Euclidean Steiner Spanners: Light and Sparse

Sujoy Bhore

Indian Institute of Technology Bombay

$$
\text { RTA, } 2023
$$

Game of Missing Links!

Game of Missing Links!

Q. Can I go from Mumbai to Kolkata... ?

Game of Missing Links!

Game of Missing Links!

Game of Missing Links!

(Source.

Game of Missing Links! ...

Game of Missing Links! ...

Game of Missing Links!

Q. Can I go from Mumbai to Kolkata... ?

Of course! there you go

There is a problem in the Nagpur - Raipur track.

Soln.: Build robust networks that don't fail often!

Game of Missing Links!

Game of Missing Links! ...

Game of Missing Links!

Graph Spanners

- Given an edge-weighted graph G, a spanner is a subgraph H of G that preserves the length of the shortest paths in G up to some amount of multiplicative or additive distortion.

Graph Spanners

- Given an edge-weighted graph G, a spanner is a subgraph H of G that preserves the length of the shortest paths in G up to some amount of multiplicative or additive distortion.
- Formally, a subgraph H of a given edge-weighted graph G is a t-spanner, for some $t \geq 1$, if for every $p q \in\binom{V(G)}{2}$ we have $d_{H}(p, q) \leq t \cdot d_{G}(p, q)$, where $d_{G}(p, q)$ denotes the length of the shortest path in G.

Graph Spanners

- Given an edge-weighted graph G, a spanner is a subgraph H of G that preserves the length of the shortest paths in G up to some amount of multiplicative or additive distortion.
- Formally, a subgraph H of a given edge-weighted graph G is a t-spanner, for some $t \geq 1$, if for every $p q \in\binom{V(G)}{2}$ we have $d_{H}(p, q) \leq t \cdot d_{G}(p, q)$, where $d_{G}(p, q)$ denotes the length of the shortest path in G.

Graph Spanners

- Given an edge-weighted graph G, a spanner is a subgraph H of G that preserves the length of the shortest paths in G up to some amount of multiplicative or additive distortion.
- Formally, a subgraph H of a given edge-weighted graph G is a t-spanner, for some $t \geq 1$, if for every $p q \in\binom{V(G)}{2}$ we have $d_{H}(p, q) \leq t \cdot d_{G}(p, q)$, where $d_{G}(p, q)$ denotes the length of the shortest path in G.

Graph Spanners

- Given an edge-weighted graph G, a spanner is a subgraph H of G that preserves the length of the shortest paths in G up to some amount of multiplicative or additive distortion.
- Formally, a subgraph H of a given edge-weighted graph G is a t-spanner, for some $t \geq 1$, if for every $p q \in\binom{V(G)}{2}$ we have $d_{H}(p, q) \leq t \cdot d_{G}(p, q)$, where $d_{G}(p, q)$ denotes the length of the shortest path in G.

- The parameter t is called the stretch factor/dialation factor of the spanner.

Graph Spanners - Applications!

■ Graph spanners were introduced by Peleg and Schäffer [Journal of Graph Theory'89].

- Spanners are fundamental graph structures with numerous applications -
- Distributed queuing protocol [Demmer \& Herlihy, DISC'98].
- Compact routing scheme [Thorup \& Zwick, SPAA'01].
- Online load balancing [Awerbuch et al., STOC'92].
- Wireless sensor networks [Shpungin \& Segal, INFOCOM'09].
- Motion planning in robotics control optimization [Cai \& Keil, IJCGA'97].
- Distributed systems and communications [Peleg, SIAM M. DMA'00; Demmer \& Herlihy, DISC'98].
- and many others ...

Geometric Spanners

- In geometric settings, a t-spanner for a finite point set P of points in \mathbb{R}^{d}, is a subgraph underlying of the complete graph $G_{P}=\left(P,\binom{P}{2}\right)$ that preserves the pairwise Euclidean distances between points in S to within a factor of t, that is the stretch factor.
- The edge weights of G_{P} are the Euclidean distances between the vertices.

Geometric Spanners

\square In geometric settings, a t-spanner for a finite point set P of points in \mathbb{R}^{d}, is a subgraph underlying of the complete graph $G_{P}=\left(P,\binom{P}{2}\right)$ that preserves the pairwise Euclidean distances between points in S to within a factor of t, that is the stretch factor.
\square The edge weights of G_{P} are the Euclidean distances between the vertices.

0

0
P

G_{P}

Geometric Spanners

- In geometric settings, a t-spanner for a finite point set P of points in \mathbb{R}^{d}, is a subgraph underlying of the complete graph $G_{P}=\left(P,\binom{P}{2}\right)$ that preserves the pairwise Euclidean distances between points in S to within a factor of t, that is the stretch factor.
- The edge weights of G_{P} are the Euclidean distances between the vertices.

0

Geometric Spanners - Applications!

- Chew [SoCG'1986] initiated the study of Euclidean spanners, and showed that for a set of n points in \mathbb{R}^{2}, there exists a spanner with $O(n)$ edges and constant stretch factor.
■ Geometric spanners have applications accross domains -
- Topology control in wireless networks [Schindelhauer et al., Comp. Geom.'07].
- Efficient regression in metric spaces [Gottlieb et al., IEEE T. Inf. Th.'17].
- Approximate distance oracles [Gudmundsson et al. TALG'08].
- Euclidean spanners are relevant in the context of other fundamental NP-hard problems, such as Euclidean TSP, Euclidean minimum Steiner tree [Rao and Smith, STOC'1998].

Various Types of Geometric Spanner Constructions

- Bounded-degree spanners [Bose et al., Algorithmica'05]

■ α-diamond spanners [Das \& Joseph, ISOA'98].

- Well-separated pair decomposition (WSPD) [Callahan, FOCS'93; Gudmundsson et al., SIAM J. Comp.'02]
- Skip-lists [Arya et al., FOCS'94].
- Path-greedy [Althöfer et al., DCG'93].
- Gap-greedy [Arya \& Smid, Algorithmica'97].
- Locality sensitive orderings [Chan et al., SIAM J. Comp.'20].
\square See the book of Narasimhan and Smid on geometric spanners, and the survey of Bose et al.

Sparsity

- The sparsity of a spanner H is the ratio

$$
\frac{|E(H)|}{|E(M S T)|} \approx \frac{|E(H)|}{|V(G)|}
$$

between the number of edges of H and an $M S T$.
\square Since H is connected, $\liminf _{|V(G)| \rightarrow \infty} \operatorname{sparsity}(\mathrm{H}) \geq 1$.

Sparsity

- The sparsity of a spanner H is the ratio

$$
\frac{|E(H)|}{|E(M S T)|} \approx \frac{|E(H)|}{|V(G)|}
$$

between the number of edges of H and an $M S T$.
\square Since H is connected, $\liminf _{|V(G)| \rightarrow \infty} \operatorname{sparsity}(\mathrm{H}) \geq 1$.

A brief History on Sparse Euclidean Spanners

- Q: How sparse a spanner should be ...?

