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Graph Spanners

@ Given an edge-weighted graph (G, a spanner is a subgraph H of G that
preserves the length of the shortest paths in G up to some amount of
multiplicative or additive distortion.
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Graph Spanners

@ Given an edge-weighted graph (G, a spanner is a subgraph H of G that
preserves the length of the shortest paths in G up to some amount of
multiplicative or additive distortion.

® Formally, a subgraph H of a given edge-weighted graph G is a t-spanner,

for some t > 1, if for every pq € (V(QG)) we have dg(p,q) <t-da(p,q),

where dg (p, q) denotes the length of the shortest path in G.
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Graph Spanners

@ Given an edge-weighted graph (G, a spanner is a subgraph H of G that
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B The parameter ¢ is called the stretch factor/dialation factor of the
spanner.
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Graph Spanners - Applications!

4/54

B Graph spanners were introduced by Peleg and Schaffer [Journal of
Graph Theory'89].

B Spanners are fundamental graph structures with numerous
applications —

Distributed queuing protocol [Demmer & Herlihy, DISC'98].
Compact routing scheme [Thorup & Zwick, SPAA’'01].
Online load balancing [Awerbuch et al., STOC'92].

Wireless sensor networks [Shpungin & Segal, INFOCOM'09].

Motion planning in robotics control optimization
[Cai & Keil, IJCGA’97].

Distributed systems and communications [Peleg, SIAM M.
DMA’00; Demmer & Herlihy, DISC'98].

and many others ...
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Geometric Spanners

B In geometric settings, a t-spanner for a finite point set P of points in
R?, is a subgraph underlying of the complete graph Gp = (P, (]23))
that preserves the pairwise Euclidean distances between points in S to
within a factor of t, that is the stretch factor.

B The edge weights of Gp are the Euclidean distances between the
vertices.
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Geometric Spanners - Applications!

B Chew [SoCG'1986] initiated the study of Euclidean spanners, and
showed that for a set of n points in R? there exists a spanner with
O(n) edges and constant stretch factor.

B Geometric spanners have applications accross domains —

B Topology control in wireless networks [Schindelhauer et al.,
Comp. Geom.'07].

B Efficient regression in metric spaces [Gottlieb et al., IEEE T.
Inf. Th.'17].

B Approximate distance oracles [Gudmundsson et al. TALG'08].

B Euclidean spanners are relevant in the context of other
fundamental NP-hard problems, such as Euclidean TSP,
Euclidean minimum Steiner tree [Rao and Smith, STOC'1998].
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Various Types of Geometric Spanner Constructions
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Bounded-degree spanners [Bose et al., Algorithmica’05]
a-diamond spanners [Das & Joseph, ISOA’98].

Well-separated pair decomposition (WSPD)
[Callahan, FOCS'93; Gudmundsson et al., SIAM J. Comp.'02]

Skip-lists [Arya et al., FOCS'94].

Path-greedy [Althofer et al., DCG'93].

Gap-greedy [Arya & Smid, Algorithmica’97].

Locality sensitive orderings [Chan et al., SIAM J. Comp.'20].

See the book of Narasimhan and Smid on geometric spanners,

and the survey of Bose et al.
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Sparsity

@ The sparsity of a spanner H is the ratio

[E(H)|  [E(H)]
[E(MST)|  |V(G)|

between the number of edges of H and an M ST'.

B Since H is connected, liminf|y gy oosparsity(H)> 1.
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A brief History on Sparse Euclidean Spanners

® Q: How sparse a spanner should be ...7
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A brief History on Sparse Euclidean Spanners

® Q: How sparse a spanner should be ...7
- Preferably, O(|S|) with stretch factor (1 + ¢), for a set S of n points.
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A brief History on Sparse Euclidean Spanners

® Q: How sparse a spanner should be ...7
- Preferably, O(|S|) with stretch factor (1 + ¢), for a set S of n points.

B Chew [SoCG'86] showed an existence of spanners with linear number
of edges with stretch factor 1/10.

B Clarckson [STOC'87] designed first (1 4 €)-spanner; Keil [SWAT'88]
gave an alternative algorithm.

Delanauy triangulation of the point set S is a 2.42-spanner [DCG'92].

©-graphs help designing spanners in R?.
This was generalized to R? by Ruppert and Seidel [CCCG'91].
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A brief History on Sparse Euclidean Spanners

® Q: How sparse a spanner should be ...7
- Preferably, O(|S|) with stretch factor (1 + ¢), for a set S of n points.

B Chew [SoCG'86] showed an existence of spanners with linear number
of edges with stretch factor 1/10.

B Clarckson [STOC'87] designed first (1 4 €)-spanner; Keil [SWAT'88]
gave an alternative algorithm.

Delanauy triangulation of the point set S is a 2.42-spanner [DCG'92].

©-graphs help designing spanners in R?.
This was generalized to R? by Ruppert and Seidel [CCCG'91].

Question: Is the trade-off between the stretch factor 1 + ¢ and
the sparsity O(e~%T1) tight?
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Lightness

@ For a finite set S in a metric space, the lightness of a spanner H is

IH||  2eerm) el
[MST(S)I| |MST(S)|
the ratio of the weight of H to the weight of a Euclidean M ST of S.
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Lightness

@ For a finite set S in a metric space, the lightness of a spanner H is

IH||  2eerm) el
[MST(S)I| |MST(S)|
the ratio of the weight of H to the weight of a Euclidean M ST of S.
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A brief history on Light Spanners
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@ Greedy-spanner has constant lightness in R3 [Das et al.,.SoCG'93];
which was later generalized to R? [Das et al., SODA’95].

