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Parameterized Complexity Landscape 

of Cut Problems: 

Pre- and Post-pandemic

Cuts, flows and CSPs

Parameter



Cut Problems

(Directed) graph , 

a pair of vertices  (terminals)

positive integer  

(or a weight function weight  and 
positive weight budget )

G
(s, t)

k
wt : E(G) → ℤ+

W

 a set  

such that  (or ), and


 has no  path.

?∃ Z ⊆ E(G)
|Z | ≤ k wt(Z) ≤ W

G − Z s → t

Input:

Question:

s-t Cut

Polynomial-time solvable
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(Directed) Multicut (MC)
(Directed) graph , 

pairs of vertices (terminals) 

positive integer  

G
(s1, t1), …, (sp, tp)

k

 a set  

such that , and

for each ,


 has no  path.

?∃ Z ⊆ E(G)
|Z | ≤ k

i ∈ {1,…, p}
G − Z si → ti

Directed case: NP-hard for p=2

Undirected case: NP-hard for p=3



Cut Problems

(Directed) Multicut (MC)
(Directed) graph , 

pairs of vertices (terminals) 

positive integer  

G
(s1, t1), …, (sp, tp)

k

 a set  

such that , and

for each ,


 has no  path.

?∃ Z ⊆ E(G)
|Z | ≤ k

i ∈ {1,…, p}
G − Z si → ti

Directed case: NP-hard for p=2

Undirected case: NP-hard for p=3

(Directed) MultiwayCut (MWC)
(Directed) graph , 

pairs of vertices (terminals) 

positive integer  

G
t1, …, tp

k

 a set  

such that , and


 has no  path 

for any , .

?∃ Z ⊆ E(G)
|Z | ≤ k

G − Z ti → tj
i, j ∈ {1,…, p} i ≠ j

NP-hard for p=3



Cut Problems

Directed Feedback Arc Set (DFAS)
Directed graph , 

positive integer  

G
k

 a set  

such that , and


 has no directed cycle.

?∃ Z ⊆ E(G)
|Z | ≤ k

G − Z

Subset DFAS

 a set  

such that , and


 has no directed cycle with at least 
one red arc.

?∃ Z ⊆ E(G)∖R
|Z | ≤ k

G − Z

Directed graph ,

Red arcs ,

positive integer  

G
R ⊆ E(G)

k

NP-hard NP-hard 



Parameterized Complexity
— Parameter is solution size k

FPT: 

W[1]-hard, otherwise.

f(k) ⋅ n𝒪(1)



Cut problems remained elusive for a very long time! 

Even the simplest algorithm is based on a novel concept of important cuts.



Important Cuts

MultiwayCut (MWC)
Undirected graph 

terminals 

Delete  edges to kill all  paths.

G
T = {t1, …, tp}

k ti − tj

t1

t2

t3

t4

Any solution contains some:

•  minimal cut

•  minimal cut

•  minimal cut

•  minimal cut

t1 − T∖t1
t2 − T∖t2
t3 − T∖t3
t4 − T∖t4

Daniel Marx
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Important Cuts

MultiwayCut (MWC)
Undirected graph 

terminals 

Delete  edges to kill all  paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each  is in a different connected component of , then we are done.


2. If there exists , such that there is a path from  to , then enumerate every minimal -cut of size at 
most , and branching of choosing one such cut  in the solution. 


3. Set  and .


4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

Naive algorithm



Important Cuts

MultiwayCut (MWC)
Undirected graph 

terminals 

Delete  edges to kill all  paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each  is in a different connected component of , then we are done.


2. If there exists , such that there is a path from  to , then enumerate every minimal -cut of size at 
most , and branching of choosing one such cut  in the solution. 


3. Set  and .


4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

Naive algorithm

ti tj
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Green is better than red.
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G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each  is in a different connected component of , then we are done.


2. If there exists , such that there is a path from  to , then enumerate every important -cut of size 
almost , and branching of choosing one such cut  in the solution. 
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Important Cuts

MultiwayCut (MWC)
Undirected graph 

terminals 

Delete  edges to kill all  paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each  is in a different connected component of , then we are done.


