Flow-augmentation: ==
advances in paraFeterized (weighted) cut problems

ES

Recent Trends in Algorithms
NISER Bhubaneswar

Roohani Sharma
July 27, 2023

' ' I I I max planck institut
informatik

Parameterized Complexity Landscape
of Cut Problems:
Pre- and Post-pandemic

sgi‘@“ .V/ ‘;1\“\74 M

Cuts, flows and CSPs

(Directed) graph G,
a pair of vertices (s, 1) (terminals)

Input: positive integer k
(or a weight function weight wt : E(G) —» Z*™ and
positive weight budget W)

7d a set Z C E(G)
Question: |[such that |Z| < k (or wt(Z) < W), and
G — Z has no s — ¢ path.

Polynomial-time solvable

<?/_Cut Problems

(DIRECTED) MuULTICUT (MC(C)

(Directed) graph G,
pairs of vertices (terminals) (s, 7)),(s,. 7))
positive integer k

73 a set Z C E(G)

such that |Z| < k, and
foreachi e {1,...,p},

G —Z has no s, — 1, path.

Directed case: NP-hard for p=2
Undirected case: NP-hard for p=3

Oa/_Cut Problems

(DIRECTED) MULTICUT (MC() (DIRECTED) MULTIWAYCUT (MWC()

(Directed) graph G, (Directed) graph G,
pairs of vertices (terminals) (s, 7)),(s,. 7)) pairs of vertices (terminals) 7, ..., 1
positive integer k positive integer k

P

73 a set Z C E(G) 74 a set Z C E(G)
such that |Z| <k, and such that |Z| < k, and
foreachi e {1,...,p}, G —Z has no 1, — ¢, path

G — Z has no s, — . path. forany i,je {1.....p}, i # .

Directed case: NP-hard for p=2 NP-hard for p=3
Undirected case: NP-hard for p=3

Oa/_Cut Problems

DIRECTED FEEDBACK ARC SET (DFAS) SUBSET DFAS

Directed graph G, Directed graph G,
positive integer k Red arcs R C E(G),

positive integer k

74 aset Z C E(G)

7daset ZC E(G)\R

such that |Z| < k, and

G — Z has no directed cycle with at least
one red arc.

NP-hard NP-hard

such that |Z| <k, and
G — Z has no directed cycle.

Parameterized Complexity

— Parameter is solution size %

FPT: f(k) - n®W
W/[1]-hard, otherwise.

Cut problems remained elusive for a very long time!

Even the simplest algorithm is based on a novel concept of important cuts.

Important Cuts

MULTIWAYCUT (MWC() Daniel Marx

Undirected graph G
terminals 7= {z,,....1 }

- bp

Delete k edges to kill all 7, — 7, paths.

Any solution contains some:
e 1 — T\t; minimal cut
t, — T\t, minimal cut
t; — T\t; minimal cut
t, — T\t, minimal cut

Important Cuts

MULTIWAYCUT (MWC() Daniel Marx

Undirected graph G
terminals 7= {z,,....1 }

- bp

Delete k edges to kill all 7, — 7, paths.

Any solution contains some:
e 1 — T\t; minimal cut
t, — T\t, minimal cut
t; — T\t; minimal cut
t, — T\t, minimal cut

Branch

Important Cuts

MULTIWAYCUT (MWC() Daniel Marx

Undirected graph G
terminals 7= {z,,....1 }

- bp

Delete k edges to kill all 7, — 7, paths.

Naive algorithm

1. Ifeacht € Tisinadifferent connected component of G, then we are done.

2. Ifthereexists t; € T, such that there is a path from 7, to T'\ ¢, then enumerate every minimal (¢, 7'\ t,)-cut of size at

most k, and branching of choosing one such cut S in the solution.
3. SetG:=G\Sandk:=k—|S].
4. GotoStep 1.

Important Cuts

MULTIWAYCUT (MWC() Daniel Marx

Undirected graph G
terminals 7= {z,,....1 }

- bp

Delete k edges to kill all 7, — 7, paths.

Naive algorithm

1. Ifeacht € Tisinadifferent connected component of G, then we are done.

2. Ifthereexists t; € T, such that there is a path from 7, to T'\ ¢, then enumerate every minimal (¢, 7'\ t,)-cut of size at

most k, and branching of choosing one such cut S in the solution.
3. SetG:=G\Sandk:=k—|S].
4. GotoStep 1. /

Important Cuts:
Directed and Undirected

Daniel Marx (2004) defined a partial order that compares two minimal S-T cuts. o o

Tl

Green is better than red.