A brief History on Sparse Euclidean Spanners

- Q: How sparse a spanner should be ...?
- Preferably, $O(|S|)$ with stretch factor $(1+\varepsilon)$, for a set S of n points.

A brief History on Sparse Euclidean Spanners

- Q: How sparse a spanner should be ...?
- Preferably, $O(|S|)$ with stretch factor $(1+\varepsilon)$, for a set S of n points.
- Chew [SoCG'86] showed an existence of spanners with linear number of edges with stretch factor $\sqrt{10}$.
- Clarckson [STOC'87] designed first $(1+\varepsilon)$-spanner; Keil [SWAT'88] gave an alternative algorithm.
- Delanauy triangulation of the point set S is a 2.42-spanner [DCG'92].
- Θ-graphs help designing spanners in \mathbb{R}^{2}.

This was generalized to \mathbb{R}^{d} by Ruppert and Seidel [CCCG'91].

A brief History on Sparse Euclidean Spanners

- Q: How sparse a spanner should be ...?
- Preferably, $O(|S|)$ with stretch factor $(1+\varepsilon)$, for a set S of n points.
- Chew [SoCG'86] showed an existence of spanners with linear number of edges with stretch factor $\sqrt{10}$.
- Clarckson [STOC'87] designed first $(1+\varepsilon)$-spanner; Keil [SWAT'88] gave an alternative algorithm.
- Delanauy triangulation of the point set S is a 2.42 -spanner [DCG'92].
- Θ-graphs help designing spanners in \mathbb{R}^{2}.

This was generalized to \mathbb{R}^{d} by Ruppert and Seidel [CCCG'91].

Question: Is the trade-off between the stretch factor $1+\varepsilon$ and the sparsity $O\left(\varepsilon^{-d+1}\right)$ tight?

Lightness

For a finite set S in a metric space, the lightness of a spanner H is

$$
\frac{\|H\|}{\|M S T(S)\|}=\frac{\sum_{e \in E(H)}\|e\|}{\|M S T(S)\|},
$$

the ratio of the weight of H to the weight of a Euclidean $M S T$ of S.

Lightness

For a finite set S in a metric space, the lightness of a spanner H is

$$
\frac{\|H\|}{\|M S T(S)\|}=\frac{\sum_{e \in E(H)}\|e\|}{\|M S T(S)\|}
$$

the ratio of the weight of H to the weight of a Euclidean $M S T$ of S.

A brief history on Light Spanners

- Greedy-spanner has constant lightness in \mathbb{R}^{3} [Das et al.,SoCG'93]; which was later generalized to \mathbb{R}^{d} [Das et al., SODA'95].
- In fact, greedy spanner has lightness $\varepsilon^{-O(d)}$ in \mathbb{R}^{d}, for every constant d. [Rao \& Smith, STOC'98].
- (1 $1+\varepsilon$)-spanner with lightness $\varepsilon^{-2 d}$ exists [Narasimhan \& Smid. Geometric Spanner Networks].

A metric of doubling dimension d has a spanner of lightness $(d / \varepsilon)^{O(d)}$ [Gottlieb, FOCS'15]
\square Greedy $(1+\varepsilon)$-spanner of a finite metric space of doubling dimension d has lightness $\varepsilon^{-O(d)}$ [Borradaile et al., SODA'19].

A brief history on Light Spanners

- Greedy-spanner has constant lightness in \mathbb{R}^{3} [Das et al.,SoCG'93]; which was later generalized to \mathbb{R}^{d} [Das et al., SODA'95].
- In fact, greedy spanner has lightness $\varepsilon^{-O(d)}$ in \mathbb{R}^{d}, for every constant d. [Rao \& Smith, STOC'98].
Question: What is the best possible constant in the exponent?
$\square(1+\varepsilon)$-spanner with lightness $\varepsilon^{-2 d}$ exists [Narasimhan \& Smid. Geometric Spanner Networks].

A metric of doubling dimension d has a spanner of lightness $(d / \varepsilon)^{O(d)}$ [Gottlieb, FOCS'15]
\square Greedy $(1+\varepsilon)$-spanner of a finite metric space of doubling dimension d has lightness $\varepsilon^{-O(d)}$ [Borradaile et al., SODA'19].

Spanners in Metric Spaces.

	Stretch	Sparsity	Lightness
General	$(2 k-1)$ $(1+\varepsilon)$	$O\left(n^{1 / k}\right)$ $[$ ADDJS93]	$O\left(n^{1 / k} / \varepsilon^{3}\right)$ $[\mathrm{CW} 16]$
Euclidean	$(1+\varepsilon)$	$O\left(\varepsilon^{1-d}\right)$ $[$ Yao82]	$O\left(\varepsilon^{-d}\right)$ $[$ LS19]
Doubling	$(1+\varepsilon)$	$O\left(\varepsilon^{-O(d)}\right)$ $[H M 05]$	$O\left(\varepsilon^{-O(d)}\right)$ $[\mathrm{BLW} 19]$
Minor-free	$(1+\varepsilon)$	$O(1)$ better.. ?	$O\left(\varepsilon^{-3}\right)$ $[$ BLW17]

Precise Dependency on $\varepsilon>0 \& d$.

- Le and Solomon in FOCS'19 established the dependencies of ε in the lightness and sparsity bounds of Euclidean $(1+\varepsilon)$-spanners.

Precise Dependency on $\varepsilon>0 \& d$.

- Le and Solomon in FOCS'19 established the dependencies of ε in the lightness and sparsity bounds of Euclidean ($1+\varepsilon$)-spanners.

For every $\varepsilon>0$ and constant $d \in \mathbb{N}$, and a set S of n points in \mathbb{R}^{d},

■ every $(1+\varepsilon)$-spanner must have lightness $\Omega\left(\varepsilon^{-d}\right)$ and sparsity $\Omega\left(\varepsilon^{-d+1}\right)$, whenever $\varepsilon=\Omega\left(n^{-1 /(d-1)}\right)$.
\square The greedy $(1+\varepsilon)$-spanner in \mathbb{R}^{d} has lightness $O\left(\varepsilon^{-d} \log \varepsilon^{-1}\right)$.

Last few years (highlights) ...
Trade-off Between Degree, Diameter, and Lightness -
■ Optimal Euclidean Spanners: Really Short, Thin, and Lanky [Elkin \& Solomon, J.ACM 2015]

Trade-off Between Degree, Lightness -

- Unified Framework for Light Spanners [Le \& Solomon, STOC 2023]

Trade-off Between Degree \& Sparsity -

- Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function [Le, Milenkovic \& Solomon, SoCG 2023]

Steiner Points - The Game Changer!

- Steiner points can substantially improve bounds on the lightness and sparsity of Euclidean $(1+\varepsilon)$-spanners [Le and Solomon, FOCS'19].

Steiner Points - The Game Changer!

- Steiner points can substantially improve bounds on the lightness and sparsity of Euclidean $(1+\varepsilon)$-spanners [Le and Solomon, FOCS'19].