2. If there exists , such that there is a path from  to , then enumerate every important -cut of size 
almost , and branching of choosing one such cut  in the solution. 


3. Set  and .


4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

We branch into  directions at most  times   running time.4k k ⟹ 4k2n𝒪(1)



Important Cuts

Number of minimal incomparable S-T cuts (called important S-T cuts) of size at most  is at most . 

Can be enumerated in 

k 4k

𝒪(4k ⋅ k ⋅ (n + m))

Inherently greedy: Replace a part of the solution with something that “cuts” as much as the original 
part.



Important Cuts

Number of minimal incomparable S-T cuts (called important S-T cuts) of size at most  is at most . 

Can be enumerated in 

k 4k

𝒪(4k ⋅ k ⋅ (n + m))

Inherently greedy: Replace a part of the solution with something that “cuts” as much as the original 
part.

 Undirected Multiway is FPT.

Directed Feedback Arc Set is FPT.



Igor Razgon

Shadow Removal [STOC 2011]
~Random sampling of important cuts.

Inherently greedy: If there is a solution, assume WLOG that there is a shadowless solution.

Now the goal is to find a shadowless solution, which in many cases is easier.

The simple branching on important cuts does not work for example, for Multicut.

Undirected Multicut is FPT.

Directed Multiway is FPT.

Daniel Marx
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Pre-pandemic~2016

Directed Multicut 

W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014] 

FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

W[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlström SODA 2016, ACM TOCT 2018]

3 terminal pairs
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Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairsI

Weighted settings?

Find a solution of size at most  and weight at most .

Parameter: 

k W
k

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: Constant-factor FPT approximation classification 

[Bonnet, Egri, Marx ESA 2016]
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minimal minimum

Flow augmentation [STOC 2022]

Input: Directed graph , vertices , integer 

Output: A supergraph  of  obtained by adding new arcs 

G s, t k
G′￼ G A

Guarantee: any minimal -  separator  of size at most  in ,

is a minimum -  separator in ,


with probability 

s t Z k G
s t G′￼

2−𝒪(k4 log k)
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Given a directed graph ,

find an s-t cut  in  of size at most  and weight at most .

G
Z G k W

(NP-hard)
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Weighted s-t cut-

Given a directed graph ,

find an s-t cut  in  of size at most  and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

Do flow-augmentation 
and get .G′￼

Flow augmentation
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Given a directed graph ,

find an s-t cut  in  of size at most  and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

[  is a minimum s-t cut 
in the new graph.]
Z

Do flow-augmentation 
and get .G′￼

Flow augmentation
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Given a directed graph ,

find an s-t cut  in  of size at most  and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

[  is a minimum s-t cut 
in the new graph.]
Z

Do flow-augmentation 
and get .G′￼

Flow augmentation

Compute min s-t cut 
value, say , in .

If , report No.

λ G′￼

λ > k



Weighted s-t cut-

Given a directed graph ,

find an s-t cut  in  of size at most  and weight at most .

G
Z G k W

Assign new weights

,


where 
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W̃ = ∑
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Weighted s-t cut-

Given a directed graph ,

find an s-t cut  in  of size at most  and weight at most .

G
Z G k W

Assign new weights

,


where 
w-new(e) = w-old(e) + W̃

W̃ = ∑
e∈E(G)

w-old(e) + 1

Is there an s-t cut in  

whose  is

at most   ?

G′￼

w-new
λW̃ + W

(NP-hard)

minimal minimum

[  is a minimum s-t cut 
in the new graph.]
Z

Do flow-augmentation 
and get .G′￼

Flow augmentation

Compute min s-t cut 
value, say , in .

If , report No.

