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Less connections.

Less costly.

Less congestion.

Reduced travel time.

We need sparsification -
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don’t fail often!

Fault-tolerant.

Robust.

Steiner Spanner!
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Graph Spanners

Given an edge-weighted graph G, a spanner is a subgraph H of G that
preserves the length of the shortest paths in G up to some amount of
multiplicative or additive distortion.
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The parameter t is called the stretch factor/dialation factor of the
spanner.
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Graph Spanners - Applications!

Graph spanners were introduced by Peleg and Schäffer [Journal of
Graph Theory’89].

Spanners are fundamental graph structures with numerous
applications –

Distributed queuing protocol [Demmer & Herlihy, DISC’98].

Compact routing scheme [Thorup & Zwick, SPAA’01].

Online load balancing [Awerbuch et al., STOC’92].

Wireless sensor networks [Shpungin & Segal, INFOCOM’09].

Motion planning in robotics control optimization
[Cai & Keil, IJCGA’97].

Distributed systems and communications [Peleg, SIAM M.
DMA’00; Demmer & Herlihy, DISC’98].

and many others ...
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Geometric Spanners

In geometric settings, a t-spanner for a finite point set P of points in
Rd, is a subgraph underlying of the complete graph GP = (P,

(P
2

)
)

that preserves the pairwise Euclidean distances between points in S to
within a factor of t, that is the stretch factor .

The edge weights of GP are the Euclidean distances between the
vertices.
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Geometric Spanners - Applications!

Chew [SoCG’1986] initiated the study of Euclidean spanners, and
showed that for a set of n points in R2, there exists a spanner with
O(n) edges and constant stretch factor.

Geometric spanners have applications accross domains –

Topology control in wireless networks [Schindelhauer et al.,
Comp. Geom.’07].

Efficient regression in metric spaces [Gottlieb et al., IEEE T.
Inf. Th.’17].

Approximate distance oracles [Gudmundsson et al. TALG’08].

Euclidean spanners are relevant in the context of other
fundamental NP-hard problems, such as Euclidean TSP,
Euclidean minimum Steiner tree [Rao and Smith, STOC’1998].
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Various Types of Geometric Spanner Constructions

Bounded-degree spanners [Bose et al., Algorithmica’05]

α-diamond spanners [Das & Joseph, ISOA’98].

Well-separated pair decomposition (WSPD)

[Callahan, FOCS’93; Gudmundsson et al., SIAM J. Comp.’02]

Skip-lists [Arya et al., FOCS’94].

Path-greedy [Althöfer et al., DCG’93].

Gap-greedy [Arya & Smid, Algorithmica’97].

Locality sensitive orderings [Chan et al., SIAM J. Comp.’20].

See the book of Narasimhan and Smid on geometric spanners,

and the survey of Bose et al.
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Sparsity

The sparsity of a spanner H is the ratio

|E(H)|
|E(MST )|

≈
|E(H)|
|V (G)|

between the number of edges of H and an MST .

Since H is connected, liminf|V (G)|→∞sparsity(H)≥ 1.



Sujoy Bhore · Euclidean Steiner Spanners: Light & Sparse8/54

Sparsity

The sparsity of a spanner H is the ratio

|E(H)|
|E(MST )|

≈
|E(H)|
|V (G)|

between the number of edges of H and an MST .

Since H is connected, liminf|V (G)|→∞sparsity(H)≥ 1.

1

1

1

1

√
2

√
2

P GP H

1

1

1

1
t = 3

2

Sparsity = 4
3



Sujoy Bhore · Euclidean Steiner Spanners: Light & Sparse9/54

A brief History on Sparse Euclidean Spanners
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A brief History on Sparse Euclidean Spanners

Q: How sparse a spanner should be ...?

- Preferably, O(|S|) with stretch factor (1 + ε), for a set S of n points.

Chew [SoCG’86] showed an existence of spanners with linear number
of edges with stretch factor

√
10.

Clarckson [STOC’87] designed first (1 + ε)-spanner; Keil [SWAT’88]
gave an alternative algorithm.

Delanauy triangulation of the point set S is a 2.42-spanner [DCG’92].

Θ-graphs help designing spanners in R2.

This was generalized to Rd by Ruppert and Seidel [CCCG’91].
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A brief History on Sparse Euclidean Spanners

Q: How sparse a spanner should be ...?

- Preferably, O(|S|) with stretch factor (1 + ε), for a set S of n points.

Chew [SoCG’86] showed an existence of spanners with linear number
of edges with stretch factor

√
10.

Clarckson [STOC’87] designed first (1 + ε)-spanner; Keil [SWAT’88]
gave an alternative algorithm.

Delanauy triangulation of the point set S is a 2.42-spanner [DCG’92].

Θ-graphs help designing spanners in R2.

This was generalized to Rd by Ruppert and Seidel [CCCG’91].

Question: Is the trade-off between the stretch factor 1 + ε and
the sparsity O(ε−d+1) tight?
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Lightness

For a finite set S in a metric space, the lightness of a spanner H is

‖H‖
‖MST (S)‖

=

∑
e∈E(H) ‖e‖
‖MST (S)‖

,

the ratio of the weight of H to the weight of a Euclidean MST of S.
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A brief history on Light Spanners

Greedy-spanner has constant lightness in R3 [Das et al.,SoCG’93];
which was later generalized to Rd [Das et al., SODA’95].

In fact, greedy spanner has lightness ε−O(d) in Rd, for every
constant d. [Rao & Smith, STOC’98].