	Sparsity	Lightness
Lower Bound	$\Omega\left(\varepsilon^{-\frac{1}{2}} / \log \varepsilon^{-1}\right), \text { for } d=2$ [Le \& Solomon, FOCS'19]	$\Omega\left(\varepsilon^{-1} / \log \varepsilon^{-1}\right)$, for $d=2$ [Le \& Solomon, FOCS'19]
Upper Bound	$O\left(\varepsilon^{(1-d) / 2}\right)$ for d-space [Le \& Solomon, FOCS'19]	- $O\left(\varepsilon^{-1} \log \Delta\right)$, for $d=2$ [Le \& Solomon, ESA'20] $\tilde{O}\left(\varepsilon^{-(d+1) / 2}\right)$, for $d \geq 3$ [Le \& Solomon, ArXiv'20]

Effectiveness of Steiner Points - Steiner Ratios, etc.

- Steiner points can improve the weight of the network in the single-source setting.

Exponential improvement on the lightness in a metric space [Elkin \& Solomon, SICOMP'15] Quadratic improvement on the lightness in Euclidean spaces [Solomon, JoCG'15].

Effectiveness of Steiner Points - Steiner Ratios, etc.

- Steiner points can improve the weight of the network in the single-source setting.

Exponential improvement on the lightness in a metric space [Elkin \& Solomon, SICOMP'15] Quadratic improvement on the lightness in Euclidean spaces [Solomon, JoCG'15].

Shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$. Without Steiner point, we would need a star centered at s, of weight $\Theta\left(\varepsilon^{-1}\right)$ to guarantee a stretch factor $\leq 1+\varepsilon$.

Improved Bounds

Lower Bound [Bhore \& Tóth, SIDMA'22]

Theorem 1 Let a positive integers d and real $\varepsilon>0$ be given such that $\varepsilon \leq 1 / d$. Then there exists a set S of n points in \mathbb{R}^{d} such that any Euclidean Steiner $(1+\varepsilon)$-spanner for S has lightness $\Omega\left(\varepsilon^{-d / 2}\right)$ and sparsity $\Omega\left(\varepsilon^{(1-d) / 2}\right)$.

Improved Bounds

Lower Bound [Bhore \& Tóth, SIDMA'22]

Theorem 1 Let a positive integers d and real $\varepsilon>0$ be given such that $\varepsilon \leq 1 / d$. Then there exists a set S of n points in \mathbb{R}^{d} such that any Euclidean Steiner $(1+\varepsilon)$-spanner for S has lightness $\Omega\left(\varepsilon^{-d / 2}\right)$ and sparsity $\Omega\left(\varepsilon^{(1-d) / 2}\right)$.

Upper Bound [Bhore \&Tóth, SoCG'21]
Theorem 2 For every set S of n points in Euclidean plane, there exists a Steiner $(1+\varepsilon)$-spanner of lightness $O\left(\varepsilon^{-1}\right)$.

Where do we stand ...

All bounds are for Euclidean Steiner $(1+\varepsilon)$-spanner

	Sparsity	Lightness
Lower Bound	$\Omega\left(\varepsilon^{-1 / 2} / \log \varepsilon^{-1}\right)$ [Le\&Solomon, FOCS'19] $\Omega\left(\varepsilon^{(1-d) / 2}\right)$ [Bhore\&Tóth, SIDMA'22]	$\Omega\left(\varepsilon^{-1} / \log \varepsilon^{-1}\right)$, for $d=2$ [Le\&Solomon, FOCS'19] $\Omega\left(\varepsilon^{-d / 2}\right)$ [Bhore\&Tóth, SIDMA'22]
Upper Bound	$O\left(\varepsilon^{(1-d) / 2}\right)$ for d-space [Le \& Solomon, FOCS'19]	$\Omega\left(\varepsilon^{-1} \log \Delta\right)$, for $d=2$ [Le \& Solomon,ESA'20] $\tilde{O}\left(\varepsilon^{-(d+1) / 2}\right)$, for $d \geq 3$ [Le \& Solomon, STOC'23] $O\left(\varepsilon^{-1}\right)$, for $d=2$ [Bhore\&Tóth, SoCG'21]

Lower Bounds

Basic Observation. Every $a b$-path of length at most $(1+\varepsilon)\|a b\|$ lies in the ellipoid $\mathcal{E}_{a b}$ with foci a and b and great axis $(1+\varepsilon)\|a b\|$.

The spacing between the points guarantees that we obtain disjoint ellipsoids $\mathcal{E}_{a b}$ for a family of parallel $a b$ pairs.

Lower Bounds

Basic Observation. Every $a b$-path of length at most $(1+\varepsilon)\|a b\|$ lies in the ellipoid $\mathcal{E}_{a b}$ with foci a and b and great axis $(1+\varepsilon)\|a b\|$.

The spacing between the points guarantees that we obtain disjoint ellipsoids $\mathcal{E}_{a b}$ for a family of parallel $a b$ pairs. However, ellipsoids $\mathcal{E}_{a b}$ and $\mathcal{E}_{c d}$ may overlap in general.

Lower Bounds

An $a b$-path $P_{a b}$ of weight $\leq(1+\varepsilon)\|a b\|$ is "nearly" parallel to $a b$.
Let $E(\alpha)=\left\{\right.$ edges e in $P_{a b}$ with $\left.\angle(a b, e) \leq \alpha\right\}$

Lemma. For $i=1, \ldots,\lfloor 1 / \sqrt{\varepsilon}\rfloor,\|E(i \cdot \sqrt{\varepsilon})\| \geq\left(1-\frac{2}{i^{2}}\right)\|a b\|$.
Corollary. Every $a b$-path of weight $\leq(1+\varepsilon)\|a b\|$ contains edges of direction $\angle(a b, e) \leq 2 \cdot \sqrt{\varepsilon}$ of total weight $\geq \frac{1}{2}\|a b\|$.
In each ellipsoid $\mathcal{E}_{a b}$, we count only edges of direction $\angle(a b, e) \leq 2 \cdot \sqrt{\varepsilon}$. \Rightarrow no edge is counted twice.

Lower Bounds

Lightness Lower Bounds

Theorem. $\forall d \geq 2, \forall \varepsilon>0$, with $\varepsilon \leq 1 / d$, there is a set S of n points in \mathbb{R}^{d} such that any Euclidean Steiner $(1+\varepsilon)$-spanner N for S has lightness $\Omega_{d}\left(\varepsilon^{\frac{-d}{2}}\right)$.
Construction. Let $S=A \cup B$, grids on two opposite faces of a unit cube, with $\frac{d}{\sqrt{\varepsilon}}$ spacing.

Q Lightness analysis.

- $|S|=\Theta_{d}\left(\varepsilon^{(1-d) / 2}\right)$.
- $\|\operatorname{MST}(S)\|=1+(|S|-2) \frac{d}{\sqrt{\varepsilon}}=\Theta_{d}\left(\varepsilon^{1-d / 2}\right)$.
- $\|N\| \geq \sum_{(a, b) \in A \times B}\left\|E_{a b}(2 \sqrt{\varepsilon})\right\|$
$\geq \sum_{(a, b) \in A \times B} \frac{1}{2}\|a b\|$
$\geq|A \times B| \cdot \frac{1}{2} \geq \Omega\left(|S|^{2}\right) \geq \Omega_{d}\left(\varepsilon^{1-d}\right)$.