Important Cuts:
Directed and Undirected

Daniel Marx (2004) defined a partial order that compares two minimal S-T cuts. o o

oL

Green is better than red.
He called the maximum elements of this partial order as important S-T cuts.

Important Cuts:
Directed and Undirected

Daniel Marx (2004) defined a partial order that compares two minimal S-T cuts. o o

N
¥
/
/

Green is better than red.
He called the maximum elements of this partial order as important S-T cuts.

Important Cuts

MULTIWAYCUT (MWC() Daniel Marx

Undirected graph G
terminals 7= {z,,....1 }

- bp

Delete k edges to kill all 7, — 7, paths.

1. Ifeacht € Tisinadifferent connected component of G, then we are done.

2. Ifthereexists ¢, € T, such that there is a path from ¢, to T'\ ¢, then enumerate every important (¢, 7'\ t,)-cut of size

almost k, and branching of choosing one such cut S in the solution.
3. SetG:=G\Sandk:=k—|S].
4. GotoStep 1.

Important Cuts

MULTIWAYCUT (MWC() Daniel Marx

Undirected graph G

terminals 7= {7,1,}

Delete k edges to kill all 7, — 7, paths.

1. Ifeacht € Tisinadifferent connected component of G, then we are done.

2. Ifthereexists ¢, € T, such that there is a path from ¢, to T'\ ¢, then enumerate every important (¢, 7'\ t,)-cut of size

almost k, and branching of choosing one such cut S in the solution.
3. SetG:=G\Sandk:=k—|S].
4. GotoStep 1.

. L . 2 L
We branch into 4* directions at most k times => 4" n ") running time.

Important Cuts

Number of minimal incomparable S-T cuts (called important S-T cuts) of size at most & is at most 4".
Can be enumerated in (4" - k - (n + m))

Inherently greedy: Replace a part of the solution with something that “cuts” as much as the original

part.

Important Cuts

Number of minimal incomparable S-T cuts (called important S-T cuts) of size at most & is at most 4".
Can be enumerated in (4" - k - (n + m))

Inherently greedy: Replace a part of the solution with something that “cuts” as much as the original

part.

UNDIRECTED MULTIWAY is FPT.
DIRECTED FEEDBACK ARC SET is FPT.

Shadow Removal [STOC 2011]

~Random sampling of important cuts.

Daniel Marx Igor Razgon

The simple branching on important cuts does not work for example, for MULTICUT.

Inherently greedy: If there is a solution, assume WLOG that there is a shadowless solution.

Now the goal is to find a shadowless solution, which in many cases is easier.

UNDIRECTED MULTICUT is FPT.
DIRECTED MULTIWAY is FPT.

Pre-pandemic~2016

Important Cuts Shadow Removal Other tools,
mostly for undirected problems

Pre-pandemic~2016

| Other tools,
Important Cuts Shadow Remova mostly for undirected problems

MULTIWAY CUT MULTICUT DFAS SUBSET DFAS

Undirected

Directed

Pre-pandemic~2016

| Other tools,
Important Cuts Shadow Remova mostly for undirected problems

MULTIWAY CUT MULTICUT DFAS SUBSET DFAS

Undirected

Directed

Pre-pandemic~2016

| Other tools,
Important Cuts Shadow Remova mostly for undirected problems

MULTIWAY CUT MULTICUT DFAS SUBSET DFAS

Undirected

Directed

Pre-pandemic~2016

| Other tools,
Important Cuts Shadow Remova mostly for undirected problems

MULTIWAY CUT MULTICUT DFAS SUBSET DFAS

Undirected

Directed

Pre-pandemic~2016

DIRECTED MULTICUT @@

Pre-pandemic~2016

DIRECTED MULTICUT @:@

&€ \W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

Pre-pandemic~2016

DIRECTED MULTICUT @@

&€ \W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

&€ FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

Pre-pandemic~2016

DIRECTED MULTICUT @@

&€ \W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

&€ FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

&€ \V[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlstrom SODA 2016, ACM TOCT 2018]

Pre-pandemic~2016

DIRECTED MULTICUT @@

&€ \W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

&€ FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

&€ \V[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlstrom SODA 2016, ACM TOCT 2018]

Pre-pandemic~2016

DIRECTED MULTICUT @‘@

&€ \W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

& FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

&€ \V[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlstrom SODA 2016, ACM TOCT 2018]

Pre-pandemic~2016: Open questions

I DIRECTED MULTICUT * 9

Pre-pandemic~2016: Open questions

o

I DIRECTED MULTICUT

a @ Weighted settings?
I I T Find a solution of size at most k£ and weight at most W.