@ In fact, greedy spanner has lightness e=0(d) in R4, for every
constant d. [Rao & Smith, STOC'98|.

2d

B (1 + e)-spanner with lightness e~“% exists

[Narasimhan & Smid. Geometric Spanner Networks].

® A metric of doubling dimension d has a spanner of lightness
(d/e)C(@) [Gottlieb, FOCS'15]

B Greedy (1 + e)-spanner of a finite metric space of doubling
dimension d has lightness e=©(4) [Borradaile et al., SODA'19].
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A brief history on Light Spanners

11/54

@ Greedy-spanner has constant lightness in R3 [Das et al.,.SoCG'93];
which was later generalized to R? [Das et al., SODA’95].

@ In fact, greedy spanner has lightness e=0(d) in R4, for every
constant d. [Rao & Smith, STOC'98|.

Question: What is the best possible constant in the exponent?

2d

B (1 + e)-spanner with lightness e~“% exists

[Narasimhan & Smid. Geometric Spanner Networks].

® A metric of doubling dimension d has a spanner of lightness
(d/e)C(@) [Gottlieb, FOCS'15]

B Greedy (1 + e)-spanner of a finite metric space of doubling
dimension d has lightness e=©(4) [Borradaile et al., SODA'19].
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Spanners in Metric Spaces.

Stretch Sparsity Lightness
General (2k — 1) O(n'/¥) O(n'/* /%)
(1+¢) [ADDJS93] [CW16]
. O(e'™%) O(e™)
Euclidean | (1+¢) [Ya082] [LS19]
. O(=0(d) O (9@
Doubl
oubling | (1 +¢) [HMOS] [BLW19]
| O(e™7)
Minor-free| (14 ¢) O1) [BLW17]

better.. ?
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Precise Dependency on ¢ > 0 & d.

® Le and Solomon in FOCS'19 established the dependencies
of € in the lightness and sparsity bounds of Euclidean
(1 4 €)-spanners.
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Precise Dependency on ¢ > 0 & d.

® Le and Solomon in FOCS'19 established the dependencies
of € in the lightness and sparsity bounds of Euclidean
(1 4 €)-spanners.

For every ¢ > 0 and constant d € N, and a set S of n
points in R?,

B every (1 + ¢)-spanner must have lightness (=) and
sparsity (e ~9*1), whenever ¢ = Q(n~1/(d=1),

m The greedy (1 + &)-spanner in R? has lightness
O(c %loge™1).
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Last few years (highlights) ...

Trade-off Between Degree, Diameter, and Lightness -

® Optimal Euclidean Spanners: Really Short, Thin, and
Lanky [Elkin & Solomon, J.ACM 2015]

Trade-off Between Degree, Lightness -

® Unified Framework for Light Spanners [Le &
Solomon, STOC 2023]

Trade-off Between Degree & Sparsity -

B Sparse Euclidean Spanners with Optimal Diameter:
A General and Robust Lower Bound via a Concave
Inverse-Ackermann Function [Le, Milenkovic &

Solomon, SoCG 2023]
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Steiner Points - The Game Changer!

& Steiner points can substantially improve bounds on the lightness and
sparsity of Euclidean (1 + )-spanners [Le and Solomon, FOCS’'19].
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Steiner Points - The Game Changer!

@ Steiner points can substantially improve bounds on the lightness and
sparsity of Euclidean (1 + )-spanners [Le and Solomon, FOCS’'19].

Sparsity

Lightness

Lower
Bound

[ Q(a_%/loge_l), for d = 2
[Le & Solomon, FOCS'19]

B Qe 1/loge 1), ford =2
[Le & Solomon, FOCS'19]

Upper
Bound

B O(e(1=9/2) for d-space
[Le & Solomon, FOCS'19]

B O(etlogA), ford =2
[Le & Solomon, ESA'20]

B O(e(@+1)/2) for d > 3
[Le & Solomon, ArXiv'20]

15/54
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Effectiveness of Steiner Points - Steiner Ratios, etc.

@ Steiner points can improve the weight of the network in the

single-source setting. _ _
A S o Exponential improvement on

\ the lightness in a metric space

[Elkin & Solomon, SICOMP'15]
\ Quadratic improvement on the
\\\ lightness in Euclidean spaces

[Solomon, JoCG'15].

c—1/2
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Effectiveness of Steiner Points - Steiner Ratios, etc.

@ Steiner points can improve the weight of the network in the

single-source setting. _ _
A S o Exponential improvement on

\ the lightness in a metric space

[Elkin & Solomon, SICOMP'15]
\ Quadratic improvement on the
\\\ lightness in Euclidean spaces

2 [Solomon, JoCG'15].
l(so
Shallow-light tree of weight O(¢~1/2).
Without Steiner point, we would need a
star centered at s, of weight ©(c™1)
i1 o to guarantee a stretch factor <1 +«.
1
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Improved Bounds

Lower Bound [Bhore & Téth, SIDMA'22]

Theorem 1 Let a positive integers d and real € > 0 be given
such that € < 1/d. Then there exists a set S of n points in
R? such that any Euclidean Steiner (1 + €)-spanner for S has
lightness Q(e~%2) and sparsity Q(e1=D/2).
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Improved Bounds

Lower Bound [Bhore & Téth, SIDMA'22]

Theorem 1 Let a positive integers d and real € > 0 be given
such that € < 1/d. Then there exists a set S of n points in

R? such that any Euclidean Steiner (1 + €)-spanner for S has
lightness Q(e~%2) and sparsity Q(e1=D/2).