\square Lightness $(N)=\frac{\|N\|}{\mid \operatorname{MST}(S) \|} \geq \Omega_{d}\left(\frac{\varepsilon^{1-d}}{\varepsilon^{1-d / 2}}\right) \geq \Omega_{d}\left(\varepsilon^{-d / 2}\right)$.

Lower Bounds

Sparsity Lower Bounds

Theorem. $\forall d \geq 2, \forall \varepsilon>0$, with $\varepsilon \leq 1 / d$, there is a set S of n points in \mathbb{R}^{d} such that any Euclidean Steiner $(1+\varepsilon)$-spanner N for S has sparsity $\Omega_{d}\left(\varepsilon^{\frac{1-d}{2}}\right)$.

Construction. Let $S=A \cup B$, grids on two opposite faces of a unit cube, with $\frac{d}{\sqrt{\varepsilon}}$ spacing.

Q Sparsity analysis.

- $|S|=\Theta_{d}\left(\varepsilon^{(1-d) / 2}\right)$.
- $\|N\| \geq \Omega_{d}\left(\varepsilon^{1-d}\right)$ [cf. lightness analysis]
- We may assume $N \subset Q$ [Le \& Solomon, 2019], hence $\forall e \in E(N): \| e \mid \leq \operatorname{diam}(Q)=\sqrt{d}$.
- $|E(N)| \geq \frac{\|N\|}{\max _{e \in E(N)}\|e\|} \geq \Omega_{d}\left(\frac{\varepsilon^{1-d}}{\sqrt{d}}\right) \geq \Omega_{d}\left(\varepsilon^{1-d}\right)$.

- $\operatorname{Sparsity}(N)=\frac{|E(N)|}{|S|} \geq \Omega_{d}\left(\frac{\varepsilon^{1-d}}{\varepsilon(1-d) / 2}\right) \geq \Omega_{d}\left(\varepsilon^{\frac{1-d}{2}}\right)$.

Upper Bound

- We prove and construct, for every $\varepsilon>0$ and every set of n points in \mathbb{R}^{2}, a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O\left(\varepsilon^{-1}\right)$.

Three Major Components

Upper Bound

- We prove and construct, for every $\varepsilon>0$ and every set of n points in \mathbb{R}^{2}, a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O\left(\varepsilon^{-1}\right)$.

Three Major Components

Directional
Spanners

Upper Bound

- We prove and construct, for every $\varepsilon>0$ and every set of n points in \mathbb{R}^{2}, a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O\left(\varepsilon^{-1}\right)$.

Three Major Components

Directional
Spanners

Generalized
Shallow-light Trees

Upper Bound

- We prove and construct, for every $\varepsilon>0$ and every set of n points in \mathbb{R}^{2}, a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O\left(\varepsilon^{-1}\right)$.

Three Major Components

Directional Spanners

Modified Window-Partitoning Scheme

Upper Bound

Direction of a segment -

Angle-bounded path -

Directional $(1+\varepsilon)$-Spanner

- For an interval $D \subset[0, \pi)$ of directions, we construct a Euclidean Steiner $(1+\varepsilon)$-spanner restricted to points pairs whose directions are in D.

Definition - A geometric graph G is a directional $(1+\varepsilon)$-spanner for S and D if for every $a, b \in S$, where the direction of $a b$ is in D, graph G contains an $a b$-path of weight at most $(1+\varepsilon)\|a b\|$.

The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval $D=\left[\frac{\pi}{2}-\sqrt{\varepsilon}, \frac{\pi}{2}+\sqrt{\varepsilon}\right]$ of directions, there exists a directional $(1+\varepsilon)$-spanner of weight $O\left(\varepsilon^{-1 / 2}\|M S T(S)\|\right)$.

Let $N=\bigcup_{i=1}^{k} N_{i}$ be the union of the networks N_{i} for $i \in\{1, \ldots, k\}$.

- The total weight of N, for $k=O\left(\varepsilon^{-1 / 2}\right)$, is

$$
\|N\|=\sum_{i=1}^{k}\left\|N_{i}\right\| \leq k O\left(\varepsilon^{-\frac{1}{2}}\|M S T(S)\|\right) \leq O\left(\varepsilon^{-1}\|M S T(S)\|\right)
$$

The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval $D=\left[\frac{\pi}{2}-\sqrt{\varepsilon}, \frac{\pi}{2}+\sqrt{\varepsilon}\right]$ of directions, there exists a directional $(1+\varepsilon)$-spanner of weight $O\left(\varepsilon^{-1 / 2}\|M S T(S)\|\right)$.

Strategy: for each interval

$$
D=\left[\frac{\pi}{2}-\sqrt{\varepsilon}, \frac{\pi}{2}+\sqrt{\varepsilon}\right] .
$$

1. Find a tiling of a bounding box of S, of weight $O(\|M S T(S)\|)$.
2. For each tile P, construct a directional spanner for a finite point set on the boundary of P, of weight $O\left(\varepsilon^{-1 / 2} \operatorname{per}(P)\right)$.

The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval $D=\left[\frac{\pi}{2}-\sqrt{\varepsilon}, \frac{\pi}{2}+\sqrt{\varepsilon}\right]$ of directions, there exists a directional $(1+\varepsilon)$-spanner of weight $O\left(\varepsilon^{-1 / 2}\|M S T(S)\|\right)$.

Strategy: for each interval

$$
D=\left[\frac{\pi}{2}-\sqrt{\varepsilon}, \frac{\pi}{2}+\sqrt{\varepsilon}\right] .
$$

1. Find a tiling of a bounding box of S, of weight $O(\|M S T(S)\|)$.
2. For each tile P, construct a directional spanner for a finite point set on the boundary of P, of weight $O\left(\varepsilon^{-1 / 2} \operatorname{per}(P)\right)$.

The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval $D=\left[\frac{\pi}{2}-\sqrt{\varepsilon}, \frac{\pi}{2}+\sqrt{\varepsilon}\right]$ of directions, there exists a directional $(1+\varepsilon)$-spanner of weight $O\left(\varepsilon^{-1 / 2}\|M S T(S)\|\right)$.

Tiling - Histograms - Window partitioning
Given a set S of n points in \mathbb{R}^{2},
(1) $B B(S) \cup$ Reclilinear $\mathrm{MST}(\mathrm{S})$ gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.

Tiling - Histograms - Window partitioning

Given a set S of n points in \mathbb{R}^{2},
(1) $B B(S) \cup$ Reclilinear $\mathrm{MST}(\mathrm{S})$ gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.
(3) A rectangulation would have weight $O(\|M S T(S)\| \log n)$.

Tiling — Histograms - Window partitioning
Given a set S of n points in \mathbb{R}^{2},
(1) $B B(S) \cup$ Reclilinear $\mathrm{MST}(\mathrm{S})$ gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.
(3) Compute the window-partition into rectilinear histograms.

