frac{1}{2}-\delta\right) \\
& \left(Y_{1}, Y_{2}\right) \sim Q=\operatorname{Bern}\left(\frac{1}{2}\right) \otimes \operatorname{Bern}\left(\frac{1}{2}\right) \\
& C_{1}: \operatorname{Pr}\left[X_{1}=0, Y_{1}=0\right]=\frac{1}{2}-\delta \quad C_{2}: \operatorname{Pr}\left[X_{2}=0, Y_{2}=0\right]=\frac{1}{2} \\
& \operatorname{Pr}\left[X_{1}=1, Y_{1}=1\right]=\frac{1}{2} \quad \operatorname{Pr}\left[X_{2}=1, Y_{2}=1\right]=\frac{1}{2}-\delta \\
& \operatorname{Pr}\left[X_{1}=0, Y_{1}=1\right]=0 \\
& \operatorname{Pr}\left[X_{2}=0, Y_{2}=1\right]=\delta \\
& \operatorname{Pr}\left[X_{1}=1, Y_{1}=0\right]=\delta \\
& \operatorname{Pr}\left[X_{2}=1, Y_{2}=0\right]=0
\end{aligned}
$$

Coordinate-wise Optimal Coupling $\left(C=C_{1} \otimes C_{2}\right)$

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	Pr
0	0	0	0	$\frac{1}{2}\left(\frac{1}{2}-\delta\right)$
0	0	0	1	$\delta\left(\frac{1}{2}-\delta\right)$
0	0	1	0	0
0	0	1	1	$\left(\frac{1}{2}-\delta\right)^{2}$
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	Pr
1	0	0	0	$\frac{\delta}{2}$
1	0	0	1	δ^{2}
1	0	1	0	0
1	0	1	1	$\delta\left(\frac{1}{2}-\delta\right)$
1	1	0	0	$\frac{1}{4}$
1	1	0	1	$\frac{\delta}{2}$
1	1	1	0	0
1	1	1	1	$\frac{1}{2}\left(\frac{1}{2}-\delta\right)$

Overall Optimal Copling (O)

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	Pr
0	0	0	0	$\frac{1}{4}-\delta^{2}$
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	$\left(\frac{1}{2}-\delta\right)^{2}$
0	1	1	0	0
0	1	1	1	0

$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	Pr
1	0	0	0	δ^{2}
1	0	0	1	$\delta(1-\delta)$
1	0	1	0	$\frac{1}{4}$
1	0	1	1	δ^{2}
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	$\frac{1}{4}-\delta^{2}$

- We will multiplicatively approximate the ratio: $\frac{\operatorname{Pr}_{0}[X \neq Y]}{\operatorname{Pr}_{C}[X \neq Y]}$.
- $\operatorname{Pr}_{C}[X \neq Y]$ can be exactly computed.

$$
\begin{aligned}
\operatorname{Pr}_{C}[X \neq Y] & =1-\operatorname{Pr}_{C}[X=Y] \\
& =1-\prod_{i \in[n]} \operatorname{Pr}_{C_{i}}\left[X_{i}=Y_{i}\right] \\
& =1-\prod_{i \in[n]}\left(1-\operatorname{TV}\left(P_{i}, Q_{i}\right)\right)
\end{aligned}
$$

Estimator

- Let Π be the distribution of $X \sim C \mid X \neq Y$. i.e. $\Pi(w)=\operatorname{Pr}_{C}[X=w \mid X \neq Y]$
- Let

$$
f(w):=\frac{\operatorname{Pr}_{O}[X \neq Y \wedge X=w]}{\operatorname{Pr}_{C}[X \neq Y \wedge X=w]}
$$

Claim

$$
\mathbb{E}_{w \sim \Pi}[f(w)]=\frac{\operatorname{Pr}_{O}[X \neq Y]}{\operatorname{Pr}_{C}[X \neq Y]}
$$

Proof of Claim

$$
\begin{aligned}
\mathbb{E}_{w \sim \Pi}[f(w)] & =\sum_{w \in \Omega} \operatorname{Pr}_{C}[X=w \mid X \neq Y] \cdot \frac{\operatorname{Pr}_{O}[X \neq Y \wedge X=w]}{\operatorname{Pr}_{C}[X \neq Y \wedge X=w]} \\
& =\sum_{w \in \Omega} \frac{\operatorname{Pr}_{C}[X=w \wedge X \neq Y]}{\operatorname{Pr}_{C}[X \neq Y]} \cdot \frac{\operatorname{Pr}_{O}[X \neq Y \wedge X=w]}{\operatorname{Pr}_{C}[X \neq Y \wedge X=w]} \\
& =\sum_{w \in \Omega} \frac{\operatorname{Pr}_{O}[X \neq Y \wedge X=w]}{\operatorname{Pr}_{C}[X \neq Y]} \\
& =\frac{\operatorname{Pr}_{O}[X \neq Y]}{\operatorname{Pr}_{C}[X \neq Y]}
\end{aligned}
$$

Properties of the Estimator

- Sampling $w \sim \Pi$ is efficient
- Computing $f(w)$ is efficient

$$
\begin{gathered}
0 \leq f(w) \leq 1 \\
\frac{1}{n} \leq \mathbb{E}_{w \sim \Pi}[f(w)] \leq 1
\end{gathered}
$$

$$
\begin{gathered}
\Pi(w)=\operatorname{Pr}_{C}[X=w \mid X \neq Y] \\
f(w):=\frac{\operatorname{Pr}_{O}[X \neq Y \wedge X=w]}{\operatorname{Pr}_{C}[X \neq Y \wedge X=w]} \\
\mathbb{E}_{w \sim \Pi}[f(w)]=\frac{\operatorname{Pr}_{O}[X \neq Y]}{\operatorname{Pr}_{C}[X \neq Y]}
\end{gathered}
$$

FPRAS using monte-carlo sampling.