(1 + ε)-spanner with lightness ε−2d exists

[Narasimhan & Smid. Geometric Spanner Networks].

A metric of doubling dimension d has a spanner of lightness
(d/ε)O(d) [Gottlieb, FOCS’15]

Greedy (1 + ε)-spanner of a finite metric space of doubling
dimension d has lightness ε−O(d) [Borradaile et al., SODA’19].
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A brief history on Light Spanners

Greedy-spanner has constant lightness in R3 [Das et al.,SoCG’93];
which was later generalized to Rd [Das et al., SODA’95].

In fact, greedy spanner has lightness ε−O(d) in Rd, for every
constant d. [Rao & Smith, STOC’98].

(1 + ε)-spanner with lightness ε−2d exists

[Narasimhan & Smid. Geometric Spanner Networks].

A metric of doubling dimension d has a spanner of lightness
(d/ε)O(d) [Gottlieb, FOCS’15]

Greedy (1 + ε)-spanner of a finite metric space of doubling
dimension d has lightness ε−O(d) [Borradaile et al., SODA’19].

Question: What is the best possible constant in the exponent?
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Spanners in Metric Spaces.

SparsityStretch

General

Euclidean

Doubling

Minor-free

O(n1/k)
[ADDJS93]

O(n1/k/ε3)
[CW16]

(1 + ε)
O(ε1−d)
[Yao82]

O(ε−d)
[LS19]

(1 + ε)

(1 + ε)

O(ε−O(d))
[HM05]

O(ε−O(d))
[BLW19]

O(ε−3)
[BLW17]

O(1)

Lightness

(2k − 1)
· (1 + ε)

better.. ?
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Precise Dependency on ε > 0 & d.

Le and Solomon in FOCS’19 established the dependencies
of ε in the lightness and sparsity bounds of Euclidean
(1 + ε)-spanners.
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Precise Dependency on ε > 0 & d.

For every ε > 0 and constant d ∈ N, and a set S of n
points in Rd,

every (1 + ε)-spanner must have lightness Ω(ε−d) and
sparsity Ω(ε−d+1), whenever ε = Ω(n−1/(d−1)).

The greedy (1 + ε)-spanner in Rd has lightness
O(ε−d log ε−1).

Le and Solomon in FOCS’19 established the dependencies
of ε in the lightness and sparsity bounds of Euclidean
(1 + ε)-spanners.
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Last few years (highlights) ...

Trade-off Between Degree and Lightness -

Trade-off Between Degree, Diameter, and Lightness -

Optimal Euclidean Spanners: Really Short, Thin, and
Lanky [Elkin & Solomon, J.ACM 2015]

Trade-off Between Degree, Lightness -

Unified Framework for Light Spanners [Le &
Solomon, STOC 2023]

Trade-off Between Degree & Sparsity -

Sparse Euclidean Spanners with Optimal Diameter:
A General and Robust Lower Bound via a Concave
Inverse-Ackermann Function [Le, Milenkovic &
Solomon, SoCG 2023]
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Steiner Points - The Game Changer!

Steiner points can substantially improve bounds on the lightness and
sparsity of Euclidean (1 + ε)-spanners [Le and Solomon, FOCS’19].
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Steiner Points - The Game Changer!

Steiner points can substantially improve bounds on the lightness and
sparsity of Euclidean (1 + ε)-spanners [Le and Solomon, FOCS’19].

Lower
Bound

Upper
Bound

O(ε−1 log ∆), for d = 2
[Le & Solomon, ESA’20]

Õ(ε−(d+1)/2), for d ≥ 3
[Le & Solomon, ArXiv’20]

LightnessSparsity

Ω(ε−1/ log ε−1), for d = 2

[Le & Solomon, FOCS’19]
Ω(ε−

1
2 / log ε−1), for d = 2

[Le & Solomon, FOCS’19]

O(ε(1−d)/2) for d-space

[Le & Solomon, FOCS’19]
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Effectiveness of Steiner Points - Steiner Ratios, etc.

Steiner points can improve the weight of the network in the
single-source setting.

Exponential improvement on
the lightness in a metric space
[Elkin & Solomon, SICOMP’15]
Quadratic improvement on the
lightness in Euclidean spaces
[Solomon, JoCG’15].

s

t1 t2

ε−
1
/
2

1
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Effectiveness of Steiner Points - Steiner Ratios, etc.

Steiner points can improve the weight of the network in the
single-source setting.

Exponential improvement on
the lightness in a metric space
[Elkin & Solomon, SICOMP’15]
Quadratic improvement on the
lightness in Euclidean spaces
[Solomon, JoCG’15].

s

t1 t2

ε−
1
/
2

1

Shallow-light tree of weight O(ε−1/2).
Without Steiner point, we would need a
star centered at s, of weight Θ(ε−1)
to guarantee a stretch factor ≤ 1 + ε.
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Improved Bounds

Theorem 1 Let a positive integers d and real ε > 0 be given
such that ε ≤ 1/d. Then there exists a set S of n points in
Rd such that any Euclidean Steiner (1 + ε)-spanner for S has
lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

[Bhore & Tóth, SIDMA’22]Lower Bound
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Improved Bounds

Theorem 2 For every set S of n points in Euclidean plane, there
exists a Steiner (1 + ε)-spanner of lightness O(ε−1).

Upper Bound [Bhore &Tóth, SoCG’21]

Theorem 1 Let a positive integers d and real ε > 0 be given
such that ε ≤ 1/d. Then there exists a set S of n points in
Rd such that any Euclidean Steiner (1 + ε)-spanner for S has
lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

[Bhore & Tóth, SIDMA’22]Lower Bound
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Where do we stand ...