Upper Bound [Bhore &Téth, SoCG'21]

Theorem 2 For every set S of n points in Euclidean plane, there
exists a Steiner (1 + ¢)-spanner of lightness O(s™1).
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Where do we stand ...

B All bounds are for Euclidean Steiner (1 + )-spanner

Sparsity

Lightness

Lower
Bound

B Qe Y2/loge™ )
[Le&Solomon, FOCS'19]

B Q@E(-9/2)
[Bhore& Téth, SIDMA’22]

B Qe /loge™ 1),
for d = 2
Le&Solomon, FOCS'19]
B Qe9/2)
Bhore& Téth, SIDMA'22]

Upper
Bound

B O(c1=9/2) for d-space
[Le & Solomon, FOCS'19]

B Qe ltlogA), for d =2
[Le & Solomon,ESA'20]

B O(e(@+1)/2) for d > 3
[Le & Solomon, STOC'23]

B O 1), ford=2
[Bhore& Téth, SoCG'21]
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Lower Bounds

Basic Observation. Every ab-path of length at most (1 +¢)||ab||
lies in the ellipoid &, with foci a and b and great axis (1+¢)||ab|].

The spacing between the points guarantees that we obtain
disjoint ellipsoids &£, for a family of parallel ab pairs.

ramarararr L
C% ..... (/ \)
U U \v/ \\// U U U v (1+)|ab| -
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Lower Bounds

Basic Observation. Every ab-path of length at most (1 +¢)||ab||
lies in the ellipoid &, with foci a and b and great axis (1+¢)||ab|].

The spacing between the points guarantees that we obtain
disjoint ellipsoids &£, for a family of parallel ab pairs.
However, ellipsoids &, and &£.; may overlap in general.

A

A

A

A}

I

i

i

i

i

|1/

J

20,54
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Lower Bounds
An ab-path P, of weight < (1+¢)||ab|| is “nearly” parallel to ab.
Let E(a) = {edggs e in P,; with L:(ab, e): < :oz}: o

5 P, | . iiig

E(i-VE)| > (1 2) [lab].

Corollary. Every ab-path of weight < (1 + ¢)||ab|| contains edges

Lemma. Fori=1,...,|1/\/¢], |

In each ellipsoid &,p, i
we count only edges of 8 o)
direction Z(ab,e) < 2-y/e.
= no edge Is counted twice.
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_ower Bounds

_ightness Lower Bounds S R2
Theorem. Vd > 2, Ve > 0, with ¢ < 1/d, AT 7]
there is a set S of n points in R such that any Q

Euclidean Steiner (1 + €)-spanner N for S has 1]
—d

lightness Q4(e72 ).
Construction. Let S = A U B, grids on two Ut

2/
opposite faces of a unit cube, with % spacing. < 1 >
Lightness analysis. B s RO
B S| = 0y(ct=4)/2), A O
= [MST(S)] = 1+ (S| - 2) & = 0alc'~¥2).
o N 2 S neas | Ea(2vE)] 1
>3 Lllab| OSONONN D o e
— (a,b)eAXB 2 _
Z ’A % B‘ 1 > Q(‘S| ) (gl—d) <3/\/_ FX

1
® Lightness(N) = |M2]TV<”5)|| > Qa(Smam) > Qu(e=4?). g R3
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Lower Bounds

Sparsity Lower Bounds

Theorem. Vd > 2, Ve > 0, with ¢ < 1/d,
there is a set S of n points in R such that any
Euclidean Steiner (1 + ¢)-spanner N for S has

1—d

sparsity 4(e72 ).

Construction.
opposite faces of a unit cube, with

Llet S = AU B, grids on two
d

NG spacing.
Sparsity analysis.

W [S| =04 "D/2).

B || N| > Qq(el™9) [cf. lightness analysis]

B We may assume N C @ [Le & Solomon, 2019]
hence Ve € E(N) : |le| < dlam(Q) \/E

m|E(N)| > — Xee'g('}b) o = Q= ) > Qe
B Sparsity(N) = =~

E(N)|
5T 2 Q

23,54

c1—d
( -(1—d)/2 d)/2) >Qd(5 2 )

S C R?
[0—.—.—.—.—.—.

1

2/Ve

S C R3

?).

—d
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Upper Bound

® We prove and construct, for every € > 0 and every set of n points in
R?, a Euclidean Steiner (1 + ¢)-spanner of lightness O(e¢™1).

Three Major Components
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Upper Bound

B We prove and construct, for every € > 0 and every set of n points in
R?, a Euclidean Steiner (1 + €)-spanner of lightness O(e™1).
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Upper Bound

B We prove and construct, for every € > 0 and every set of n points in
R?, a Euclidean Steiner (1 + €)-spanner of lightness O(e™1).
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Upper Bound

Direction of a segment -

Angle-bounded path -

Directional (1 + ¢)-Spanner

B For an interval D C [0, ) of directions, we construct a Euclidean
Steiner (1 + )-spanner restricted to points pairs whose directions
are in D.

