
Roohani Sharma

Flow-augmentation:
advances in parameterized (weighted) cut problems

July 27, 2023

Recent Trends in Algorithms

NISER Bhubaneswar

Parameterized Complexity Landscape

of Cut Problems:

Pre- and Post-pandemic

Cuts, flows and CSPs

Parameter

Cut Problems

(Directed) graph ,

a pair of vertices (terminals)

positive integer

(or a weight function weight and
positive weight budget)

G
(s, t)

k
wt : E(G) → ℤ+

W

 a set

such that (or), and

 has no path.

?∃ Z ⊆ E(G)
|Z | ≤ k wt(Z) ≤ W

G − Z s → t

Input:

Question:

s-t Cut

Polynomial-time solvable

Cut Problems

(Directed) Multicut (MC)
(Directed) graph ,

pairs of vertices (terminals)

positive integer

G
(s1, t1), …, (sp, tp)

k

 a set

such that , and

for each ,

 has no path.

?∃ Z ⊆ E(G)
|Z | ≤ k

i ∈ {1,…, p}
G − Z si → ti

Directed case: NP-hard for p=2

Undirected case: NP-hard for p=3

Cut Problems

(Directed) Multicut (MC)
(Directed) graph ,

pairs of vertices (terminals)

positive integer

G
(s1, t1), …, (sp, tp)

k

 a set

such that , and

for each ,

 has no path.

?∃ Z ⊆ E(G)
|Z | ≤ k

i ∈ {1,…, p}
G − Z si → ti

Directed case: NP-hard for p=2

Undirected case: NP-hard for p=3

(Directed) MultiwayCut (MWC)
(Directed) graph ,

pairs of vertices (terminals)

positive integer

G
t1, …, tp

k

 a set

such that , and

 has no path

for any , .

?∃ Z ⊆ E(G)
|Z | ≤ k

G − Z ti → tj
i, j ∈ {1,…, p} i ≠ j

NP-hard for p=3

Cut Problems

Directed Feedback Arc Set (DFAS)
Directed graph ,

positive integer

G
k

 a set

such that , and

 has no directed cycle.

?∃ Z ⊆ E(G)
|Z | ≤ k

G − Z

Subset DFAS

 a set

such that , and

 has no directed cycle with at least
one red arc.

?∃ Z ⊆ E(G)∖R
|Z | ≤ k

G − Z

Directed graph ,

Red arcs ,

positive integer

G
R ⊆ E(G)

k

NP-hard NP-hard

Parameterized Complexity
— Parameter is solution size k

FPT:

W[1]-hard, otherwise.

f(k) ⋅ n𝒪(1)

Cut problems remained elusive for a very long time!

Even the simplest algorithm is based on a novel concept of important cuts.

Important Cuts

MultiwayCut (MWC)
Undirected graph

terminals

Delete edges to kill all paths.

G
T = {t1, …, tp}

k ti − tj

t1

t2

t3

t4

Any solution contains some:

• minimal cut

• minimal cut

• minimal cut

• minimal cut

t1 − T∖t1
t2 − T∖t2
t3 − T∖t3
t4 − T∖t4

Daniel Marx

Important Cuts

MultiwayCut (MWC)
Undirected graph

terminals

Delete edges to kill all paths.

G
T = {t1, …, tp}

k ti − tj

t1

t2

t3

t4

Any solution contains some:

• minimal cut

• minimal cut

• minimal cut

• minimal cut

t1 − T∖t1
t2 − T∖t2
t3 − T∖t3
t4 − T∖t4

Daniel Marx

Branch

Important Cuts

MultiwayCut (MWC)
Undirected graph

terminals

Delete edges to kill all paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each is in a different connected component of , then we are done.

2. If there exists , such that there is a path from to , then enumerate every minimal -cut of size at
most , and branching of choosing one such cut in the solution.

3. Set and .

4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

Naive algorithm

Important Cuts

MultiwayCut (MWC)
Undirected graph

terminals

Delete edges to kill all paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each is in a different connected component of , then we are done.