λ G′￼

λ > k
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Constraint Satisfaction Problems (CSP)
Variables, Domain, Constraints

Example 1: 2-SAT





= all 2-clauses


Instance:





Constraints: 

D = {0,1}
Γ

V = {x1, x2, x3}
(x1 ∨ x2), (¬x2 ∨ x3), (¬x1 ∨ ¬x2)

CSP is defined by: (1) the domain  set and (2) the set of allowed constraints .D Γ
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Γ
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Example 2: 3-Coloring




= 

Instance: Graph 




Constraints: 

D = {0,1,2}
Γ { ≠ }

G
V = V(G)

for each uv ∈ E(G), u ≠ v

CSP is defined by: (1) the domain  set and (2) the set of allowed constraints .D Γ



Constraint Satisfaction Problems (CSP)

For a fixed CSP , an instance consists of :

• A set of variables 

• A set of constraints from  applied to tuples of variables.

Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

(D, Γ)

Γ

Variables, Domain, Constraints

Example 1: 2-SAT





= all 2-clauses


Instance:





Constraints: 

D = {0,1}
Γ

V = {x1, x2, x3}
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Example 2: 3-Coloring




= 

Instance: Graph 




Constraints: 

D = {0,1,2}
Γ { ≠ }

G
V = V(G)

for each uv ∈ E(G), u ≠ v

Theorem [Bulatov, Zhuk 2017]: For every finite  and , the corresponding 
CSP is either polynomial-time solvable or NP-complete.

D Γ

CSP is defined by: (1) the domain  set and (2) the set of allowed constraints .D Γ
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D, Γ
n𝒪(k)

k

Min 2-SAT: captures a range of problems like Edge Bipartization, Odd Cycle Transversal, 
Above-guarantee Vertex Cover, Köning Vertex Deletion and Split Vertex Deletion.



MinCSP
MinCSP ( ): Can we delete at most k constraints to make the resulting instance satisfiable?D, Γ

• Interesting if CSP( ) is polynomial-time.

• Trivial  algorithm.

• Is it FPT parameterized by ?

D, Γ
n𝒪(k)

k

Weighted MinCSP ( ): Each constraint has a weight. 

Can we delete at most k constraints of total weight W to make the resulting instance satisfiable?

D, Γ

Min 2-SAT: captures a range of problems like Edge Bipartization, Odd Cycle Transversal, 
Above-guarantee Vertex Cover, Köning Vertex Deletion and Split Vertex Deletion.
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Weighted Boolean MinCSP FPT v/s W[1]-hard dichotomy

Theorem [Kim, Kratsch, Pilipczuk, Wahlström SODA 2023]: FPT v/s W[1]-hard dichotomy 
for Weighted MinCSP with boolean domain.

Either Weighted MinCSP( ) is FPT,

or Weighted MinCSP( ) is W[1]-hard, but MinCSP( ) is FPT, 

or MinCSP( ) is W[1]-hard.

Γ
Γ Γ

Γ



Weighted Boolean MinCSP FPT v/s W[1]-hard dichotomy

Theorem [Kim, Kratsch, Pilipczuk, Wahlström SODA 2023]: FPT v/s W[1]-hard dichotomy 
for Weighted MinCSP with boolean domain.

Either Weighted MinCSP( ) is FPT,

or Weighted MinCSP( ) is W[1]-hard, but MinCSP( ) is FPT, 

or MinCSP( ) is W[1]-hard.

Γ
Γ Γ

Γ



FPT island: Weighted MinCSP(Γgood)
• Set of variables 

• Domain of variables is boolean 

• Collection of constraints: 


- Each constraint is an ⋀ of 2-ary clauses and 
clauses of the form  or .


- The constraint graph is -free.

- The arity of a constraint is the number of 

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that 

satisfies all but at most k constraints of total weight at 
most W.

V
D = {0,1}

1 → v v → 0
2K2
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Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.


- A pair of variables  are independent, if every assignment to 
them can be extended to a satisfying assignment for this 
constraint.


- Put an edge between a pair of variables that is not independent.

vi, vj



FPT island: Weighted MinCSP(Γgood)
• Set of variables 

• Domain of variables is boolean 

• Collection of constraints: 


- Each constraint is an ⋀ of 2-ary clauses and 
clauses of the form  or .


- The constraint graph is -free.

- The arity of a constraint is the number of 

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that 

satisfies all but at most k constraints of total weight at 
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.