B Definition - A geometric graph G is a directional (1 + ¢)-spanner for
S and D if for every a,b € S, where the direction of ab is in D,
graph G contains an ab-path of weight at most (1 + ¢)||ab||.

24 /54 Sujoy Bhore - Euclidean Steiner Spanners: Light & Sparse



The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval
D =[5 —+/¢g, 5 ++/¢] of directions, there exists a directional (1+¢)-spanner

of weight O(e~1/2||MST(S)|)).

I L* &EVW“
T ‘r‘vﬂ‘w
slllls il

B let N = Ui?:l N, be the union of the networks N; for ¢ € {1,...,k}.
B The total weight of N, for k = O(e—1/2), is
1 _
INII = S5 INill < kO (72 | MST(S)||) < O (==} |MST(S)]]).
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The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval
D =[5 —+/¢g, 5 ++/¢] of directions, there exists a directional (1+¢)-spanner

of weight O(e—1/2||MST(S)|)).

Strategy: for each interval

D=5 Ve %5+ Vel

1. Find a tiling of a bound-
ing box of §, of weight
O(| MST(S)])).

2. For each tile P, construct
a directional spanner for
a finite point set on the
boundary of P, of weight

O(e71/2 per(P)).
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The main Lemma

Lemma 1 For a set S of n points in the plane, and for the interval
D =[5 —+/¢g, 5 ++/¢] of directions, there exists a directional (1+¢)-spanner

of weight O(e—1/2||MST(S)|)).

¢ : Ple
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Tiling — Histograms — Window partitioning

Given a set S of n points in R?,
(1) BB(S)U Reclilinear MST(S) gives a tiling.
(2) Each tile is a (weakly) simple rectilinear polygon.
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Tiling — Histograms — Window partitioning

Given a set S of n points in R?,

(1) BB(S)U Reclilinear MST(S) gives a tiling.

(2) Each tile is a (weakly) simple rectilinear polygon.

(3) A rectangulation would have weight O(||M ST (S)||logn).
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Tiling — Histograms — Window partitioning

Given a set S of n points in R?,

(1) BB(S)U Reclilinear MST(S) gives a tiling.

(2) Each tile is a (weakly) simple rectilinear polygon.

(3) Compute the window-partition into rectilinear histograms.

€0
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Shallow-Light Trees for Staircases

A ® s Solomon: For a source
| s, and a line segment L
of width 1 at distance
e~ 1/2 from s, there ex-

Ists a shallow-light tree
of weight O(e71/2).

‘
t1 tot3 g t5tg t7 TS

Shallow-light tree from s

to a line segment L.
[Solomon, JoCG'15]
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Shallow-Light Trees for Staircases

A ® s Solomon: For a source
s, and a line segment L
of width 1 at distance
e~ 1/2 from s, there ex-
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of width 1 at distance
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Shallow-Light Trees for Staircases

A ® s Solomon: For a source
s, and a line segment L
of width 1 at distance
e~ 1/2 from s, there ex-
Ists a shallow-light tree

< of weight O(¢~1/2).

o
Lemma. For a source
s, and a staircase path
L of width 1 at distance
' £~z from s, there ex-

Ists a shallow-light tree
“Ll2tsta 15T BT IS of weight O(c 2 + || L)).

Shallow-light tree from s

to a line segment L.
[Solomon, JoCG'15]
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Shallow-Light Trees for Staircases

In a staircase polygon P, we place shallow-light trees recursively to con-

struct a directional (1 4 ¢)-spanner for all ab-pairs with ab C P.
The total weight is O(e~! width(P)).

a
'0"'¢"¢"j’zv

AN
b
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Shallow-Light Trees for Staircases

We can handle rectangle and staircase tiles!
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Shallow-Light Trees for Staircases

We can handle rectangle and staircase tiles! ~ Partitioning a  histogram

...but not necessarily histograms... into staircases would cost a
O(logn) factor [de Berg &
Kreveld, 1994]

Lo

H
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Tiling — Histograms — Window partitioning

(3) Compute the window-partition into,rectilinear histograms.
yan e
modified

“fuzzy histograms”

Y0

32/54 Sujoy Bhore - Euclidean Steiner Spanners: Light & Sparse



(1) Fuzzy Histograms and Staircases

A fuzzy histogram is a simple polygon bounded by a -
monotone rectilinear path L and a path + of one or two
edges of slopes = Ac~1/2; if the latter path has two edges,
then its interior vertex is a reflex vertex of the polygon.

r

a A-path

a fuzzy histogram fuzzy staircases
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(1) Fuzzy Histograms and Staircases

A fuzzy staircase is a simple polygon bounded by a path pgr,
where pq is horizontal and slope(gr) = +Ae~'/2, and a
pr-path obtained from an z- and y-monotone staircase by re-
placing vertical edges with some A-paths.

| r a A-path
a fuzzy histogram fuzzy staircases
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(1) Partitioning Fuzzy Histograms into Fuzzy Staircases

Partitioning a fuzzy histogram into

B fuzzy staircases and

B tame histograms

Increases the weight by only a constant factor
(by a simple charging scheme).
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(1) Directions Spanners for Fuzzy Staircases