Shallow-Light Trees for Staircases

> Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s
to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Shallow-Light Trees for Staircases

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Shallow-light tree from s to a line segment L.
[Solomon, JoCG'15]

Shallow-Light Trees for Staircases

Shallow-light tree from s to a line segment L.
[Solomon, JoCG'15]

Solomon: For a source s, and a line segment L of width 1 at distance $\varepsilon^{-1 / 2}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-1 / 2}\right)$.

Lemma. For a source s, and a staircase path L of width 1 at distance $\varepsilon^{-\frac{1}{2}}$ from s, there exists a shallow-light tree of weight $O\left(\varepsilon^{-\frac{1}{2}}+\|L\|\right)$.

Shallow-Light Trees for Staircases

In a staircase polygon P, we place shallow-light trees recursively to construct a directional $(1+\varepsilon)$-spanner for all $a b$-pairs with $a b \subset P$. The total weight is $O\left(\varepsilon^{-1}\right.$ width $\left.(P)\right)$.

Shallow-Light Trees for Staircases

We can handle rectangle and staircase tiles!

Shallow-Light Trees for Staircases

We can handle rectangle and staircase tiles! ...but not necessarily histograms...

Partitioning a histogram into staircases would cost a $O(\log n)$ factor [de Berg \& Kreveld, 1994]

Tiling - Histograms - Window partitioning

 (3) Compute the window-partition into, rectilinear histograms. modified

(1) Fuzzy Histograms and Staircases

A fuzzy histogram is a simple polygon bounded by a y monotone rectilinear path L and a path γ of one or two edges of slopes $\pm \Lambda \varepsilon^{-1 / 2}$; if the latter path has two edges, then its interior vertex is a reflex vertex of the polygon.

a fuzzy histogram

a Λ-path

(1) Fuzzy Histograms and Staircases

A fuzzy staircase is a simple polygon bounded by a path pqr, where $p q$ is horizontal and slope $(q r)= \pm \Lambda \varepsilon^{-1 / 2}$, and a $p r$-path obtained from an x - and y-monotone staircase by replacing vertical edges with some Λ-paths.

a fuzzy histogram

a Λ-path
(1) Partitioning Fuzzy Histograms into Fuzzy Staircases

Partitioning a fuzzy histogram into

- fuzzy staircases and
- tame histograms
increases the weight by only a constant factor (by a simple charging scheme).

(1) Directions Spanners for Fuzzy Staircases

Generalization from staircases to fuzzy staircases:
L.: We can augment a fuzzy staircase P to a geometric graph of weight $O\left(\operatorname{per}(P)+\varepsilon^{-1 / 2}\right.$ hper $\left.(P)\right)$ that contains, for all $a, b \in \partial P$, a path of weight at most $(1+O(\varepsilon))\|a b\|$.

(2) y-Monotone Λ-Histograms

A Λ-histogram is a simple polygon obtained from a histogram by replacing each vertical edge with some Λ-path, in which every edge is vertical, or has slope $\pm \Lambda \varepsilon^{-1 / 2}$, for a constant $\Lambda>0$.

a y-monotone
Λ-histogram

(2) Partitioning Λ-Histograms into Tame Histograms

A tame histogram is a simple polygon bounded by a horizontal line segment $p q$ and a $p q$-path that consists of ascending or descending Λ-paths and x monotone increasing horizontal edges s.t.:
(i) there is no chord between interior points of any two ascending (resp., two descending) Λ-paths; and
(ii) for every horizontal chord $a b$, with $a, b \in L$, the subpath $L_{a b}$ of L between a and b satisfies $\left\|L_{a b}\right\| \leq 2\|a b\|$.

Shallow-light Trees for Tame Histograms

The SLT construction generalizes to tame histograms:
L.: We can augment a tame histogram ∂P to a geometric graph of weight $O\left(\varepsilon^{-1 / 2} \operatorname{hper}(P)\right)$ that contains, for all $a, b \in \partial P$, a path of weight at most $(1+O(\varepsilon))\|a b\|$.

Tame histograms

The construction generalizes to tame histogram:
We can augment a tame histogram ∂P to a geometric graph of weight $O\left(\varepsilon^{-1 / 2} \operatorname{hper}(P)\right)$ that contains, for all $a, b \in \partial P$, a path of weight at most $(1+O(\varepsilon))\|a b\|$.

Upper bound - Theorem

Theorem. For every set S of n points in Euclidean plane, there exists a Steiner $(1+\varepsilon)$-spanner of lightness $O\left(\varepsilon^{-1}\right)$.

Lemma. We can subdivide a (weakly) simple rectilinear polygon P into a collection \mathcal{F} of fuzzy staircases and tame histograms of total perimeter $\sum_{F \in \mathcal{F}} \operatorname{per}(F) \leq O\left(\varepsilon^{-1 / 2} \operatorname{per}(P)\right)$ and total horizontal perimeter $\sum_{F \in \mathcal{F}} \operatorname{hper}(F) \leq O(\operatorname{per}(P))$.

Lemma. Let F be a fuzzy staircase or a tame histogram, $S \subset \partial F$ a finite point set, $\varepsilon>0$, and $D=\left[\frac{\pi-\sqrt{\varepsilon}}{2}, \frac{\pi+\sqrt{\varepsilon}}{2}\right]$ an interval of nearly vertical directions. Then there exists a geometric graph of weight

$$
O\left(\operatorname{per}(F)+\varepsilon^{-1 / 2} \operatorname{hper}(F)\right)
$$

such that for all $a, b \in S$, if $a b$ is a chord of F and $\operatorname{dir}(a b) \in D$, then G contains an $a b$-path of weight at most $(1+O(\varepsilon))\|a b\|$.

Summary

	Sparsity	Lightness
Lower Bound	- $\Omega\left(\varepsilon^{-1 / 2} / \log \varepsilon^{-1}\right)$ [Le\&Solomon, FOCS'19] $\Omega\left(\varepsilon^{(1-d) / 2)}\right.$ [Bhore \&Tóth, SIDMA'22]	$\Omega\left(\varepsilon^{-1} / \log \varepsilon^{-1}\right),$ for $d=2$ [Le\&Solomon, FOCS'19] $\Omega\left(\varepsilon^{-d / 2}\right)$ [Bhore \&Tóth, SIDMA'22]
Upper Bound	$O\left(\varepsilon^{(1-d) / 2}\right)$ for d-space [Le \& Solomon, FOCS'19]	$\Omega\left(\varepsilon^{-1} \log \Delta\right)$, for $d=2$ [Le \& Solomon, ESA'20] $\tilde{O}\left(\varepsilon^{-(d+1) / 2}\right)$, for $d \geq 3$ [Le \& Solomon, ArXiv'20] $O\left(\varepsilon^{-1}\right)$, for $d=2$ [Bhore \&Tóth, SoCG'21]

- All bounds are for Euclidean Steiner $(1+\varepsilon)$-spanners

Future directions.