Parameter: &

Pre-pandemic~2016: Open questions

I DIRECTED MULTICUT 3 terminal pairs 4 ,

@ @ Weighted settings?
l l T Find a solution of size at most k£ and weight at most W.

Parameter: &

I I I FPT v/s W[1]-hard dichotomy for Boolean MinCSP?

Known: Constant-factor FPT approximation classification
[Bonnet, Egri, Marx ESA 2016]

Flow augmentation [STOC 022]

BT o {1 ! =
S] A U S SHLAS v ‘\t{g‘s’.”:
) py 7] Vil i A | L M

Stefan Krastch Marcin Pilipczuk Magnus
Wahlstrom

e |
- N O e
- e T

Eunjung Kim

Flow augmentation [STOC 2022]

_.

G
ol i

ZJ ,5
4

PRI
Gl BRRRA R RIS
1 { :‘:’f,;“'f""‘v)‘!‘*\
R w
(4 i AR
" o L

K Stefan Krastch Marcin Pilipczuk Magnus
Eunjung Kim an Kr P Wahictrém

minimal —> minimum

Input: Directed graph G, vertices s, ¢, integer k
Output: A supergraph G’ of G obtained by adding new arcs A

Guarantee: any minimal s-r separator Z of size at most & in G,
IS @ minimum s-7 separator in G/,
with probability 2~ logh

\.
/
X
W

/
v
/]
N

SQ Ot

@
)

,\
\,/

AN
\/

—)0

/

minimal —> minimum

Input: Directed graph G, vertices s, ¢, integer k
Output: A supergraph G’ of G obtained by adding new arcs A

Guarantee: any minimal s-r separator Z of size at most & in G,
IS @ minimum s-7 separator in G/,
with probability 2% logh

minimal —> minimum

Input: Directed graph G, vertices s, ¢, integer k
Output: A supergraph G’ of G obtained by adding new arcs A

Guarantee: any minimal s-r separator Z of size at most & in G,
IS @ minimum s-7 separator in G/,
with probability 2% logh

Flow augmentation

minimal —> minimum

WEIGHTED S-T CUT @ @

Given a directed graph G, T (NP-hara)
find an s-t cut Z in G of size at most & and weight at most W.

Flow augmentation

minimal —> minimum

WEIGHTED S-T CUT 5 @

Given a directed graph G, T
find an s-t cut Z in G of size at most & and weight at most W.

(NP-hard)

e Do flow-augmentation

e aNd get G

Flow augmentation

minimal —> minimum

WEIGHTED S-T CUT @ @

Given a directed graph G, T (NP-hara)
find an s-t cut Z in G of size at most & and weight at most W.

e Do flow-augmentation

e aNd get G

[Z is @ minimum s-t cut
in the new graph.]

Flow augmentation

minimal —> minimum

WEIGHTED S-T CUT @ @

Given a directed graph G, T
find an s-t cut Z in G of size at most & and weight at most W.

e Do flow-augmentation
e aNd get G
[Z is @ minimum s-t cut

in the new graph.]

Compute min s-t cut
value, say 4, in G'.
If A > k, report No.

Flow augmentation

minimal —> minimum

WEIGHTED S-T CUT @ @

Given a directed graph G, T
find an s-t cut Z in G of size at most & and weight at most W.

Assign new weights

w-new(e) = w-old(e) + W,

where W = Z w-old(e) + 1
eel(G)

S e e
e aNd get G
[Z is @ minimum s-t cut -
in the new graph.]

Compute min s-t cut
value, say 4, in G'.
If A > k, report No.

e Do flow-augmentation i

Flow augmentation

minimal —> minimum

WEIGHTED S-T CUT @ @

Given a directed graph G, T
find an s-t cut Z in G of size at most & and weight at most W.

W

Is there an s-t cut in G’

whose w-new is
at most AW + W ?

Assign new weights

W-new(e) = W- oId(e) + W,

where W = w-old(e) + 1
eEE(G)

e Do flow-augmentation i

e aNd get G

[Z is @ minimum s-t cut -
in the new graph.]

Compute min s-t cut
value, say 4, in G'.
If A > k, report No.

Questions?

Questions?

Constraint Satisfaction Problems (CSP)

Variables, Domain, Constraints

CSP is defined by: (1) the domain D set and (2) the set of allowed constraints I".

Example 1: 2-SAT
D= {0,1)

['= all 2-clauses
Instance:

V — {xl,xZ, .X3}

COnStI‘alntSl (.xl V XZ), (_'.XZ V X3), (_'Xl Vv _'.x2)

Constraint Satisfaction Problems (CSP)

Variables, Domain, Constraints

CSP is defined by: (1) the domain D set and (2) the set of allowed constraints I".