All bounds are for Euclidean Steiner (1 + ε)-spanner

Lower
Bound

Ω(ε−d/2)

[Bhore&Tóth, SIDMA’22]

Ω(ε(1−d)/2)
[Bhore&Tóth, SIDMA’22]

LightnessSparsity

Ω(ε−1/ log ε−1),

for d = 2

[Le&Solomon, FOCS’19]

Ω(ε−1/2/ log ε−1)

[Le&Solomon, FOCS’19]

Upper
Bound

Ω(ε−1 log ∆), for d = 2
[Le & Solomon,ESA’20]

Õ(ε−(d+1)/2), for d ≥ 3
[Le & Solomon, STOC’23]

O(ε−1), for d = 2

[Bhore&Tóth, SoCG’21]

O(ε(1−d)/2) for d-space

[Le & Solomon, FOCS’19]
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Lower Bounds

Basic Observation. Every ab-path of length at most (1 + ε)‖ab‖
lies in the ellipoid Eab with foci a and b and great axis (1+ε)‖ab‖.

Eaba

b

The spacing between the points guarantees that we obtain
disjoint ellipsoids Eab for a family of parallel ab pairs.

(1 + ε)‖ab‖√
2
ε

+
ε2
‖a
b‖ c

a

Eab
b
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Lower Bounds

Basic Observation. Every ab-path of length at most (1 + ε)‖ab‖
lies in the ellipoid Eab with foci a and b and great axis (1+ε)‖ab‖.

Eaba

b

The spacing between the points guarantees that we obtain
disjoint ellipsoids Eab for a family of parallel ab pairs.

Eab

Ecd

However, ellipsoids Eab and Ecd may overlap in general.

?
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Lower Bounds

An ab-path Pab of weight ≤ (1 + ε)‖ab‖ is “nearly” parallel to ab.

Let E(α) = {edges e in Pab with ∠(ab, e) ≤ α}

ba
Pab

Lemma. For i = 1, . . . , b1/
√
εc, ‖E(i ·

√
ε)‖ ≥

(
1− 2

i2

)
‖ab‖.

Eab

a

b

Corollary. Every ab-path of weight ≤ (1 + ε)‖ab‖ contains edges
of direction ∠(ab, e) ≤ 2 ·

√
ε of total weight ≥ 1

2‖ab‖.

Ecd
d

cIn each ellipsoid Eab,
we count only edges of
direction ∠(ab, e) ≤ 2 ·

√
ε.

⇒ no edge is counted twice.
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Lower Bounds

1

1

1

3/
√

ε

Q

S ⊂ R3

2/
√

ε

1

1

Q

S ⊂ R2

3/
√

ε 1

Lightness Lower Bounds
Theorem. ∀d ≥ 2, ∀ε > 0, with ε ≤ 1/d,
there is a set S of n points in Rd such that any
Euclidean Steiner (1 + ε)-spanner N for S has

lightness Ωd(ε
−d
2 ).

Construction. Let S = A ∪ B, grids on two
opposite faces of a unit cube, with d√

ε
spacing.

Lightness analysis.

|S| = Θd(ε
(1−d)/2).

‖MST(S)‖ = 1 + (|S| − 2) d√
ε

= Θd(ε
1−d/2).

‖N‖ ≥
∑

(a,b)∈A×B ‖Eab(2
√
ε)‖

≥
∑

(a,b)∈A×B
1
2‖ab‖

≥ |A×B| · 12 ≥ Ω(|S|2) ≥ Ωd(ε
1−d).

Lightness(N) = ‖N‖
|MST(S)‖ ≥ Ωd(

ε1−d

ε1−d/2 ) ≥ Ωd(ε
−d/2).
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Lower Bounds

1

1

1

3/
√

ε

Q

S ⊂ R3

2/
√

ε

1

1

Q

S ⊂ R2

3/
√

ε 1

Sparsity Lower Bounds
Theorem. ∀d ≥ 2, ∀ε > 0, with ε ≤ 1/d,
there is a set S of n points in Rd such that any
Euclidean Steiner (1 + ε)-spanner N for S has

sparsity Ωd(ε
1−d
2 ).

Construction. Let S = A ∪ B, grids on two
opposite faces of a unit cube, with d√

ε
spacing.

Sparsity analysis.

|S| = Θd(ε
(1−d)/2).

‖N‖ ≥ Ωd(ε
1−d) [cf. lightness analysis]

We may assume N ⊂ Q [Le & Solomon, 2019],
hence ∀e ∈ E(N) : ‖e| ≤ diam(Q) =

√
d.

|E(N)| ≥ ‖N‖
maxe∈E(N) ‖e‖

≥ Ωd(
ε1−d
√
d

) ≥ Ωd(ε
1−d).

Sparsity(N) = |E(N)|
|S| ≥ Ωd(

ε1−d

ε(1−d)/2 ) ≥ Ωd(ε
1−d
2 ).
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Upper Bound

We prove and construct, for every ε > 0 and every set of n points in
R2, a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1).

Three Major Components
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Upper Bound

We prove and construct, for every ε > 0 and every set of n points in
R2, a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1).

Directional
Spanners

t

s

Three Major Components
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Upper Bound

We prove and construct, for every ε > 0 and every set of n points in
R2, a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1).

Directional
Spanners

t

s

Three Major Components

Generalized
Shallow-light Trees
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Upper Bound

We prove and construct, for every ε > 0 and every set of n points in
R2, a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1).