- Question: Does there exist Euclidean Steiner $(1+\varepsilon)$-spanners for a finite set of points in \mathbb{R}^{d}, of lightness $O\left(\varepsilon^{-d / 2}\right)$, for $d \geq 3$?
The Steiner ratio for Euclidean $(1+\varepsilon)$-spanners in \mathbb{R}^{d} is the supremum ratio between the min-weight $(1+\varepsilon)$-spanners and the min-weight Steiner $(1+\varepsilon)$-spanners over all finite point sets $S \subset \mathbb{R}^{d}$.

Future directions.

■ Question: Does there exist Euclidean Steiner $(1+\varepsilon)$-spanners for a finite set of points in \mathbb{R}^{d}, of lightness $O\left(\varepsilon^{-d / 2}\right)$, for $d \geq 3$?
The Steiner ratio for Euclidean $(1+\varepsilon)$-spanners in \mathbb{R}^{d} is the supremum ratio between the min-weight $(1+\varepsilon)$-spanners and the min-weight Steiner $(1+\varepsilon)$-spanners over all finite point sets $S \subset \mathbb{R}^{d}$.

- Conjecture: A Euclidean Steiner $(1+\varepsilon)$-spanner cannot simultaneously attain both lower bounds, that is, both $O\left(\varepsilon^{-1}\right)$ lightness and $O\left(\varepsilon^{-1 / 2}\right)$ sparsity in Euclidean plane.
\square Explore the trade-offs between lightness and sparsity in \mathbb{R}^{d}.

Future directions.

- Question: Does there exist Euclidean Steiner $(1+\varepsilon)$-spanners for a finite set of points in \mathbb{R}^{d}, of lightness $O\left(\varepsilon^{-d / 2}\right)$, for $d \geq 3$?
The Steiner ratio for Euclidean $(1+\varepsilon)$-spanners in \mathbb{R}^{d} is the supremum ratio between the min-weight $(1+\varepsilon)$-spanners and the min-weight Steiner $(1+\varepsilon)$-spanners over all finite point sets $S \subset \mathbb{R}^{d}$.
- Conjecture: A Euclidean Steiner $(1+\varepsilon)$-spanner cannot simultaneously attain both lower bounds, that is, both $O\left(\varepsilon^{-1}\right)$ lightness and $O\left(\varepsilon^{-1 / 2}\right)$ sparsity in Euclidean plane.
- Explore the trade-offs between lightness and sparsity in \mathbb{R}^{d}.
- Every Steiner spanner can be converted into a plane spanner.
- A simple planarization procedure could cost lots (quadratic number of) of Steiner points.

- Question: Bound the sparsity of a plane Steiner $(1+\varepsilon)$-spanner for n points in Euclidean plane, as a function of n and ε.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

$$
t=2
$$

s_{1}

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.
s_{2}

$$
t=2
$$

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

$$
t=2
$$

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

$$
t=2
$$

s_{3}

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

$$
t=2
$$

$s 3$

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

$$
t=2
$$

$s 3$

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
\square Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
- Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

- Performance of an online algortihm ALG is measured by comparing it to the offline optimum OPT using the standard notion of competitive ratio.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
- Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

Competitive Ratio of an online t-spanner algorithm $A L G$ is defined as $\sup _{\sigma} \frac{A L G(\sigma)}{O P T(\sigma)}$, where the supremum is taken over all input sequences $\sigma, \operatorname{OPT}(\sigma)$ is the minimum weight of a t-spanner for the (unordered) set of points in σ, and $A L G(\sigma)$ denotes the weight of the t-spanner produced by $A L G$ for this input sequence.

Going Online ...

Model -

- Input: We are given sequence of n points $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ in a metric space, where point s_{i} is presented in step i for $i=1, \ldots, n$.
- Objective: Maintain a geometric t-spanner on $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for each step i. The algorithm is allowed to add edges but not delete edges.

Competitive Ratio of an online t-spanner algorithm $A L G$ is defined as $\sup _{\sigma} \frac{A L G(\sigma)}{O P T(\sigma)}$, where the supremum is taken over all input sequences $\sigma, \operatorname{OPT}(\sigma)$ is the minimum weight of a t-spanner for the (unordered) set of points in σ, and $A L G(\sigma)$ denotes the weight of the t-spanner produced by $A L G$ for this input sequence.

Problem. Determine the best possible bounds for the competitive ratios for the weight and the number of edges of online t-spanners, for $t \geq 1$.

A bit of history ...

- Computing $(1+\varepsilon)$-spanner of minimum weight is NP-hard.
- Several approximation algorithms known - they also approximate the lightness.
- Online Steiner tree problem was studied by Imase and Waxman [SODA'1991] and they gave $\Theta(\log n)$.
- Alon and Azar [DCG'1993] studied minimum Steiner trees for points in the Euclidean plane, and gave improved bound of $\Omega(\log n / \log \log n)$.
- A large body of work done on dynamic spanners.

A bit of history ...

Computing $(1+\varepsilon)$-spanner of minimum weight is NP-hard.

- Several approximation algorithms known - they also approximate the lightness.
- Online Steiner tree problem was studied by Imase and Waxman [SODA'1991] and they gave $\Theta(\log n)$.
- Alon and Azar [DCG'1993] studied minimum Steiner trees for points in the Euclidean plane, and gave improved bound of $\Omega(\log n / \log \log n)$.
A large body of work done on dynamic spanners.

Online Steiner spanners.

- It is allowed to use auxiliary points (Steiner points) which are not part of input sequence of points.
\square An online algorithm is allowed to add Steiner points and subdivide existing edges with Steiner points at each time step.

Effects of Irrevocability

- The algorithm is allowed to add edges but not delete edges.

Effects of Irrevocability

- The algorithm is allowed to add edges but not delete edges.
- The value of OPT is not necessarily monotone!!!

Effects of Irrevocability

- The algorithm is allowed to add edges but not delete edges.
- The value of OPT is not necessarily monotone!!!

An optimum $\frac{3}{2}$-spanner on three points with all edges of unit length

Effects of Irrevocability

- The algorithm is allowed to add edges but not delete edges.
- The value of OPT is not necessarily monotone!!!

An optimum $\frac{3}{2}$-spanner on three points with all edges of unit length

After inserting a point at the center, the cost decreases.

Let's start with one dimension.

- Lower Bound

Let's start with one dimension.

- Lower Bound
- Adversarial strategy - start with two points $p_{0}=0$ and $q_{0}=1$. Then, successively places points $p_{i}=i \cdot \frac{\varepsilon}{2}$, for $i=1, \ldots, n$ so that all points remain in the interval $\left[0, \frac{1}{2}\right]$.

Let's start with one dimension.

- Lower Bound
- Adversarial strategy - start with two points $p_{0}=0$ and $q_{0}=1$. Then, successively places points $p_{i}=i \cdot \frac{\varepsilon}{2}$, for $i=1, \ldots, n$ so that all points remain in the interval $\left[0, \frac{1}{2}\right]$.

Let's start with one dimension.

- Lower Bound
- Adversarial strategy - start with two points $p_{0}=0$ and $q_{0}=1$. Then, successively places points $p_{i}=i \cdot \frac{\varepsilon}{2}$, for $i=1, \ldots, n$ so that all points remain in the interval $\left[0, \frac{1}{2}\right]$.
- Repeats the same strategy in every subinterval.