For a fixed CSP (D, T"), an instance consists of :

® A set of variables

® A set of constraints from I' applied to tuples of variables.

Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

Example 1: 2-SAT
D= {0,1)

['= all 2-clauses
Instance:

V — {xl,xZ, .X3}

COnStI‘alntSl (.xl V XZ), (_'.XZ V X3), (_'Xl Vv _'.x2)

Constraint Satisfaction Problems (CSP)

Variables, Domain, Constraints

CSP is defined by: (1) the domain D set and (2) the set of allowed constraints I".

For a fixed CSP (D, T"), an instance consists of :

® A set of variables

® A set of constraints from I' applied to tuples of variables.

Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

Example 1: 2-SAT Example 2: 3-Coloring
D = {0,1} D = {0,1,2)
'= all 2-clauses I'={#}

Instance: Instance: Graph G
V= {Xx{,%, X3} V=W(G)
Constraints: (x; V x,), (X, V x3), (7x; V x,) Constraints: for each uv € E(G),u # v

Constraint Satisfaction Problems (CSP)

Variables, Domain, Constraints

CSP is defined by: (1) the domain D set and (2) the set of allowed constraints I".

For a fixed CSP (D, T"), an instance consists of :
® A set of variables

® A set of constraints from I' applied to tuples of variables.
Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

Example 1: 2-SAT Example 2: 3-Coloring

Theorem [Bulatov, Zhuk 2017/]: For every finite D and I", the corresponding

CSP is either polynomial-time solvable or NP-complete.

ONStraints: (x; V x,), (71X, V X3), (X V 71x,) onstraints: for each uv € E(G),u # v

MIinCSP

MINCSP (D, I'): Can we delete at most k constraints to make the resulting instance satisfiable?

MIinCSP

MINCSP (D, I'): Can we delete at most k constraints to make the resulting instance satisfiable?

Min 2-SAT: captures a range of problems like EDGE BIPARTIZATION, ODD CYCLE TRANSVERSAL,
ABOVE-GUARANTEE VERTEX COVER, KONING VERTEX DELETION and SPLIT VERTEX DELETION.

MIinCSP

MINCSP (D, I'): Can we delete at most k constraints to make the resulting instance satisfiable?

Min 2-SAT: captures a range of problems like EDGE BIPARTIZATION, ODD CYCLE TRANSVERSAL,
ABOVE-GUARANTEE VERTEX COVER, KONING VERTEX DELETION and SPLIT VERTEX DELETION.

® Interesting if CSP(D,T") is polynomial-time.
® Trivial n°% algorithm.
® Js it FPT parameterized by k?

MIinCSP

MINCSP (D, I'): Can we delete at most k constraints to make the resulting instance satisfiable?

Min 2-SAT: captures a range of problems like EDGE BIPARTIZATION, ODD CYCLE TRANSVERSAL,
ABOVE-GUARANTEE VERTEX COVER, KONING VERTEX DELETION and SPLIT VERTEX DELETION.

® Interesting if CSP(D,T") is polynomial-time.
® Trivial n°% algorithm.
® Js it FPT parameterized by k?

Weighted MInCSP (D, I'): Each constraint has a weight.
Can we delete at most k constraints of total weight W to make the resulting instance satisfiable?

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={01}LT={x+#y)}

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

® D=1{0,1},I'={x#y) >/>
@ @

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®D={01},I'={x #y])
EDGE BIPARTIZATION o p

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®D={0,1},T = {x#y)}
EDGE BIPARTIZATION

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

® D={01}.T = {x#y)

EDGE BIPARTIZATION

®*pD={0,1},T={x=1x=0x=y}

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

® D={0,1},['= {x#y)

oo
EDGE BIPARTIZATION / \ \
T4
e

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

® D={0,1},['= {x#y)

*«—o
EDGE BIPARTIZATION / \ \
®D={01},I'={x=1x=0x=y)} & — o o e
UNDIRECTED S-T CUT \ / /
o o

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
® D={01}T = {x#y)
EDGE BIPARTIZATION

®D={01},'={x=1x=0x=y}
UNDIRECTED S-T CUT

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
®D={01},'={x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

®*pD={0,1},T"={1 - x,x > 0x > y}

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®D={0,1},'={x #y]}
EDGE BIPARTIZATION / \ \
@