Generalization from staircases to fuzzy staircases:

L.: We can augment a fuzzy staircase P to a geometric
graph of weight O(per(P) + ¢~/2hper(P)) that contains,
for all a,b € OP, a path of weight at most (1 4+ O(¢g))||ab|].
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(2) y-Monotone A-Histograms

A A-histogram is a simple polygon obtained from a histogram
by replacing each vertical edge with some A-path,

in which every edge is vertical, or has slope + Ae—1/2
for a constant A > 0.

a y-monotone
A-histogram
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(2) Partitioning A-Histograms into Tame Histograms

A tame histogram is a simple polygon bounded by a horizontal line segment
pq and a pg-path that consists of ascending or descending A-paths and x-
monotone increasing horizontal edges s.t.:

(i) there is no chord between interior points of any two ascending (resp., two
descending) A-paths; and

(ii) for every horizontal chord ab, with a,b € L, the subpath L, of L between
a and b satisfies ||Lqp|| < 2||ab|

L

-
!

ST
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Shallow-light Trees for Tame Histograms

The SLT construction generalizes to tame histograms:

L.: We can augment a tame histogram 0P to a geomet-
ric graph of weight O(e~'/?hper(P)) that contains, for all
a,b € OP, a path of weight at most (1 4+ O(¢))||ab||.

38/54 Sujoy Bhore - Euclidean Steiner Spanners: Light & Sparse



Tame histograms

The construction generalizes to tame histogram:

We can augment a tame histogram 0P to a geometric graph
of weight O(e~1/2hper(P)) that contains, for all a,b € OP,
a path of weight at most (1 + O(¢))||ab||.

SN
W N
v

: { ‘l jun)
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Upper bound - Theorem

Theorem. For every set S of n points in Euclidean plane, there exists a
Steiner (1 + €)-spanner of lightness O(e~1).

40/54

Lemma. We can subdivide a (weakly) simple rectilinear polygon P
into a collection F of fuzzy staircases and tame histograms of

total perimeter } .. r per(F) < O(e~/2per(P)) and
total horizontal perimeter } ..~ hper(F) < O(per(P)).

Lemma. Let F' be a fuzzy staircase or a tame histogram, S C OF a
finite point set, € > 0, and D = [W_Q\/g, 7T+2\/g] an interval of nearly
vertical directions. Then there exists a geometric graph of weight

O(per(F) 4+ e~ 1/2 hper(F))

such that for all a,b € S, if ab is a chord of F' and dir(ab) € D, then
(G contains an ab-path of weight at most (1 + O(¢g))||ab].
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Summary

Sparsity

Lightness

Lower
Bound

B Qe 12/loge™ 1)
[Le&Solomon, FOCS'19]
B QE(-d)/2)
[Bhore &Téth, SIDMA'22]

B Qe 1/loge 1),

for d =2

[Le&Solomon, FOCS'19]
B Qe 9/2)

[Bhore &Téth, SIDMA’22]

Upper
Bound

B O((1=9/2) for d-space
[Le & Solomon, FOCS'19]

B Qe ltlogA), for d =2
[Le & Solomon, ESA'20]

B O d+D)/2) for d > 3
[Le & Solomon, ArXiv'20]
B O 1), ford=2
[Bhore & Téth, SoCG'21]

B All bounds are for Euclidean Steiner (1 + ¢)-spanners
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Future directions.

B Question: Does there exist Euclidean Steiner (1 + £)-spanners for a
finite set of points in R%, of lightness O(s_d/Q), for d > 37

The Steiner ratio for Euclidean (1 + €)-spanners in RY is the supremum
ratio between the min-weight (1 + £)-spanners and the min-weight Steiner
(1 + €)-spanners over all finite point sets S C R?.
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Future directions.

B Question: Does there exist Euclidean Steiner (1 4 €)-spanners for a
finite set of points in R%, of lightness O(s_d/Q), for d > 37

The Steiner ratio for Euclidean (1 + €)-spanners in RY is the supremum
ratio between the min-weight (1 + £)-spanners and the min-weight Steiner
(1 + €)-spanners over all finite point sets S C R?.

B Conjecture: A Euclidean Steiner (1 + £)-spanner cannot
simultaneously attain both lower bounds, that is,

both O(e~1) lightness and O(e~1/2) sparsity in Euclidean plane.

B Explore the trade-offs between lightness and sparsity in R,

42/54 Sujoy Bhore - Euclidean Steiner Spanners: Light & Sparse



Future directions.

B Question: Does there exist Euclidean Steiner (1 4 €)-spanners for a
finite set of points in R%, of lightness O(s_d/Q), for d > 37

The Steiner ratio for Euclidean (1 + €)-spanners in RY is the supremum

ratio between the min-weight (1 + £)-spanners and the min-weight Steiner
(1 + €)-spanners over all finite point sets S C R?.

B Conjecture: A Euclidean Steiner (1 + £)-spanner cannot
simultaneously attain both lower bounds, that is,

both O(e~1) lightness and O(e~1/2) sparsity in Euclidean plane.

B Explore the trade-offs between lightness and sparsity in R,

— Every Steiner spanner can be converted into a plane spanner.
— A simple planarization procedure could cost lots >‘<
(quadratic number of) of Steiner points.