2. If there exists , such that there is a path from to , then enumerate every minimal -cut of size at
most , and branching of choosing one such cut in the solution.

3. Set and .

4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

Naive algorithm

ti tj

Important Cuts:

Directed and Undirected

Daniel Marx
Daniel Marx (2004) defined a partial order that compares two minimal S-T cuts.

S T

Green is better than red.

Important Cuts:

Directed and Undirected

Daniel Marx
Daniel Marx (2004) defined a partial order that compares two minimal S-T cuts.

S T

Green is better than red.

He called the maximum elements of this partial order as important S-T cuts.

Important Cuts:

Directed and Undirected

Daniel Marx
Daniel Marx (2004) defined a partial order that compares two minimal S-T cuts.

S T

Green is better than red.

He called the maximum elements of this partial order as important S-T cuts.

Number of important S-T cuts of size at most is at most .

Can be enumerated in

k 4k

𝒪(4k ⋅ k ⋅ (n + m))

Important Cuts

MultiwayCut (MWC)
Undirected graph

terminals

Delete edges to kill all paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each is in a different connected component of , then we are done.

2. If there exists , such that there is a path from to , then enumerate every important -cut of size
almost , and branching of choosing one such cut in the solution.

3. Set and .

4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

Important Cuts

MultiwayCut (MWC)
Undirected graph

terminals

Delete edges to kill all paths.

G
T = {t1, …, tp}

k ti − tj

Daniel Marx

1. If each is in a different connected component of , then we are done.

2. If there exists , such that there is a path from to , then enumerate every important -cut of size
almost , and branching of choosing one such cut in the solution.

3. Set and .

4. Go to Step 1.

ti ∈ T G

ti ∈ T ti T∖ti (ti, T∖ti)
k S

G := G∖S k := k − |S |

We branch into directions at most times running time.4k k ⟹ 4k2n𝒪(1)

Important Cuts

Number of minimal incomparable S-T cuts (called important S-T cuts) of size at most is at most .

Can be enumerated in

k 4k

𝒪(4k ⋅ k ⋅ (n + m))

Inherently greedy: Replace a part of the solution with something that “cuts” as much as the original
part.

Important Cuts

Number of minimal incomparable S-T cuts (called important S-T cuts) of size at most is at most .

Can be enumerated in

k 4k

𝒪(4k ⋅ k ⋅ (n + m))

Inherently greedy: Replace a part of the solution with something that “cuts” as much as the original
part.

 Undirected Multiway is FPT.

Directed Feedback Arc Set is FPT.

Igor Razgon

Shadow Removal [STOC 2011]
~Random sampling of important cuts.

Inherently greedy: If there is a solution, assume WLOG that there is a shadowless solution.

Now the goal is to find a shadowless solution, which in many cases is easier.

The simple branching on important cuts does not work for example, for Multicut.

Undirected Multicut is FPT.

Directed Multiway is FPT.

Daniel Marx

Important Cuts Shadow Removal Other tools,

mostly for undirected problems

Pre-pandemic~2016

Important Cuts Shadow Removal Other tools,

mostly for undirected problems

Pre-pandemic~2016

Undirected

Directed

MulticutMultiway Cut DFAS Subset DFAS

Important Cuts Shadow Removal Other tools,

mostly for undirected problems

Pre-pandemic~2016

Undirected

Directed

MulticutMultiway Cut DFAS Subset DFAS

Important Cuts Shadow Removal Other tools,

mostly for undirected problems

Pre-pandemic~2016

Undirected

Directed

MulticutMultiway Cut DFAS Subset DFAS

— —

Important Cuts Shadow Removal Other tools,

mostly for undirected problems

Pre-pandemic~2016

Undirected

Directed

MulticutMultiway Cut DFAS Subset DFAS

— —

Pre-pandemic~2016

Directed Multicut

Pre-pandemic~2016

Directed Multicut

W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

Pre-pandemic~2016

Directed Multicut

W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

Pre-pandemic~2016

Directed Multicut

W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

W[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlström SODA 2016, ACM TOCT 2018]