0,1}, '={x=1x=0x=y}

D — % Y, Y 2
UNDIRECTED S-T CUT \ / /
® D

={0,1},I'={1 - x,x - 0,x — y}

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®D={0,1},'={x #y]}
EDGE BIPARTIZATION / \ \
@

0,1}, '={x=1x=0x=y}

D — % Y, Y 2
UNDIRECTED S-T CUT \ / /
® D

={0,1},I'={1 - x,x - 0,x — y}

DIRECTED S-T CUT

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
®D={01},'={x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

®*pD={0,1},T"={1 - x,x > 0x > y}

DIRECTED S-T CUT

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
® D={0,1},={x#y)

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y)

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT
®*D={01},T={1->xx->0x—->yAU—>V)

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

® D={0,1},I'={x#y) o —o
EDGE BIPARTIZATION \ \
®*pD={01},T'={x=1x=0x=y) 5 — >l" — >‘
UNDIRECTED S-T CUT N
®*pD={0,1},T"={1 - x,x > 0x > y} \n .
DIRECTED S-T CUT ® ®

®*D={0,1},T={1l > x,x>0,x > VA [U—-V))]

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

® D={0,1},I = {x %)

c =z
o o
FDGE BIPARTIZATION \ \
® D={0,1},T={x=1x=0,x=y) 1/ — 3 — >g —)g
A

¢ :
UNDIRECTED S-T CUT N
®*pD={0,1},T"={1 - x,x > 0x > y} , .
DIRECTED S-T CUT ® ®

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
®D={01},'={x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

®*pD={0,1},T"={1 - x,x > 0x > y}

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W[1]-hard

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
®*D={01},'={x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
®*D={01},'={x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

MIinCSP (D, T"): Can we delete at most k constraints to

make the resulting instance satisfiable?
®D={01},'={x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

®*pD={0,1},T"={1 - x,x > 0x > y}

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W[1]-hard

®*D={01},T={l >x,x=>0x-=>VAHG=>2DA(EZ—=V)]
3-CHAIN SAT (#-CHAIN SAT)

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={0,1},T = {x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

N

3-CHAIN SAT (#-CHAIN SAT) FPT s

N

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={0,1},T = {x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

N

3-CHAIN SAT (#-CHAIN SAT) FPT s

N

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={0,1},T = {x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

N

3-CHAIN SAT (#-CHAIN SAT) FPT s

N

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={0,1},T = {x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

N

3-CHAIN SAT (#-CHAIN SAT) FPT s

N

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={0,1},T = {x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

N

3-CHAIN SAT (#-CHAIN SAT) FPT s

N

MIinCSP (D, T"): Can we delete at most k constraints to
make the resulting instance satisfiable?

®*D={0,1},T = {x#y}

EDGE BIPARTIZATION
®*pD={0,1},T={x=1x=0x=y}

UNDIRECTED S-T CUT

® D={0,1},={1 >x,x—> 0x—>y)

DIRECTED S-T CUT

®*pD={01},T={1l 5 x,x=>0,x > YA W—-vV)}
BUNDLED S-T CUT W/[1]-hard
®*pD={01},T={l>xx>0&x>NAQY—>2)A(Z—>V)}

N

3-CHAIN SAT (#-CHAIN SAT) FPT s

N

Weighted Boolean MinCSP FPT v/s W[1]-hard dichotomy

Theorem [Kim, Kratsch, Pilipczuk, Wahlstrom SODA 2023]: FPT v/s W[1]-hard dichotomy
for Weighted MinCSP with boolean domain.

Either Weighted MinCSP(I") is FPT,
or Weighted MinCSP(I") is W[1]-hard, but MinCSP(T") is FPT,

or MinCSP(I") is W[1]-hard.

Weighted Boolean MinCSP FPT v/s W[1]-hard dichotomy

Theorem [Kim, Kratsch, Pilipczuk, Wahlstrom SODA 2023]: FPT v/s W[1]-hard dichotomy
for Weighted MinCSP with boolean domain.

Either Weighted MinCSP(T") is FPT,
or Weighted MinCSP(I") is W[1]-hard, but MinCSP(T") is FPT,

or MinCSP(I") is W[1]-hard.

FPT island: Weighted MIinCSP([good)

® Set of variables V
® Domain of variables is boolean D = {0,1}
® Collection of constraints:

= Each constraint is an A of 2-ary clauses and
clauses of theform 1 — v orv — 0.

= The constraint graph is 2K -free.

= The arity of a constraint is the number of
clauses in it.

® Each constraint has a weight.

® The goal is to find a satisfying assignment that
satisfies all but at most k constraints of total weight at
most W.