B Question: Bound the sparsity of a plane Steiner (1 4 €)-spanner for n
points in Euclidean plane, as a function of n and €.
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Going Online ...

Model -

B Input: We are given sequence of n points (s1,S2,...,Syn) in a metric
space, where point s; is presented in step ¢z forz =1,...,n.

B Objective: Maintain a geometric t-spanner on S; = {s1,...,s;} for

each step 7. The algorithm is allowed to add edges but not delete
edges.
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Going Online ...

Model -

B Input: We are given sequence of n points (s1,S2,...,Syn) in a metric
space, where point s; is presented in step ¢z forz =1,...,n.

B Objective: Maintain a geometric t-spanner on S; = {s1,...,s;} for
each step 7. The algorithm is allowed to add edges but not delete
edges.

S
o 52

S1

$3
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Going Online ...

Model -

B Input: We are given sequence of n points (s1,S2,...,Syn) in a metric
space, where point s; is presented in step ¢z forz =1,...,n.

B Objective: Maintain a geometric t-spanner on S; = {s1,...,s;} for
each step 7. The algorithm is allowed to add edges but not delete
edges.
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S1
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Going Online ...

Model -

B Input: We are given sequence of n points (s1,S2,...,Syn) in a metric
space, where point s; is presented in step ¢z forz =1,...,n.

B Objective: Maintain a geometric t-spanner on S; = {s1,...,s;} for
each step 7. The algorithm is allowed to add edges but not delete
edges.

S
o 52
S4
°
. t =2
S1
®
3

® Performance of an online algortihm ALG is measured by comparing it
to the offline optimum OPT using the standard notion of competitive

ratio.
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Going Online ...

Model -

B Input: We are given sequence of n points (s1,S2,...,Syn) in a metric
space, where point s; is presented in step ¢z forz =1,...,n.

B Objective: Maintain a geometric t-spanner on S; = {s1,...,s;} for
each step 7. The algorithm is allowed to add edges but not delete
edges.

® Competitive Ratio of an online t-spanner algorithm ALG is defined

as sup,, éff;%i% , where the supremum is taken over all input

sequences o, OPT (o) is the minimum weight of a t-spanner for the
(unordered) set of points in o, and ALG(0) denotes the weight of the
t-spanner produced by ALG for this input sequence.
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Going Online ...

Model -

B Input: We are given sequence of n points (s1,S2,...,Syn) in a metric
space, where point s; is presented in step ¢z forz =1,...,n.

B Objective: Maintain a geometric t-spanner on S; = {s1,...,s;} for
each step 7. The algorithm is allowed to add edges but not delete
edges.

® Competitive Ratio of an online t-spanner algorithm ALG is defined

as sup,, éff;%i% , where the supremum is taken over all input

sequences o, OPT (o) is the minimum weight of a t-spanner for the
(unordered) set of points in o, and ALG(0) denotes the weight of the
t-spanner produced by ALG for this input sequence.

Problem. Determine the best possible bounds for the competitive ratios
for the weight and the number of edges of online t-spanners, for ¢t > 1.
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A bit of history ...

Computing (1 + £)-spanner of minimum weight is NP-hard.

Several approximation algorithms known - they also approximate the
lightness.

® Online Steiner tree problem was studied by Imase and Waxman
[SODA'1991] and they gave O(logn).

B Alon and Azar [DCG'1993] studied minimum Steiner trees for points
in the Euclidean plane, and gave improved bound of
Q(logn/loglogn).

@ A large body of work done on dynamic spanners.
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A bit of history ...

Computing (1 + £)-spanner of minimum weight is NP-hard.

Several approximation algorithms known - they also approximate the
lightness.

® Online Steiner tree problem was studied by Imase and Waxman
[SODA'1991] and they gave O(logn).

B Alon and Azar [DCG'1993] studied minimum Steiner trees for points
in the Euclidean plane, and gave improved bound of
Q(logn/loglogn).

@ A large body of work done on dynamic spanners.

Online Steiner spanners.
B It is allowed to use auxiliary points (Steiner points) which are not
part of input sequence of points.

® An online algorithm is allowed to add Steiner points and subdivide
existing edges with Steiner points at each time step.
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Effects of Irrevocability

® The algorithm is allowed to add edges but not delete edges.
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Effects of Irrevocability

® The algorithm is allowed to add edges but not delete edges.

B The value of OPT is not necessarily monotone!!!
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® The algorithm is allowed to add edges but not delete edges.

B The value of OPT is not necessarily monotone!!!

An optimum %-spanner on three

points with all edges of unit length
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Effects of Irrevocability

® The algorithm is allowed to add edges but not delete edges.

B The value of OPT is not necessarily monotone!!!

An optimum %-spanner on three After inserting a point at the center,

points with all edges of unit length the cost decreases.
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| et’s start with one dimension.

B Lower Bound
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| et’s start with one dimension.

B Lower Bound

- Adversarial strategy - start with two points pg = 0 and gg = 1.
Then, successively places points p; = 1 - % fort = 1,...,n so that

all points remain in the interval [0, %]
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| et’s start with one dimension.

B Lower Bound

- Adversarial strategy - start with two points pg = 0 and gg = 1.
Then, successively places points p; = 1 - % fort = 1,...,n so that

all points remain in the interval [0, %]

Po pP1 p2 p3 P4 40
<4 L4 <4 4>
e/2 €/2 €/2 ¢g/2
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| et’s start with one dimension.