Directional
Spanners

t

s

Modified
Window-Partitoning

Scheme

Three Major Components

Generalized
Shallow-light Trees
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Upper Bound

a α

b

ba

Direction of a segment -

Angle-bounded path -

Directional (1 + ε)-Spanner

For an interval D ⊂ [0, π) of directions, we construct a Euclidean
Steiner (1 + ε)-spanner restricted to points pairs whose directions
are in D.

Definition - A geometric graph G is a directional (1 + ε)-spanner for
S and D if for every a, b ∈ S, where the direction of ab is in D,
graph G contains an ab-path of weight at most (1 + ε)‖ab‖.



Sujoy Bhore · Euclidean Steiner Spanners: Light & Sparse25/54

The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval
D = [π

2
−
√
ε, π

2
+
√
ε] of directions, there exists a directional (1+ε)-spanner

of weight O(ε−1/2‖MST (S)‖).

Let N =
⋃k
i=1Ni be the union of the networks Ni for i ∈ {1, . . . , k}.

The total weight of N , for k = O(ε−1/2), is

‖N‖ =
∑k
i=1 ‖Ni‖ ≤ kO

(
ε−

1
2 ‖MST (S)‖

)
≤ O

(
ε−1‖MST (S)‖

)
.
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The main Lemma

Strategy: for each interval
D = [π2 −

√
ε, π2 +

√
ε].

1. Find a tiling of a bound-
ing box of S, of weight
O(‖MST (S)‖).

2. For each tile P , construct
a directional spanner for
a finite point set on the
boundary of P , of weight
O(ε−1/2 per(P )).

t

s

Lemma 1 For a set S of n points in the plane, and for the interval
D = [π

2
−
√
ε, π

2
+
√
ε] of directions, there exists a directional (1+ε)-spanner

of weight O(ε−1/2‖MST (S)‖).
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O(‖MST (S)‖).

2. For each tile P , construct
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Lemma 1 For a set S of n points in the plane, and for the interval
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−
√
ε, π

2
+
√
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of weight O(ε−1/2‖MST (S)‖).
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The main Lemma

t

s

c

a

p1

o

p2

p3

q1q2
q4

p4
p5p5

q3q5

a

bb

Lemma 1 For a set S of n points in the plane, and for the interval
D = [π

2
−
√
ε, π

2
+
√
ε] of directions, there exists a directional (1+ε)-spanner

of weight O(ε−1/2‖MST (S)‖).
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Tiling — Histograms — Window partitioning

Given a set S of n points in R2,
(1) BB(S)∪ Reclilinear MST(S) gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.
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Tiling — Histograms — Window partitioning

Given a set S of n points in R2,
(1) BB(S)∪ Reclilinear MST(S) gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.
(3) A rectangulation would have weight O(‖MST (S)‖ log n).
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Tiling — Histograms — Window partitioning

Given a set S of n points in R2,
(1) BB(S)∪ Reclilinear MST(S) gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.

P

e0

(3) Compute the window-partition into rectilinear histograms.
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Shallow-Light Trees for Staircases

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

s Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2



Sujoy Bhore · Euclidean Steiner Spanners: Light & Sparse29/54

Shallow-Light Trees for Staircases

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

s Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
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Shallow-Light Trees for Staircases

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

s Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
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Shallow-Light Trees for Staircases

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

s Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2
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Shallow-Light Trees for Staircases

t1 t2

t3

t5

t4

t6
t7

t8

L

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

s

s

Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2
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Shallow-Light Trees for Staircases

t1 t2

t3

t5

t4

t6
t7

t8

L

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

s

s

Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2
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Shallow-Light Trees for Staircases

t1 t2

t3

t5

t4

t6
t7

t8

L

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

t7

s

s

Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2
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Shallow-Light Trees for Staircases

t1 t2

t3

t5

t4

t6
t7

t8

L

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

t7

s

s

Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2
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Shallow-Light Trees for Staircases

t1 t2

t3

t5

t4

t6
t7

t8

L

t1 t2 t3 t5t4 t6 t7 t8

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG’15]

t7

Lemma. For a source
s, and a staircase path
L of width 1 at distance
ε−

1
2 from s, there ex-

ists a shallow-light tree
of weight O(ε−

1
2 +‖L‖).

s

s

Solomon: For a source
s, and a line segment L
of width 1 at distance
ε−1/2 from s, there ex-
ists a shallow-light tree
of weight O(ε−1/2).

ε−
1
/
2
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Shallow-Light Trees for Staircases

c

a

b

L

In a staircase polygon P , we place shallow-light trees recursively to con-
struct a directional (1 + ε)-spanner for all ab-pairs with ab ⊂ P .
The total weight is O(ε−1 width(P )).

a

b

a

b
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Shallow-Light Trees for Staircases

R R

L2

1

2ε
−
1
/
2

2ε
−
1
/
2

s s

L1

b

a

We can handle rectangle and staircase tiles!
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Shallow-Light Trees for Staircases

R R

L2

1

2ε
−
1
/
2

2ε
−
1
/
2

s s

L1

b

a

We can handle rectangle and staircase tiles!

H

...but not necessarily histograms...