FPT island: Weighted MIinCSP([good)

® Set of variables V
® Domain of variables is boolean D = {0,1}
® Collection of constraints:

= Each constraint is an A of 2-ary clauses and
clauses of theform 1 — v orv — 0.

= The constraint graph is 2K -free.

= The arity of a constraint is the number of
clauses in it.

® Each constraint has a weight.

® The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

Constraint graph (defined for every constraint)
= The vertex set is the variables in the constraint.

= A pair of variables v, v; are independent, if every assignment to

them can be extended to a satisfying assignment for this
constraint.

= Put an edge between a pair of variables that is not independent.

FPT island: Weighted MIinCSP([good)

® Set of variables V
® Domain of variables is boolean D = {0,1}
® Collection of constraints:

= Each constraint is an A of 2-ary clauses and
clauses of theform 1 — v orv — 0.

= The constraint graph is 2K -free.

= The arity of a constraint is the number of
clauses in it.

® Each constraint has a weight.

® The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

Constraint graph (defined for every constraint)
= The vertex set is the variables in the constraint.

= A pair of variables v, v; are independent, if every assignment to

them can be extended to a satisfying assignment for this
constraint.

= Put an edge between a pair of variables that is not independent.

Eg: 4-CHAIN SAT

(Vi 2 V) AV =) A (V3 = V) A(vy = vs)

FPT island: Weighted MIinCSP([good)

® Sot of variables V Constraint graph (defined for every constraint)
® Domain of variables is boolean D = {0.1) ~ The vertex set is the variables in the constraint.
® Collection of constraints: = A pair of variables v, v; are independent, if every assignment to
- Each constraint is an A of 2-ary clauses and them can be extended to a satisfying assignment for this
clauses of theform 1 — v or v — 0. constraint.
- The constraint graph is 2&,-free. = Put an edge between a pair of variables that is not independent.
= The arity of a constraint is the number of
clauses in it. Eg: 4-CHAIN SAT
® Each constraint has a weight. (V1 = 1) A (0 = 1) A (0 = 1) A (1 = ve)
® The goal is to find a satisfying assignment that I 2 2 3 3 4 4 5
satisfies all but at most k constraints of total weight at
most W. ® ¢ ® ® ®

FPT island: Weighted MIinCSP([good)

® Set of variables V
® Domain of variables is boolean D = {0,1}
® Collection of constraints:

= Each constraint is an A of 2-ary clauses and
clauses of theform 1 — v orv — 0.

= The constraint graph is 2K -free.

= The arity of a constraint is the number of
clauses in it.

® Each constraint has a weight.

® The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

Constraint graph (defined for every constraint)
= The vertex set is the variables in the constraint.

= A pair of variables v, v; are independent, if every assignment to

them can be extended to a satisfying assignment for this
constraint.

= Put an edge between a pair of variables that is not independent.

Eg: 4-CHAIN SAT

(Vi 2 V) AV =) A (V3 = V) A(vy = vs)

@)

FPT island: Weighted MIinCSP([good)

® ot of variables v Constraint graph (defined for every constraint)
® Domain of variables is boolean D = {0.1) = The vertex set is the variables in the constraint.
® Collection of constraints: = A pair of variables v, v; are independent, if every assignment to
- Each constraint is an A of 2-ary clauses and them can be extended to a satisfying assignment for this
clauses of the form 1 — v or v — 0. constraint.
- The constraint graph is 2K -free. = Put an edge between a pair of variables that is not independent.
= The arity of a constraint is the number of
clauses in it. Eg: 4-CHAIN SAT
® Each constraint has a weight.
® The goal is to find a satisfying assignment that (vl - v2) A (Vz ~ V3) A (V3 ~ V4) A (V4 ~ VS)

satisfies all but at most k constraints of total weight at
most W.

Vi Vr Vv V4 Vs

FPT island: Weighted MIinCSP([good)

® ot of variables v Constraint graph (defined for every constraint)
® Domain of variables is boolean D = {0.1) = The vertex set is the variables in the constraint.
® Collection of constraints: = A pair of variables v, v; are independent, if every assignment to
- Each constraint is an A of 2-ary clauses and them can be extended to a satisfying assignment for this
clauses of the form 1 — vor v — 0. constraint.
- The constraint graph is 2K.-free. = Put an edge between a pair of variables that is not independent.
= The arity of a constraint is the number of
clauses in it. Eg: 4-CHAIN SAT
® Each constraint has a weight.
® The goal is to find a satisfying assignment that (vl - v2) A (Vz ~ V3) A (V3 ~ V4) A (V4 ~ VS)

satisfies all but at most k constraints of total weight at
most W.