- A pair of variables  are independent, if every assignment to 
them can be extended to a satisfying assignment for this 
constraint.


- Put an edge between a pair of variables that is not independent.

vi, vj

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)



FPT island: Weighted MinCSP(Γgood)
• Set of variables 

• Domain of variables is boolean 

• Collection of constraints: 


- Each constraint is an ⋀ of 2-ary clauses and 
clauses of the form  or .


- The constraint graph is -free.

- The arity of a constraint is the number of 

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that 

satisfies all but at most k constraints of total weight at 
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.


- A pair of variables  are independent, if every assignment to 
them can be extended to a satisfying assignment for this 
constraint.


- Put an edge between a pair of variables that is not independent.

vi, vj

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5



FPT island: Weighted MinCSP(Γgood)
• Set of variables 

• Domain of variables is boolean 

• Collection of constraints: 


- Each constraint is an ⋀ of 2-ary clauses and 
clauses of the form  or .


- The constraint graph is -free.

- The arity of a constraint is the number of 

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that 

satisfies all but at most k constraints of total weight at 
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.


- A pair of variables  are independent, if every assignment to 
them can be extended to a satisfying assignment for this 
constraint.


- Put an edge between a pair of variables that is not independent.

vi, vj

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5



FPT island: Weighted MinCSP(Γgood)
• Set of variables 

• Domain of variables is boolean 

• Collection of constraints: 


- Each constraint is an ⋀ of 2-ary clauses and 
clauses of the form  or .


- The constraint graph is -free.

- The arity of a constraint is the number of 

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that 

satisfies all but at most k constraints of total weight at 
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.


- A pair of variables  are independent, if every assignment to 
them can be extended to a satisfying assignment for this 
constraint.


- Put an edge between a pair of variables that is not independent.

vi, vj

FPT Island: Weighted MinCSP(Γgood) is FPT 

parameterized by k and the maximum arity over all constraints.

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5



FPT island: Weighted MinCSP(Γgood)
• Set of variables 

• Domain of variables is boolean 

• Collection of constraints: 


- Each constraint is an ⋀ of 2-ary clauses and 
clauses of the form  or .


- The constraint graph is -free.

- The arity of a constraint is the number of 

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that 

satisfies all but at most k constraints of total weight at 
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.


- A pair of variables  are independent, if every assignment to 
them can be extended to a satisfying assignment for this 
constraint.


- Put an edge between a pair of variables that is not independent.

vi, vj

FPT Island: Weighted MinCSP(Γgood) is FPT 

parameterized by k and the maximum arity over all constraints.

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5



Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairs

Weighted settings?
Find a solution of size at most  and weight at most .

Parameter: 

k W
k

I

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: constant factor FPT approximation classfication 

[Bonnet, Egri, Marx ESA 2016]
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Weighted settings?
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— —

[KMPSW]
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[HJLMPSS, 

SODA 2023]

W[1]-hard 

even with 2 pairs

[HJLMPSS, 

SODA 2023]

MinCSP ( )= MinCSP ( )= , ≠

MinCSP ( )< , ≤
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Undirected Multiway Cut MinCSP ( )=

1 2 3 p

T = {t1, …, tp}

G-Z (Z is a solution)

tpt1 t2 t3

⇒

connected components of G-Z

0

Assume  is connected. Then .G p ≤ k + 1



Undirected Multiway Cut MinCSP ( )=

1 2 3 p

T = {t1, …, tp}

G-Z (Z is a solution)

tpt1 t2 t3

⇒

connected components of G-Z

For every vertex , v ∈ V(G) create a variable v domain is 0,1,…, p
For every edge , uv ∈ E(G) create a constraint u = v
For every , ti ∈ T create an undeletable constraint ti = i

weight=w(uv)

0

Assume  is connected. Then .G p ≤ k + 1



Encoding bucket numbers (domain) in binary

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

• Create  variables for every vertex v.

• Ensure that if v belongs to bucket, say 3, in G-Z, then 

v(3) is set to 1 and others are set to 0.