Computing the TV Distance between Bayesian Networks

Bayesian Networks

- A joint distribution over X_{1}, \ldots, X_{n} that is a product of conditional probabilities (as opposed to marginal probabilities as in a product distribution)
- Defined with respect to a DAG G over $[n]$
- Notations:
- $\Pi(i)=$ parents of node i
- nde $(i)=$ non-desecendants of node i
- $X_{S}=\left\{X_{i}\right\}_{i \in S}$
- $\max _{i}|\Pi(i)|$ is called the in-degree of the Bayes net

Bayesian Networks Factorization

$$
\operatorname{Pr}\left[X_{1}, \ldots, X_{n}\right]=\prod_{i \in[n]} \operatorname{Pr}\left[X_{i} \mid X_{\Pi(i)}\right]
$$

- Any node X_{i} is independent of its non-desendants conditioned on its parents

$$
\begin{gathered}
X_{i} \perp X_{n d e(i)} \mid X_{\Pi(i)} \\
\Longrightarrow \operatorname{Pr}\left[X_{i}, X_{n d e(i)} \mid X_{\Pi(i)}\right]=\operatorname{Pr}\left[X_{i} \mid X_{\Pi(i)}\right] \operatorname{Pr}\left[X_{i} \mid X_{n d e(i)}\right]
\end{gathered}
$$

Example

	SPRINKLER	
RAIN	T	F
F	0.4	0.6
T	0.01	0.99

		GRASS WET	
SPRINKLER	RAIN	T	F
F	F	0.0	1.0
F	T	0.8	0.2
T	F	0.9	0.1
T	T	0.99	0.01

$$
\operatorname{Pr}[R, S, G]=\operatorname{Pr}[R] \operatorname{Pr}[S \mid R] \operatorname{Pr}[G \mid S, R]
$$

TV Approximation for Bayes Nets

Let $P\left[X_{1}, \ldots, X_{n}\right]$ and $Q\left[Y_{1}, \ldots, Y_{n}\right]$ be two Bayes nets over the same DAG G over $[n]$. Return:

$$
d \in(1 \pm \varepsilon) \mathrm{TV}(P, Q)
$$

Our Results

- Deciding TV $(P, Q)=0$ or not is NP-hard for Bayes nets of indegree 2
- We give an FPRAS for $\operatorname{TV}(P, Q)$ for Bayes nets of indegree 1 (tree distributions)
- More generally, FPRAS whenever inference is feasible (computing $\operatorname{Pr}\left[X_{i}\right]=1$ is feasible e.g. fixed treewidth)

Proof Sketch: Hardness

- Given a sat formula, create two Bayes nets P and $Q=U$ such that TV (P, Q) counts the number of satisfying assignments
- The Bayes net mimicks the formula computation. Inputs are n random bits.

A Coarse Multiplicative Approximation for Trees

$$
\begin{aligned}
& \mathrm{TV}(P, Q) \\
& \leq \sum_{i \in[n]} \sum_{a \in 0,1|\Pi(i)|} \operatorname{Pr}_{P}\left[X_{\Pi(i)}=a\right] \operatorname{TV}\left(P\left[X_{i} \mid X_{\Pi_{i}}=a\right], Q\left[Y_{i} \mid Y_{\Pi_{i}}=a\right]\right) \\
& \leq 2 \sum_{i \in[n]} \operatorname{TV}\left(P\left[X_{i}, X_{\Pi(i)}\right], Q\left[Y_{i}, Y_{\Pi(i)}\right]\right)
\end{aligned}
$$

$T V(P, Q)$

$$
\geq \mathrm{TV}\left(P\left[X_{i}, X_{\Pi(i)}\right], Q\left[Y_{i}, Y_{\Pi(i)}\right]\right)
$$

Therefore, $\max _{i} \operatorname{TV}\left(P\left[X_{i}, X_{\Pi(i)}\right], Q\left[Y_{i}, Y_{\Pi(i)}\right]\right)$ is a $2 n$-factor approximation.

Proof Sketch: FPRAS

- We give an estimator for $\frac{\operatorname{Pr}_{O}[X \neq Y]}{\operatorname{Pr}_{C}[X \neq Y]}$. Infer: $\operatorname{Pr}_{C}[X \neq Y]$
- Except now, C is not the product coupling
- If we couple each factor individually, it need not be a valid coupling overall!
- C is a partial coupling, a joint distribution over (X, Y) :
- corresponding factors are still coupled:

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{i}=Y_{i}=w \mid X_{\Pi(i)}=a, Y_{\Pi(i)}=b\right] \\
& \quad=\min \left\{\operatorname{Pr}\left[X_{i}=w \mid X_{\Pi(i)}=a\right], \operatorname{Pr}\left[Y_{i}=w \mid Y_{\Pi(i)}=b\right]\right\}
\end{aligned}
$$

- Only $X \sim P$.

The 4 Required properties of [Feng, Guo, Jerrum] still goes through!

Thank you!

Questions?