Vi Vr Vv V4 Vs

Pre-pandemic~2016: Open questions

I DIRECTED MULTICUT 3 terminal pairs 4 ,

11 @ @ Weighted settings?
Find a solution of size at most £ and weight at most W.
T Parameter: k

I I I FPT v/s W[1]-hard dichotomy for Boolean MinCSP?

Known: constant factor FPT approximation classfication
[Bonnet, Egri, Marx ESA 2016]

Pre-pandemic~2016: Open questions

I DIRECTED MULTICUT 3 terminal pairs 4 ’

l l @ @ Weighted settings?
T Find a solution of size at most k£ and weight at most W.

Parameter: &

l l l FPT v/s W[1]-hard dichotomy for Boolean MinCSP?

Known: constant factor FPT approximation classfication
[Bonnet, Egri, Marx ESA 2016]

@ @ Weighted settings? [Kim, Masaryk, Pilipczuk, Sharma, Wahlstrom]

A

Multiway Cut Multicut DFAS Subset DFAS

> S2 2aA° —

Undirected
[KMPSW]
MinCSP (=) MIinCSP (=, #)
(non-boolean) (non-boolean)
WI[1]-hard W[1]-hard |
Directed even with 2 terminals even with 2 pairs
[HILMPSS, [HILMPSS,
SODA 2023] SODA 2023] [KMPSW]

MIinCSP (<, <)
(non-boolean)

@ @ Weighted settings? [Kim, Masaryk, Pilipczuk, Sharma, Wahlstrom]

A

Multiway Cut Multicut DFAS Subset DFAS

> S2 2aA° —

Undirected
[KMPSW]
MinCSP (=) MIinCSP (=, #)
(non-boolean) (non-boolean)
WI[1]-hard W[1]-hard |
Directed even with 2 terminals even with 2 pairs
[HILMPSS, [HILMPSS,
SODA 2023] SODA 2023] [KMPSW]

MIinCSP (<, <)
(non-boolean)

@ @ Weighted settings? [Kim, Masaryk, Pilipczuk, Sharma, Wahlstrom]

A

Multiway Cut Multicut DFAS Subset DFAS

> Se 2A°C —

Undirected
[KMPSW]
MinCSP (=) MIinCSP (=, #)
(non-boolean) (non-boolean)
WI[1]-hard W[1]-hard |
Directed even with 2 terminals even with 2 pairs
[HILMPSS, [HILMPSS,
SODA 2023] SODA 2023] [KMPSW]

MIinCSP (<, <)
(non-boolean)

UNDIRECTED MULTIWAY CUT —> MInCSP (=)

T: {tl’ ...,tp}

Assume G is connected. Then p <k + 1.
G-Z (Z is a solution)

SORORONO

connected components of G-Z

UNDIRECTED MULTIWAY CUT —> MInCSP (=)

T: {tl’ ...,tp}

Assume G is connected. Then p <k + 1.
G-Z (Z is a solution)

SORORONO

connected components of G-Z

0.1.p |

J For every vertex v € V(G), create a variable v | H domainis 0,1,...,p
f

For every edge uv € E(G), create a constraintl = V weight=w(uv) 1

| Foreveryt, € 1, create an constraint ti =1 }

Domain {1,....,p}
Encode this _.6 u= as MinCSP(I'good)
LeT t. =1

Encoding bucket numbers (domain) in binary

. - vy 0
Create p variables for every vertex v. : .
® Fnsure that if v belongs to bucket, say 3, in G-Z, then V1 S 1 <] S p

v js set to 1 and others are set to O. »@ 0
® If it belongs to bucket 0, then everything is assigned

to O. V(3) 1

® This can be ensured by adding
constraints as shown on right.) 0

Encoding bucket numbers (domain) in binary

. - v 0
Create p variables for every vertex v. : .
® Fnsure that if v belongs to bucket, say 3, in G-Z, then V1 S 1 <] S p

v(3 is set to 1 and others are set to 0. »@ 0
® If it belongs to bucket 0, then everything is assigned

to 0. V(3) 1
® This can be ensured by adding

constraints as shown on right. »(P) 0

The unique superscript that gets assigned 1, tells the
:bucket this vertex will go into. If none of them gets
iassigned 1, then it goes to bucket 0.

LeT t. =1
(D 0
Forcing the vertices of / in the correct bucket l
12 0
* Force t;in bucket i. l(l.)
* This is done by adding constraints 1 L
as shown on right. +(p) 0

(D) = (1)

Forcing an edge uv into the same bucket 4——-=YV

* This is done by adding a constraint that is an AND of u? 4."':_._’\/(2)

all the clauses shown on right.