B Lower Bound

- Adversarial strategy - start with two points pg = 0 and gg = 1.
Then, successively places points p; = 1 - % fort = 1,...,n so that

all points remain in the interval [0, %]

- Repeats the same strategy in every subinterval.

Po pP1 p2 p3 P4 40
<4 L4 <4 4>
e/2 €/2 €/2 ¢g/2
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One dimension - Cont.

Upper Bound
Algorithm -
® Forallz=1,...,n, we maintain a spanning graph GG; on S; =

{s1,...,8;} and the x-monotone path P; between the leftmost
and the rightmost points in S; = {s1,...,;}.

® When s; arrives,

B If s; is left (resp., right) of all previous points - add to the
closest point.

B Else, consider the interval inside which s; appeared, and join
to the endpoints.
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One dimension - Cont.

Upper Bound
Algorithm -

® Forallz=1,...,n, we maintain a spanning graph GG; on §; =
{s1,...,8;} and the x-monotone path P; between the leftmost
and the rightmost points in S; = {s1,...,;}.

® When s; arrives,

B If s; is left (resp., right) of all previous points - add to the
closest point.

B Else, consider the interval inside which s; appeared, and join
to the endpoints.

Theorem. Competitive ratio of any online algorithm for (1 + ¢)-spanners for
a sequence of points on a line is Q(s¢~!logn/loge™1!). Moreover, there is
an online algorithm that maintains a (1 + €)-spanner with competitive ratio

O(e~tlogn/loge™1).
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Higher Dimensions under the Lo-norm

Theorem. For every € > 0, an online algorithm can maintain, for

a sequence of n € N points in R¢, a Euclidean Steiner (1 + ¢)-
spanner of weight O(¢11=%/2]ogn) - OPT).
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Higher Dimensions under the Lo-norm

Theorem. For every € > 0, an online algorithm can maintain, for

a sequence of n € N points in R¢, a Euclidean Steiner (1 + ¢)-
spanner of weight O(¢11=%/2]ogn) - OPT).

Online Algorithm in two layers:

1. DEFSPANNER algorithm [Gao et al., 2006]: a (1 + €)-spanner
G of weight O(¢~(?*1 Jogn - OPT)/ without Steiner points.

2. We maintain a (1 + ¢)-spanner Gy for G; of weight
O(e1=D/2Jogn - OPT) with Steiner points.
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Higher Dimensions under the Lo-norm

Theorem. For every € > 0, an online algorithm can maintain, for

a sequence of n € N points in R¢, a Euclidean Steiner (1 + ¢)-
spanner of weight O(¢11=%/2]ogn) - OPT).

Online Algorithm in two layers:

1. DEFSPANNER algorithm [Gao et al., 2006]: a (1 + €)-spanner
G of weight O(¢~(?*1 Jogn - OPT)/ without Steiner points.

2. We maintain a (1 + ¢)-spanner Gy for G; of weight
O(e1=D/2Jogn - OPT) with Steiner points.

—— Stretch factor: (1+¢)(1+¢) = (14 0(e))

—» Key idea: nearly parallel edges, of similar lengths in G4
are replaced by a Shalow-Light Tree (SLT) in G».

><~ . 4?
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Higher Dimensions under the Lo-norm

Overview of DEFSPANNER algorithm by Gao et al [2006].

1. Hierarchical Clustering: Maintain a quadtree for the points
incrementally (online)

2. Well-Separated Pair Decomposition (WSPD): At each
level of the quadtree, with cubes of side length /¢, add an edge
between any two nonempty cells at distance O(¢/¢).

Lo

Qo
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Higher Dimensions under the Lo-norm

Overview of DEFSPANNER algorithm by Gao et al [2006].

1. Hierarchical Clustering: Maintain a quadtree for the points
incrementally (online)

2. Well-Separated Pair Decomposition (WSPD): At each
level of the quadtree, with cubes of side length /¢, add an edge
between any two nonempty cells at distance O(¢/¢).

When a new point s arrives:

C(s, g : - B Insert s into .the Quadtree,
- B |f s is the first point in a
cell, which has side length 7,
add edges between s and a
representative of other cells

within distance O(£/¢).
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Higher Dimensions under the Lo-norm

Online Steiner spanner algorithm.

B Partition the sphere of directions into
O(e(1=9D/2) cones of aperture 1/z).

B We constuction a Steiner spanner for
each cone of directions.
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Higher Dimensions under the Lo-norm

Online Steiner spanner algorithm.

B Partition the sphere of directions into
O(e(1=9D/2) cones of aperture 1/z).

B We constuction a Steiner spanner for
each cone of directions.

B For each level of the
quadtree, create a covering
cylinders of width /e - ¢

® When DEFSPANNER inserts
an edge e in a cyclinder, we
construct an SLT that can

accomodate future edges of /
the same direction.
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Online Steiner spanner algorithm.

B Partition the sphere of directions into
O(e(1=9D/2) cones of aperture 1/z).

B We constuction a Steiner spanner for
each cone of directions.