Partitioning a histogram
into staircases would cost a
O(log n) factor [de Berg &
Kreveld, 1994]
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Tiling — Histograms — Window partitioning

P

e0

(3) Compute the window-partition into rectilinear histograms.
modified

P

γ0

“fuzzy histograms”
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(1) Fuzzy Histograms and Staircases

p

p

q

r

r

r

q

p = q

fuzzy staircases

A fuzzy histogram is a simple polygon bounded by a y-
monotone rectilinear path L and a path γ of one or two
edges of slopes ±Λε−1/2; if the latter path has two edges,
then its interior vertex is a reflex vertex of the polygon.

a fuzzy histogram

L

γ

a Λ-path
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(1) Fuzzy Histograms and Staircases

p

p

q

r

r

r

q

p = q

fuzzy staircases

A fuzzy staircase is a simple polygon bounded by a path pqr,
where pq is horizontal and slope(qr) = ±Λε−1/2, and a
pr-path obtained from an x- and y-monotone staircase by re-
placing vertical edges with some Λ-paths.

a fuzzy histogram

L

γ

a Λ-path
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(1) Partitioning Fuzzy Histograms into Fuzzy Staircases

L

H

c

a

d

A0

B0

L

H

a

d

A

B

c

p

q

p

L

H

a

d

A0

B0p

q

Partitioning a fuzzy histogram into
fuzzy staircases and
tame histograms

increases the weight by only a constant factor
(by a simple charging scheme).

bb b

L

H

a

d

L

H

a

d

bb

c
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(1) Directions Spanners for Fuzzy Staircases

s1

s2
s3
s4

t2t3t1

`0

`1

`2
`3
`4

p q

r

B0

p = t0

L

s4
q

r

t4

T1

T2
T3

L0

B1

B2

L1

L2

p

L

q = a0

a3 = r

a1

a2

b0

b1

b2

a

b
s

Generalization from staircases to fuzzy staircases:
L.: We can augment a fuzzy staircase P to a geometric
graph of weight O(per(P ) + ε−1/2hper(P )) that contains,
for all a, b ∈ ∂P , a path of weight at most (1 +O(ε))‖ab‖.
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(2) y-Monotone Λ-Histograms

A Λ-histogram is a simple polygon obtained from a histogram
by replacing each vertical edge with some Λ-path,
in which every edge is vertical, or has slope ±Λε−1/2,
for a constant Λ > 0.

a y-monotone
Λ-histogram

P

γ0
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(2) Partitioning Λ-Histograms into Tame Histograms

a

b

p q

H

P

Lab

p q

L

A tame histogram is a simple polygon bounded by a horizontal line segment
pq and a pq-path that consists of ascending or descending Λ-paths and x-
monotone increasing horizontal edges s.t.:
(i) there is no chord between interior points of any two ascending (resp., two
descending) Λ-paths; and
(ii) for every horizontal chord ab, with a, b ∈ L, the subpath Lab of L between
a and b satisfies ‖Lab‖ ≤ 2‖ab‖.
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Shallow-light Trees for Tame Histograms

L
c

a

b

a

b

The SLT construction generalizes to tame histograms:
L.: We can augment a tame histogram ∂P to a geomet-
ric graph of weight O(ε−1/2hper(P )) that contains, for all
a, b ∈ ∂P , a path of weight at most (1 +O(ε))‖ab‖.

a

b
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Tame histograms

p q

H
`0

`1

`2
`3
`4

h

The construction generalizes to tame histogram:
We can augment a tame histogram ∂P to a geometric graph
of weight O(ε−1/2hper(P )) that contains, for all a, b ∈ ∂P ,
a path of weight at most (1 +O(ε))‖ab‖.
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Upper bound - Theorem

Theorem. For every set S of n points in Euclidean plane, there exists a
Steiner (1 + ε)-spanner of lightness O(ε−1).

Lemma. Let F be a fuzzy staircase or a tame histogram, S ⊂ ∂F a

finite point set, ε > 0, and D = [π−
√
ε

2
, π+

√
ε

2
] an interval of nearly

vertical directions. Then there exists a geometric graph of weight

O(per(F ) + ε−1/2 hper(F ))

such that for all a, b ∈ S, if ab is a chord of F and dir(ab) ∈ D, then
G contains an ab-path of weight at most (1 +O(ε))‖ab‖.

Lemma. We can subdivide a (weakly) simple rectilinear polygon P
into a collection F of fuzzy staircases and tame histograms of
total perimeter

∑
F∈F per(F ) ≤ O(ε−1/2per(P )) and

total horizontal perimeter
∑
F∈F hper(F ) ≤ O(per(P )).
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Summary

Lower
Bound

LightnessSparsity

Ω(ε−1/ log ε−1),

for d = 2

[Le&Solomon, FOCS’19]

Ω(ε−1/2/ log ε−1)

[Le&Solomon, FOCS’19]

Upper
Bound

Ω(ε−1 log ∆), for d = 2
[Le & Solomon, ESA’20]

Õ(ε−(d+1)/2), for d ≥ 3
[Le & Solomon, ArXiv’20]

O(ε−1), for d = 2

[Bhore &Tóth, SoCG’21]

All bounds are for Euclidean Steiner (1 + ε)-spanners

O(ε(1−d)/2) for d-space

[Le & Solomon, FOCS’19]

Ω(ε(1−d)/2)

[Bhore &Tóth, SIDMA’22]
Ω(ε−d/2)

[Bhore &Tóth, SIDMA’22]
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Future directions.

Question: Does there exist Euclidean Steiner (1 + ε)-spanners for a
finite set of points in Rd, of lightness O(ε−d/2), for d ≥ 3?

The Steiner ratio for Euclidean (1 + ε)-spanners in Rd is the supremum
ratio between the min-weight (1 + ε)-spanners and the min-weight Steiner
(1 + ε)-spanners over all finite point sets S ⊂ Rd.
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Future directions.