,(3) = (3)

* Weight of this constraint=w(uv) —=V

1 (P) -————--b| (P

Encoding bucket numbers (domain) in Forcing the vertices of T in the Forcing an edge uv in the same
binary correct bucket bucket
»(D (D -———-blv(l)
¢ 0
l
p(2) ti(z) 0 1) >,
(7)
»(3) 1 2 MO m—_T
(p)
ti 0

p(P) 1 (P) -—————->| p(P)

Encoding bucket numbers (domain) in Forcing the vertices of T in the Forcing an edge uv in the same
binary correct bucket bucket
»(D (D -———-blv(l)
¢ 0
l
p(2) ti(z) 0 1) >,
(7)
»(3) 1 2 MO m—_T
(p)
ti 0

p(P) 1 (P) -—————->| p(P)

Encoding bucket numbers (domain) in Forcing the vertices of T in the Forcing an edge uv in the same
binary correct bucket bucket
»(D (D -———-blv(l)
¢ 0
l
p(2) ti(z) 0 1) >,
(7)
»(3) 1 2 NE D m—_
(p)
ti 0

p(P) 1 (P) -—————->| p(P)

Pre-pandemic~2016: Open questions

?

I DIRECTED MULTICUT

l l a @ Weighted settings?
T Find a solution of size at most k and weight at most W.

Parameter: &

I I I FPT v/s W[1]-hard dichotomy for Boolean MinCSP?

Known: constant factor FPT approximation classfication
[Bonnet, Egri, Marx ESA 2016]

Pre-pandemic~2019: Open questions

FPT
I DIRECTED MULTICUT

[Heike, Jaffke, Lima, Masaryk, Pilipczuk, Sharma, Sorge SODA 2023]

i

Flow augmentation [STOC 2022] 0 Twin-width [FOCS 2020]

SR S [Bonnet, Kim, Thomasse, Watrigant]

Generalization of the class of co-graphs

noxt ¢

Beyond Boolean MinCSP

MIN CSP Point Algebra(=, #, <, <) - o
Q over Point Algebra Domain Q Ty

Constraints have access to
< % — % S % #
and are FO formulae

MIN CSP Point Algebra(=, #, <, <) - o
Q over Point Algebra Domain Q Ty

Constraints have access to

< % — % S % #
and are FO formulae

DIRECTED SYMMETRIC MULTICUT

Given a digraph G,
pairs (sy, 1), ..., (5, 1,)
Integer k

Delete at most k arcs, say Z,

such that in G — Z, 3
for every i € {1,...,p},

either no s; — 1. path, or

no t, — s; path.

MIN CSP Point Algebra(=, #, <, <) -
Q over Point Algebra Domain Q xr Y
Constraints have access to
= < % — Y, S % #
— and are FO formulae
DIRECTED SYMMETRIC MULTICUT
Given a digraph G, Q
!Z)aII‘S (Sps 215 -5 (S0 1) < this FPT
integer & parameterized by k?

Delete at most & arcs, say Z, ~

such that in G — Z, _—t \ [AQ
for every i € {1,...,p}, /
either no s, — r, path, or /

no t, — s; path.

MiIN CSP Domain: intervals {[a,b] : a,b € Q,a < b}

over basic Allen Algebra Basic constraints: “before”, “equals”, “meets”,

‘overlaps”, “contains finishes”.

7 14 b 14

starts’,

[Dabrowski, Jonsson, Ordyniak, Osipov, Pilipczuk, Sharma]
FPT v/s W[1]-hard dichotomy based on which subset of the above 7 constraints are allowed.
In general, admits 2-approximation in FPT time.

Summary

Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

Summary

Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

Greedy tools (directed)
Important cuts

Summary

Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

Greedy tools (directed) DIRECTED MULTICUT

Important cuts 3 terminal pairs

n O,
-

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

Summary

Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

Greedy tools (directed) DIRECTED MULTICUT Q MIN CSP

over Point Algebra
Important cuts 3 terminal pairs Y

n O,
-

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

Before flow-augmentation

Greedy tools (directed)
Important cuts

Summary

With flow-augmentation Beyond flow-augmentation?

DIRECTED MULTICUT Q MIN CSP

over Point Algebra
3 terminal pairs

n O,
-

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

THANKYOU'!

Before flow-augmentation

Greedy tools (directed)
Important cuts

Summary

With flow-augmentation Beyond flow-augmentation?

DIRECTED MULTICUT Q MIN CSP

over Point Algebra
3 terminal pairs

n O,
-

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

THANKYOU'!