• If it belongs to bucket 0, then everything is assigned 

to 0.


p v(1)

v(2)

v(3)

 v(p)

0

0

1

0
• This can be ensured by adding undeletable 

constraints as shown on right.


¬v(i) ∨ ¬v( j)

∀1 ≤ i < j ≤ p



Encoding bucket numbers (domain) in binary

The unique superscript that gets assigned 1, tells the 
bucket this vertex will go into. If none of them gets 
assigned 1, then it goes to bucket 0.

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

• Create  variables for every vertex v.

• Ensure that if v belongs to bucket, say 3, in G-Z, then 

v(3) is set to 1 and others are set to 0.

• If it belongs to bucket 0, then everything is assigned 

to 0.


p v(1)

v(2)

v(3)

 v(p)

0

0

1

0
• This can be ensured by adding undeletable 

constraints as shown on right.


¬v(i) ∨ ¬v( j)

∀1 ≤ i < j ≤ p



• Force  in bucket .

• This is done by adding undeletable constraints 

as shown on right.

ti i

Forcing the vertices of  in the correct bucketT

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

t(2)
i

t(i)
i

t(1)
i

t(p)
i

0

1

0

0



Forcing an edge uv into the same bucket

• This is done by adding a constraint that is an AND of 
all the clauses shown on right.


• Weight of this constraint=w(uv)

v(2)

v(3)

v(p)

v(1)

u(2)

u(3)

u(p)

u(1)

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}



Encoding bucket numbers (domain) in 
binary

Forcing the vertices of  in the 
correct bucket

T Forcing an edge uv in the same 
bucket

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v
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0
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Encoding bucket numbers (domain) in 
binary

Forcing the vertices of  in the 
correct bucket

T Forcing an edge uv in the same 
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Encode this as MinCSP(Γgood)uv ∈ E(G) u = v
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Encoding bucket numbers (domain) in 
binary

Forcing the vertices of  in the 
correct bucket

T Forcing an edge uv in the same 
bucket

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}
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Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairs

Weighted settings?
Find a solution of size at most  and weight at most .

Parameter: 

k W
k

I

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: constant factor FPT approximation classfication 

[Bonnet, Egri, Marx ESA 2016]



Pre-pandemic~2019: Open questions

Directed Multicut 3 terminal pairsI

minimal minimum

Flow augmentation [STOC 2022] Twin-width [FOCS 2020]

[Bonnet, Kim, Thomassé, Watrigant]

[Heike, Jaffke, Lima, Masaryk, Pilipczuk, Sharma, Sorge SODA 2023]

FPT

Generalization of the class of co-graphs



Beyond Boolean MinCSP



Min CSP 
over Point Algebra

Point Algebra( )= , ≠ , < , ≤
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and are FO formulae
< , = , ≤ , ≠≡

Directed Symmetric Multicut
Given a digraph , 

pairs 

integer 

G
(s1, t1), …, (sp, tp)

k

Delete at most  arcs, say Z,

such that in , 

for every ,

either no  path, or

no  path.

k
G − Z

i ∈ {1,…, p}
si → ti

ti → si



Is this FPT 

parameterized by k?

Min CSP 
over Point Algebra

Point Algebra( )= , ≠ , < , ≤
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Constraints have access to




and are FO formulae
< , = , ≤ , ≠≡

Directed Symmetric Multicut
Given a digraph , 

pairs 

integer 

G
(s1, t1), …, (sp, tp)

k

Delete at most  arcs, say Z,

such that in , 

for every ,

either no  path, or

no  path.

k
G − Z

i ∈ {1,…, p}
si → ti

ti → si



Min CSP 
over basic Allen Algebra

Domain: intervals {[a, b] : a, b ∈ ℚ, a < b}
Basic constraints: “before”, “equals”, “meets”, 

“overlaps”, “contains”, “starts”, “finishes”.

[Dabrowski, Jonsson, Ordyniak, Osipov, Pilipczuk, Sharma] 

FPT v/s W[1]-hard dichotomy based on which subset of the above 7 constraints are allowed.

In general, admits 2-approximation in FPT time.
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