Question: Does there exist Euclidean Steiner (1 + ε)-spanners for a
finite set of points in Rd, of lightness O(ε−d/2), for d ≥ 3?

The Steiner ratio for Euclidean (1 + ε)-spanners in Rd is the supremum
ratio between the min-weight (1 + ε)-spanners and the min-weight Steiner
(1 + ε)-spanners over all finite point sets S ⊂ Rd.

Conjecture: A Euclidean Steiner (1 + ε)-spanner cannot
simultaneously attain both lower bounds, that is,

both O(ε−1) lightness and O(ε−1/2) sparsity in Euclidean plane.

Explore the trade-offs between lightness and sparsity in Rd.
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Future directions.

Question: Does there exist Euclidean Steiner (1 + ε)-spanners for a
finite set of points in Rd, of lightness O(ε−d/2), for d ≥ 3?

– Every Steiner spanner can be converted into a plane spanner.

Question: Bound the sparsity of a plane Steiner (1 + ε)-spanner for n
points in Euclidean plane, as a function of n and ε.

– A simple planarization procedure could cost lots
(quadratic number of) of Steiner points.

The Steiner ratio for Euclidean (1 + ε)-spanners in Rd is the supremum
ratio between the min-weight (1 + ε)-spanners and the min-weight Steiner
(1 + ε)-spanners over all finite point sets S ⊂ Rd.

Conjecture: A Euclidean Steiner (1 + ε)-spanner cannot
simultaneously attain both lower bounds, that is,

both O(ε−1) lightness and O(ε−1/2) sparsity in Euclidean plane.

Explore the trade-offs between lightness and sparsity in Rd.
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.

s1

t = 2
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space, where point si is presented in step i for i = 1, . . . , n.
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.
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t = 2

s3
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.

s1

s2

t = 2
s4

s3

Performance of an online algortihm ALG is measured by comparing it
to the offline optimum OPT using the standard notion of competitive
ratio.
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.

Competitive Ratio of an online t-spanner algorithm ALG is defined

as supσ
ALG(σ)
OPT (σ)

, where the supremum is taken over all input

sequences σ, OPT (σ) is the minimum weight of a t-spanner for the
(unordered) set of points in σ, and ALG(σ) denotes the weight of the
t-spanner produced by ALG for this input sequence.
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Going Online ...

Model -

Input: We are given sequence of n points (s1, s2, . . . , sn) in a metric
space, where point si is presented in step i for i = 1, . . . , n.

Objective: Maintain a geometric t-spanner on Si = {s1, . . . , si} for
each step i. The algorithm is allowed to add edges but not delete
edges.

Competitive Ratio of an online t-spanner algorithm ALG is defined

as supσ
ALG(σ)
OPT (σ)

, where the supremum is taken over all input

sequences σ, OPT (σ) is the minimum weight of a t-spanner for the
(unordered) set of points in σ, and ALG(σ) denotes the weight of the
t-spanner produced by ALG for this input sequence.

Problem. Determine the best possible bounds for the competitive ratios
for the weight and the number of edges of online t-spanners, for t ≥ 1.
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A bit of history ...

Computing (1 + ε)-spanner of minimum weight is NP-hard.

Several approximation algorithms known - they also approximate the
lightness.

Online Steiner tree problem was studied by Imase and Waxman
[SODA’1991] and they gave Θ(logn).

Alon and Azar [DCG’1993] studied minimum Steiner trees for points
in the Euclidean plane, and gave improved bound of
Ω(logn/ log logn).

A large body of work done on dynamic spanners.
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A bit of history ...

Online Steiner spanners.

It is allowed to use auxiliary points (Steiner points) which are not
part of input sequence of points.

An online algorithm is allowed to add Steiner points and subdivide
existing edges with Steiner points at each time step.

Computing (1 + ε)-spanner of minimum weight is NP-hard.

Several approximation algorithms known - they also approximate the
lightness.

Online Steiner tree problem was studied by Imase and Waxman
[SODA’1991] and they gave Θ(logn).

Alon and Azar [DCG’1993] studied minimum Steiner trees for points
in the Euclidean plane, and gave improved bound of
Ω(logn/ log logn).

A large body of work done on dynamic spanners.
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Effects of Irrevocability

The algorithm is allowed to add edges but not delete edges.
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Effects of Irrevocability

The algorithm is allowed to add edges but not delete edges.

The value of OPT is not necessarily monotone!!!

After inserting a point at the center,
the cost decreases.

An optimum 3
2

-spanner on three
points with all edges of unit length
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Let’s start with one dimension.

Lower Bound
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Let’s start with one dimension.

Lower Bound

- Adversarial strategy - start with two points p0 = 0 and q0 = 1.
Then, successively places points pi = i · ε

2
, for i = 1, . . . , n so that

all points remain in the interval [0, 1
2

].
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Let’s start with one dimension.

ε/2

q0p0 p1 p2 p3 p4

ε/2 ε/2 ε/2

Lower Bound

- Adversarial strategy - start with two points p0 = 0 and q0 = 1.
Then, successively places points pi = i · ε

2
, for i = 1, . . . , n so that

all points remain in the interval [0, 1
2

].

- Repeats the same strategy in every subinterval.
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Let’s start with one dimension.

ε/2

q0p0 p1 p2 p3 p4

ε/2 ε/2 ε/2

p1 p2 p3 p4p0 q0

Lower Bound

- Adversarial strategy - start with two points p0 = 0 and q0 = 1.
Then, successively places points pi = i · ε

2
, for i = 1, . . . , n so that

all points remain in the interval [0, 1
2

].