Let's start with one dimension.

- Lower Bound
- Adversarial strategy - start with two points $p_{0}=0$ and $q_{0}=1$. Then, successively places points $p_{i}=i \cdot \frac{\varepsilon}{2}$, for $i=1, \ldots, n$ so that all points remain in the interval $\left[0, \frac{1}{2}\right]$.
- Repeats the same strategy in every subinterval.

One dimension - Cont.

Upper Bound

Algorithm -
\square For all $i=1, \ldots, n$, we maintain a spanning graph G_{i} on $S_{i}=$ $\left\{s_{1}, \ldots, s_{i}\right\}$ and the x-monotone path P_{i} between the leftmost and the rightmost points in $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$.

- When s_{i} arrives,
- If s_{i} is left (resp., right) of all previous points - add to the closest point.
Else, consider the interval inside which s_{i} appeared, and join to the endpoints.

One dimension - Cont.

Upper Bound

Algorithm -
\square For all $i=1, \ldots, n$, we maintain a spanning graph G_{i} on $S_{i}=$ $\left\{s_{1}, \ldots, s_{i}\right\}$ and the x-monotone path P_{i} between the leftmost and the rightmost points in $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$.

- When s_{i} arrives,
- If s_{i} is left (resp., right) of all previous points - add to the closest point.
- Else, consider the interval inside which s_{i} appeared, and join to the endpoints.

Theorem. Competitive ratio of any online algorithm for $(1+\varepsilon)$-spanners for a sequence of points on a line is $\Omega\left(\varepsilon^{-1} \log n / \log \varepsilon^{-1}\right)$. Moreover, there is an online algorithm that maintains a $(1+\varepsilon)$-spanner with competitive ratio $O\left(\varepsilon^{-1} \log n / \log \varepsilon^{-1}\right)$.

Higher Dimensions under the L_{2}-norm

Theorem. For every $\varepsilon>0$, an online algorithm can maintain, for a sequence of $n \in \mathbb{N}$ points in \mathbb{R}^{d}, a Euclidean Steiner $(1+\varepsilon)$ spanner of weight $\left.O\left(\varepsilon^{(1-d) / 2} \log n\right) \cdot \mathrm{OPT}\right)$.

Higher Dimensions under the L_{2}-norm

Theorem. For every $\varepsilon>0$, an online algorithm can maintain, for a sequence of $n \in \mathbb{N}$ points in \mathbb{R}^{d}, a Euclidean Steiner $(1+\varepsilon)$ spanner of weight $O\left(\varepsilon^{(1-d) / 2} \log n\right) \cdot$ OPT $)$.

Online Algorithm in two layers:

1. DefSpanner algorithm [Gao et al., 2006]: a $(1+\varepsilon)$-spanner G_{1} of weight $O\left(\varepsilon^{-(d+1)} \log n \cdot \mathrm{OPT}\right)$, without Steiner points.
2. We maintain a $(1+\varepsilon)$-spanner G_{2} for G_{1} of weight $O\left(\varepsilon^{(1-d) / 2} \log n \cdot \mathrm{OPT}\right)$ with Steiner points.

Higher Dimensions under the L_{2}-norm

Theorem. For every $\varepsilon>0$, an online algorithm can maintain, for a sequence of $n \in \mathbb{N}$ points in \mathbb{R}^{d}, a Euclidean Steiner $(1+\varepsilon)$ spanner of weight $\left.O\left(\varepsilon^{(1-d) / 2} \log n\right) \cdot \mathrm{OPT}\right)$.

Online Algorithm in two layers:

1. DefSpanner algorithm [Gao et al., 2006]: a $(1+\varepsilon)$-spanner G_{1} of weight $O\left(\varepsilon^{-(d+1)} \log n \cdot \mathrm{OPT}\right)$, without Steiner points. 2. We maintain a $(1+\varepsilon)$-spanner G_{2} for G_{1} of weight $O\left(\varepsilon^{(1-d) / 2} \log n \cdot \mathrm{OPT}\right)$ with Steiner points.
\longrightarrow Stretch factor: $(1+\varepsilon)(1+\varepsilon)=(1+O(\varepsilon))$
\longrightarrow Key idea: nearly parallel edges, of similar lengths in G_{1} are replaced by a Shalow-Light Tree (SLT) in G_{2}.

Higher Dimensions under the L_{2}-norm
Overview of DefSpanner algorithm by Gao et al [2006].

1. Hierarchical Clustering: Maintain a quadtree for the points incrementally (online)
2. Well-Separated Pair Decomposition (WSPD): At each level of the quadtree, with cubes of side length ℓ, add an edge between any two nonempty cells at distance $O(\ell / \varepsilon)$.

Higher Dimensions under the L_{2}-norm
Overview of DefSpanner algorithm by Gao et al [2006].

1. Hierarchical Clustering: Maintain a quadtree for the points incrementally (online)
2. Well-Separated Pair Decomposition (WSPD): At each level of the quadtree, with cubes of side length ℓ, add an edge between any two nonempty cells at distance $O(\ell / \varepsilon)$.

When a new point s arrives:

- Insert s into the Quadtree,
- If s is the first point in a cell, which has side length ℓ, add edges between s and a representative of other cells within distance $O(\ell / \varepsilon)$.

Higher Dimensions under the L_{2}-norm
Overview of DefSpanner algorithm by Gao et al [2006].

1. Hierarchical Clustering: Maintain a quadtree for the points incrementally (online)
2. Well-Separated Pair Decomposition (WSPD): At each level of the quadtree, with cubes of side length ℓ, add an edge between any two nonempty cells at distance $O(\ell / \varepsilon)$.

When a new point s arrives:

- Insert s into the Quadtree,
- If s is the first point in a cell, which has side length ℓ, add edges between s and a representative of other cells within distance $O(\ell / \varepsilon)$.

Higher Dimensions under the L_{2}-norm
Online Steiner spanner algorithm.

- Partition the sphere of directions into $\Theta\left(\varepsilon^{(1-d) / 2}\right)$ cones of aperture $\left.\sqrt{\varepsilon}\right)$.
- We constuction a Steiner spanner for each cone of directions.

Higher Dimensions under the L_{2}-norm
Online Steiner spanner algorithm.

- Partition the sphere of directions into $\Theta\left(\varepsilon^{(1-d) / 2}\right)$ cones of aperture $\left.\sqrt{\varepsilon}\right)$.
- We constuction a Steiner spanner for each cone of directions.
- For each level of the quadtree, create a covering cylinders of width $\sqrt{\varepsilon} \cdot \ell$
- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges of the same direction.

Higher Dimensions under the L_{2}-norm
Online Steiner spanner algorithm.