B For each level of the
quadtree, create a covering
cylinders of width /e - ¢

® When DEFSPANNER inserts
an edge e in a cyclinder, we
construct an SLT that can

accomodate future edges of /
the same direction.
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

Gy

R
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

Gy

p.
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

—0(] =
Gl (U
p € = pq \3

R

G
pe

R
For the first edge e = pgq,

B add a “backbone” line in the center of the cyclinder;
B add a grid of cell-size ¢ around p and g;

B connect p and ¢ to the nearest grid points;

B add a SLT between the two grids.
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For the first edge e = pgq,
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B connect p and ¢ to the nearest grid points;
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

—OC] =
Gl (U
P € = pq \3

R

s

Go

R
For the first edge e = pgq,

B add a “backbone” line in the center of the cyclinder;
B add a grid of cell-size ¢ around p and g;

B connect p and ¢ to the nearest grid points;

B add a SLT between the two grids.
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

—OC] =
Gl (U
P € = pq \3

R

<
G2 “: 2|
Tp r ‘

R
For the first edge e = pgq,

B add a “backbone” line in the center of the cyclinder;
B add a grid of cell-size ¢ around p and g;

B connect p and ¢ to the nearest grid points;

B add a SLT between the two grids.

s
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

—OQ =
Gl (U
p € = pq \3

For the first edge e = pgq,

B add a “backbone” line in the center of the cyclinder;
B add a grid of cell-size ¢ around p and g;

B connect p and ¢ to the nearest grid points;

B add a SLT between the two grids.
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

—0(] =
Gl (U
p* ¢ = pq \3

For the first edge e = pgq,
B add a “backbone” line in the center of the cyclinder;
B add a grid of cell-size ¢ around p and g;
B connect p and ¢ to the nearest grid points; @=cost for additional edges
B add a SLT between the two grids.
Future edges in the same cylinder can use the same infrastructure.
The extra cost is O(&f) for the connection to the closest grid points.
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Higher Dimensions under the Lo-norm

B When DEFSPANNER inserts an edge e in a cyclinder, we construct an
SLT that can accomodate future edges in the same cyclinder.

—0(] =
Gl (U
p € = pq \3

R

s

Go ——

R
For the first edge e = pgq,

B add a “backbone” line in the center of the cyclinder;
B add a grid of cell-size ¢ around p and g;
B connect p and ¢ to the nearest grid points; @=cost for additional edges
B add a SLT between the two grids.
Future edges in the same cylinder can use the same infrastructure.
The extra cost is O(&f) for the connection to the closest grid points.
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Higher Dimensions under the Lo-norm

Competitive analysis. In each cyclinder, we charge the weight of the Steiner
graph (backbone, grid, and SLT) to the weight of OPT.

For every p,q € S, an OPT
spanner contains a pg-path of g ‘l\}
weight at most (1 + €)||pg|| in

an ellipse B,, with foci p & q. qu
Lemma (B&T, STACS 2021). In a pg-path of weight < (1 +¢)||pq
edges e such that Z(pq, e) < /¢ have total weight at least $||pqg||.

~the
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Competitive analysis. In each cyclinder, we charge the weight of the Steiner
graph (backbone, grid, and SLT) to the weight of OPT.

For every p,q € S, an OPT
spanner contains a pg-path of g ‘l\}
weight at most (1 + €)||pg|| in

an ellipse B,, with foci p & q. qu
Lemma (B&T, STACS 2021). In a pg-path of weight < (1 +¢)||pq
edges e such that Z(pq, e) < /¢ have total weight at least $||pqg||.

“ .p\/ez pq/g I Tj
— Bpq >
R

B The ellipse B, lies in a small neighborhood of the cyclinder.

m OPT contains edges of weight > Z||pq|| of direction Z(¢,pq) < \/€)

in a small neighborhood of the cylinder.
1—d

B The ratio % <0 (&:T) holds for each cylinder & each direction.

~the
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Where do we stand ...

Without Steiner points.

53/54

Family Stretch # of edges Lightness
General metrics |(2k —1)(1+¢) [ O(c! log(%))nl‘% O(nte~tlog? n)
Euclidean d-space l+e¢ Od(€1_d>n O~ logn)
Real line 1 +e n—1 S(clogn)
Doubling[GGN'0€ 1 +¢ e e~ 0 g
Family Stretch +# of edges Comp. ratio
General metrics (2k —1) — Q% - ni)
Euclidean plane 1+ ¢ O(e n O(732logn)
R? with L1-norm 1+ ¢ _ Qe
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Where do we stand ...

With Steiner points.

Points in R% with Steiner points.

B Upper Bound - Q(e(1=4)/2Jogn).
B Lower Bound - Q(f(n)) for some function f(n), lim,— f(n) = cc.

Under L1 norm.

B Lower bounds - Q(e72/loge~1) in R? and is Q(e~¢) in R? for d > 3.
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Where do we stand ...

With Steiner points.

Points in R% with Steiner points.

Upper Bound - Q(¢(1=4/21ogn).

Lower Bound - Q2(f(n)) for some function f(n), lim,— o f(n) = co.

Under L1 norm.

Lower bounds - Q(e72/loge~1) in R? and is Q(e~%) in R? for d > 3.

Future directions.

Without Steiner points, Log-dependence is unavoidable, due to LB in R.

Q: Does the competitive ratio of an online (1 + ¢)-spanner algorithm for
n points in R? necessarily grow proportionally with e =f(4) . logn, where

limd—>oo f(d) = o0?
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Thank you
for your attention!
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