- Repeats the same strategy in every subinterval.
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One dimension - Cont.

Upper Bound

Algorithm -

For all i = 1, . . . , n, we maintain a spanning graph Gi on Si =
{s1, . . . , si} and the x-monotone path Pi between the leftmost
and the rightmost points in Si = {s1, . . . , si}.
When si arrives,

If si is left (resp., right) of all previous points - add to the
closest point.
Else, consider the interval inside which si appeared, and join
to the endpoints.
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One dimension - Cont.

Upper Bound

Algorithm -

For all i = 1, . . . , n, we maintain a spanning graph Gi on Si =
{s1, . . . , si} and the x-monotone path Pi between the leftmost
and the rightmost points in Si = {s1, . . . , si}.
When si arrives,

If si is left (resp., right) of all previous points - add to the
closest point.
Else, consider the interval inside which si appeared, and join
to the endpoints.

Theorem. Competitive ratio of any online algorithm for (1+ε)-spanners for
a sequence of points on a line is Ω(ε−1 logn/ log ε−1). Moreover, there is
an online algorithm that maintains a (1 + ε)-spanner with competitive ratio
O(ε−1 logn/ log ε−1).
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Higher Dimensions under the L2-norm

Theorem. For every ε > 0, an online algorithm can maintain, for
a sequence of n ∈ N points in Rd, a Euclidean Steiner (1 + ε)-
spanner of weight O(ε(1−d)/2 log n) ·OPT).
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Higher Dimensions under the L2-norm

Theorem. For every ε > 0, an online algorithm can maintain, for
a sequence of n ∈ N points in Rd, a Euclidean Steiner (1 + ε)-
spanner of weight O(ε(1−d)/2 log n) ·OPT).

Online Algorithm in two layers:
1. DefSpanner algorithm [Gao et al., 2006]: a (1 + ε)-spanner
G1 of weight O(ε−(d+1) log n ·OPT), without Steiner points.

2. We maintain a (1 + ε)-spanner G2 for G1 of weight
O(ε(1−d)/2 log n ·OPT) with Steiner points.
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Higher Dimensions under the L2-norm

Theorem. For every ε > 0, an online algorithm can maintain, for
a sequence of n ∈ N points in Rd, a Euclidean Steiner (1 + ε)-
spanner of weight O(ε(1−d)/2 log n) ·OPT).

Online Algorithm in two layers:
1. DefSpanner algorithm [Gao et al., 2006]: a (1 + ε)-spanner
G1 of weight O(ε−(d+1) log n ·OPT), without Steiner points.

2. We maintain a (1 + ε)-spanner G2 for G1 of weight
O(ε(1−d)/2 log n ·OPT) with Steiner points.

Stretch factor: (1 + ε)(1 + ε) = (1 +O(ε))

Key idea: nearly parallel edges, of similar lengths in G1

are replaced by a Shalow-Light Tree (SLT) in G2.
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Higher Dimensions under the L2-norm

Q0

Overview of DefSpanner algorithm by Gao et al [2006].
1. Hierarchical Clustering: Maintain a quadtree for the points

incrementally (online)
2. Well-Separated Pair Decomposition (WSPD): At each

level of the quadtree, with cubes of side length `, add an edge
between any two nonempty cells at distance O(`/ε).
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Q0

Overview of DefSpanner algorithm by Gao et al [2006].
1. Hierarchical Clustering: Maintain a quadtree for the points

incrementally (online)
2. Well-Separated Pair Decomposition (WSPD): At each

level of the quadtree, with cubes of side length `, add an edge
between any two nonempty cells at distance O(`/ε).

s

When a new point s arrives:
Insert s into the Quadtree,
If s is the first point in a
cell, which has side length `,
add edges between s and a
representative of other cells
within distance O(`/ε).

C(s, `ε )
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Higher Dimensions under the L2-norm

Q0

Overview of DefSpanner algorithm by Gao et al [2006].
1. Hierarchical Clustering: Maintain a quadtree for the points

incrementally (online)
2. Well-Separated Pair Decomposition (WSPD): At each

level of the quadtree, with cubes of side length `, add an edge
between any two nonempty cells at distance O(`/ε).

s

When a new point s arrives:
Insert s into the Quadtree,
If s is the first point in a
cell, which has side length `,
add edges between s and a
representative of other cells
within distance O(`/ε).

C(s, `ε )
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Higher Dimensions under the L2-norm

Online Steiner spanner algorithm.
√
ε Partition the sphere of directions into

Θ(ε(1−d)/2) cones of aperture
√
ε).

We constuction a Steiner spanner for
each cone of directions.
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Online Steiner spanner algorithm.
√
ε Partition the sphere of directions into

Θ(ε(1−d)/2) cones of aperture
√
ε).

We constuction a Steiner spanner for
each cone of directions.

For each level of the
quadtree, create a covering
cylinders of width

√
ε · `

When DefSpanner inserts
an edge e in a cyclinder, we
construct an SLT that can
accomodate future edges of
the same direction.
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Online Steiner spanner algorithm.
√
ε Partition the sphere of directions into

Θ(ε(1−d)/2) cones of aperture
√
ε).