- Partition the sphere of directions into $\Theta\left(\varepsilon^{(1-d) / 2}\right)$ cones of aperture $\left.\sqrt{\varepsilon}\right)$.
- We constuction a Steiner spanner for each cone of directions.
- For each level of the quadtree, create a covering cylinders of width $\sqrt{\varepsilon} \cdot \ell$
- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges of the same direction.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
- add a grid of cell-size $\varepsilon \ell$ around p and q;
- connect p and q to the nearest grid points;
- add a SLT between the two grids.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

$\stackrel{R}{ }$

For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
- add a grid of cell-size $\varepsilon \ell$ around p and q;
- connect p and q to the nearest grid points;
- add a SLT between the two grids.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

R
For the first edge $e=p q$,
- add a "backbone" line in the center of the cyclinder;
- add a grid of cell-size $\varepsilon \ell$ around p and q;
connect p and q to the nearest grid points;
- add a SLT between the two grids.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

R
For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
\square add a grid of cell-size $\varepsilon \ell$ around p and q;
- connect p and q to the nearest grid points;
- add a SLT between the two grids.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

R
For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
- add a grid of cell-size $\varepsilon \ell$ around p and q;
- connect p and q to the nearest grid points;
\square add a SLT between the two grids.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
\square add a grid of cell-size $\varepsilon \ell$ around p and q;
\square connect p and q to the nearest grid points; \longleftarrow cost for additional edges
- add a SLT between the two grids.

Future edges in the same cylinder can use the same infrastructure.
The extra cost is $O(\varepsilon \ell)$ for the connection to the closest grid points.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

R
For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
\square add a grid of cell-size $\varepsilon \ell$ around p and q;
\square connect p and q to the nearest grid points; \longleftarrow cost for additional edges
- add a SLT between the two grids.

Future edges in the same cylinder can use the same infrastructure.
The extra cost is $O(\varepsilon \ell)$ for the connection to the closest grid points.

Higher Dimensions under the L_{2}-norm

- When DefSpanner inserts an edge e in a cyclinder, we construct an SLT that can accomodate future edges in the same cyclinder.

R

R
For the first edge $e=p q$,

- add a "backbone" line in the center of the cyclinder;
- add a grid of cell-size $\varepsilon \ell$ around p and q;
\square connect p and q to the nearest grid points; \longleftarrow cost for additional edges
- add a SLT between the two grids.

Future edges in the same cylinder can use the same infrastructure.
The extra cost is $O(\varepsilon \ell)$ for the connection to the closest grid points.

Higher Dimensions under the L_{2}-norm

Competitive analysis. In each cyclinder, we charge the weight of the Steiner graph (backbone, grid, and SLT) to the weight of OPT.
For every $p, q \in S$, an OPT spanner contains a $p q$-path of weight at most $(1+\varepsilon)\|p q\|$ in an ellipse $B_{p q}$ with foci $p \& q$.
 Lemma (B\&T, STACS 2021). In a $p q$-path of weight $\leq(1+\varepsilon)\|p q\|$, the edges e such that $\angle(p q, e) \leq \sqrt{\varepsilon}$ have total weight at least $\frac{1}{2}\|p q\|$.

Higher Dimensions under the L_{2}-norm

Competitive analysis. In each cyclinder, we charge the weight of the Steiner graph (backbone, grid, and SLT) to the weight of OPT.
For every $p, q \in S$, an OPT spanner contains a $p q$-path of weight at most $(1+\varepsilon)\|p q\|$ in an ellipse $B_{p q}$ with foci $p \& q$.

$B_{p q}$ Lemma (B\&T, STACS 2021). In a $p q$-path of weight $\leq(1+\varepsilon)\|p q\|$, the edges e such that $\angle(p q, e) \leq \sqrt{\varepsilon}$ have total weight at least $\frac{1}{2}\|p q\|$.

- The ellipse $B_{p q}$ lies in a small neighborhood of the cyclinder.
- OPT contains edges of weight $\geq \frac{1}{2}\|p q\|$ of direction $\left.\angle\left(e^{\prime}, p q\right) \leq \sqrt{\varepsilon}\right)$ in a small neighborhood of the cylinder.
- The ratio $\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq O\left(\varepsilon^{\frac{1-d}{2}}\right)$ holds for each cylinder \& each direction.

Where do we stand ...

Without Steiner points.

Family	Stretch	\# of edges	Lightness
General metrics	$(2 k-1)(1+\varepsilon)$	$O\left(\varepsilon^{-1} \log \left(\frac{1}{\varepsilon}\right)\right) n^{1+\frac{1}{k}}$	$O\left(n^{\frac{1}{k}} \varepsilon^{-1} \log ^{2} n\right)$
Euclidean d-space	$1+\varepsilon$	$\tilde{O}_{d}\left(\varepsilon^{1-d}\right) n$	$O\left(\varepsilon^{-d} \log n\right)$
Real line	$1+\varepsilon$	$n-1$	$\tilde{\Theta}\left(\varepsilon^{-1} \log n\right)$
Doubling[GGN'0	$1+\varepsilon$	$\varepsilon^{-O(d)} n$	$\varepsilon^{-O(d)} \log n$
Family	Stretch	\# of edges	Comp. ratio
General metrics	$(2 k-1)$	-	$\Omega\left(\frac{1}{k} \cdot n^{\frac{1}{k}}\right)$
Euclidean plane	$1+\varepsilon$	$\tilde{O}\left(\varepsilon^{-1}\right) n$	$\tilde{O}\left(\varepsilon^{-3 / 2} \log n\right)$
\mathbb{R}^{d} with L_{1}-norm	$1+\varepsilon$	-	$\Omega\left(\varepsilon^{-d}\right)$

Where do we stand ...

With Steiner points.

Points in \mathbb{R}^{d} with Steiner points.

- Upper Bound - $\Omega\left(\varepsilon^{(1-d) / 2} \log n\right)$.

Lower Bound $-\Omega(f(n))$ for some function $f(n), \lim _{n \rightarrow \infty} f(n)=\infty$.
Under L_{1} norm.
Lower bounds $-\Omega\left(\varepsilon^{-2} / \log \varepsilon^{-1}\right)$ in \mathbb{R}^{2} and is $\Omega\left(\varepsilon^{-d}\right)$ in \mathbb{R}^{d} for $d \geq 3$.

Where do we stand ...

With Steiner points.

Points in \mathbb{R}^{d} with Steiner points.

- Upper Bound $-\Omega\left(\varepsilon^{(1-d) / 2} \log n\right)$.

Lower Bound $-\Omega(f(n))$ for some function $f(n), \lim _{n \rightarrow \infty} f(n)=\infty$.
Under L_{1} norm.
\square Lower bounds $-\Omega\left(\varepsilon^{-2} / \log \varepsilon^{-1}\right)$ in \mathbb{R}^{2} and is $\Omega\left(\varepsilon^{-d}\right)$ in \mathbb{R}^{d} for $d \geq 3$.

Future directions.

Without Steiner points, Log-dependence is unavoidable, due to LB in \mathbb{R}.
Q: Does the competitive ratio of an online $(1+\varepsilon)$-spanner algorithm for n points in \mathbb{R}^{d} necessarily grow proportionally with $\varepsilon^{-f(d)} \cdot \log n$, where $\lim _{d \rightarrow \infty} f(d)=\infty$?

Thank you

for your attention!