We constuction a Steiner spanner for
each cone of directions.
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quadtree, create a covering
cylinders of width

√
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accomodate future edges of
the same direction.
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

G1

G2

R

R

√
ε
·`
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

G1

G2

R

R

√
ε
·`

p

q

q

p
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

G1

G2

R

R

√
ε
·`

p

q

q

e = pq

p

For the first edge e = pq,
add a “backbone” line in the center of the cyclinder;
add a grid of cell-size ε` around p and q;
connect p and q to the nearest grid points;
add a SLT between the two grids.
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.
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G2

R

R

√
ε
·`

p

q

q

e = pq

p

For the first edge e = pq,
add a “backbone” line in the center of the cyclinder;
add a grid of cell-size ε` around p and q;
connect p and q to the nearest grid points;
add a SLT between the two grids.

rp rq
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

G1

G2

R

R

√
ε
·`

p

q

q

e = pq

p

For the first edge e = pq,
add a “backbone” line in the center of the cyclinder;
add a grid of cell-size ε` around p and q;
connect p and q to the nearest grid points;
add a SLT between the two grids.

Future edges in the same cylinder can use the same infrastructure.
The extra cost is O(ε`) for the connection to the closest grid points.

rp rq

cost for additional edges



Sujoy Bhore · Euclidean Steiner Spanners: Light & Sparse51/54

Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

G1

G2

R

R

√
ε
·`

p

q

q

e = pq

p

For the first edge e = pq,
add a “backbone” line in the center of the cyclinder;
add a grid of cell-size ε` around p and q;
connect p and q to the nearest grid points;
add a SLT between the two grids.

Future edges in the same cylinder can use the same infrastructure.
The extra cost is O(ε`) for the connection to the closest grid points.

p′

q′

e′ = p′q′

p′

q′

rp rq

cost for additional edges
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Higher Dimensions under the L2-norm
When DefSpanner inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.
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G2

R
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√
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q
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e = pq

p

For the first edge e = pq,
add a “backbone” line in the center of the cyclinder;
add a grid of cell-size ε` around p and q;
connect p and q to the nearest grid points;
add a SLT between the two grids.

Future edges in the same cylinder can use the same infrastructure.
The extra cost is O(ε`) for the connection to the closest grid points.

p′

q′

e′ = p′q′

p′

q′

rp rq

cost for additional edges
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Higher Dimensions under the L2-norm

p
q

Competitive analysis. In each cyclinder, we charge the weight of the Steiner
graph (backbone, grid, and SLT) to the weight of OPT.

For every p, q ∈ S, an OPT
spanner contains a pq-path of
weight at most (1 + ε)‖pq‖ in
an ellipse Bpq with foci p & q.

Lemma (B&T, STACS 2021). In a pq-path of weight ≤ (1 + ε)‖pq‖, the
edges e such that ∠(pq, e) ≤

√
ε have total weight at least 1

2‖pq‖.

Bpq
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Higher Dimensions under the L2-norm

p
q

Competitive analysis. In each cyclinder, we charge the weight of the Steiner
graph (backbone, grid, and SLT) to the weight of OPT.

For every p, q ∈ S, an OPT
spanner contains a pq-path of
weight at most (1 + ε)‖pq‖ in
an ellipse Bpq with foci p & q.

Lemma (B&T, STACS 2021). In a pq-path of weight ≤ (1 + ε)‖pq‖, the
edges e such that ∠(pq, e) ≤

√
ε have total weight at least 1

2‖pq‖.

G1

R

√
ε
·`p qe = pq

Bpq

Bpq

The ellipse Bpq lies in a small neighborhood of the cyclinder.
OPT contains edges of weight ≥ 1

2‖pq‖ of direction ∠(e′, pq) ≤
√
ε)

in a small neighborhood of the cylinder.

The ratio ALG
OPT ≤ O

(
ε

1−d
2

)
holds for each cylinder & each direction.
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Where do we stand ...

Without Steiner points.

General metrics (2k − 1)(1 + ε)

StretchFamily # of edges Lightness

O(ε−1 log(1
ε))n

1+1
k O(n

1
kε−1 log2 n)

Euclidean d-space 1 + ε Õd(ε
1−d)n O(ε−d log n)

Real line 1 + ε n− 1 Θ̃(ε−1 log n)

Doubling[GGN’06] 1 + ε ε−O(d)n ε−O(d) log n

StretchFamily # of edges Comp. ratio

Euclidean plane

General metrics (2k − 1) −

1 + ε Õ(ε−1)n

Ω(1
k · n

1
k)

Õ(ε−3/2 log n)

Rd with L1-norm 1 + ε − Ω(ε−d)
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Where do we stand ...

With Steiner points.

Points in Rd with Steiner points.

Upper Bound - Ω(ε(1−d)/2 logn).

Lower Bound - Ω(f(n)) for some function f(n), limn→∞ f(n) =∞.

Under L1 norm.

Lower bounds - Ω(ε−2/ log ε−1) in R2 and is Ω(ε−d) in Rd for d ≥ 3.
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Where do we stand ...

With Steiner points.

Points in Rd with Steiner points.

Upper Bound - Ω(ε(1−d)/2 logn).

Lower Bound - Ω(f(n)) for some function f(n), limn→∞ f(n) =∞.

Under L1 norm.

Lower bounds - Ω(ε−2/ log ε−1) in R2 and is Ω(ε−d) in Rd for d ≥ 3.

Future directions.

Q: Does the competitive ratio of an online (1 + ε)-spanner algorithm for
n points in Rd necessarily grow proportionally with ε−f(d) · logn, where
limd→∞ f(d) =∞?

Without Steiner points, Log-dependence is unavoidable, due to LB in R.
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Thank you
for your attention!