Pre-pandemic~2016

Directed Multicut

W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

W[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlström SODA 2016, ACM TOCT 2018]

Pre-pandemic~2016

Directed Multicut

W[1]-hard [Marx, Razgon STOC 2011, SICOMP 2014]

FPT with 2 terminal pairs [Chitnis, Hajiaghayi, Marx SODA 2012, SICOMP 2013]

W[1]-hard even with 4 terminal pairs [Pilipczuk, Wahlström SODA 2016, ACM TOCT 2018]

3 terminal pairs

Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairsI

Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairsI

Weighted settings?

Find a solution of size at most and weight at most .

Parameter:

k W
k

II

Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairsI

Weighted settings?

Find a solution of size at most and weight at most .

Parameter:

k W
k

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: Constant-factor FPT approximation classification

[Bonnet, Egri, Marx ESA 2016]

Eunjung Kim Stefan Krastch Marcin Pilipczuk Magnus
Wahlström

minimal minimum

Flow augmentation [STOC 2022]

Eunjung Kim Stefan Krastch Marcin Pilipczuk Magnus
Wahlström

minimal minimum

Flow augmentation [STOC 2022]

Input: Directed graph , vertices , integer

Output: A supergraph of obtained by adding new arcs

G s, t k
G′￼ G A

Guarantee: any minimal - separator of size at most in ,

is a minimum - separator in ,

with probability

s t Z k G
s t G′￼

2−𝒪(k4 log k)

Eunjung Kim Stefan Krastch Marcin Pilipczuk Magnus
Wahlström

minimal minimum

Flow augmentation [STOC 2022]

Input: Directed graph , vertices , integer

Output: A supergraph of obtained by adding new arcs

G s, t k
G′￼ G A

Guarantee: any minimal - separator of size at most in ,

is a minimum - separator in ,

with probability

s t Z k G
s t G′￼

2−𝒪(k4 log k)

Eunjung Kim Stefan Krastch Marcin Pilipczuk Magnus
Wahlström

minimal minimum

Flow augmentation [STOC 2022]

Input: Directed graph , vertices , integer

Output: A supergraph of obtained by adding new arcs

G s, t k
G′￼ G A

Guarantee: any minimal - separator of size at most in ,

is a minimum - separator in ,

with probability

s t Z k G
s t G′￼

2−𝒪(k4 log k)

Weighted s-t cut-

Given a directed graph ,

find an s-t cut in of size at most and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

Flow augmentation

Weighted s-t cut-

Given a directed graph ,

find an s-t cut in of size at most and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

Do flow-augmentation
and get .G′￼

Flow augmentation

Weighted s-t cut-

Given a directed graph ,

find an s-t cut in of size at most and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

[is a minimum s-t cut
in the new graph.]
Z

Do flow-augmentation
and get .G′￼

Flow augmentation

Weighted s-t cut-

Given a directed graph ,

find an s-t cut in of size at most and weight at most .

G
Z G k W

(NP-hard)

minimal minimum

[is a minimum s-t cut
in the new graph.]
Z

Do flow-augmentation
and get .G′￼

Flow augmentation

Compute min s-t cut
value, say , in .

If , report No.

λ G′￼

λ > k

Weighted s-t cut-

Given a directed graph ,

find an s-t cut in of size at most and weight at most .

G
Z G k W

Assign new weights

,

where
w-new(e) = w-old(e) + W̃

W̃ = ∑
e∈E(G)

w-old(e) + 1

(NP-hard)

minimal minimum

[is a minimum s-t cut
in the new graph.]
Z

Do flow-augmentation
and get .G′￼

Flow augmentation

Compute min s-t cut
value, say , in .

If , report No.

λ G′￼

λ > k

Weighted s-t cut-

Given a directed graph ,

find an s-t cut in of size at most and weight at most .

G
Z G k W

Assign new weights

,

where
w-new(e) = w-old(e) + W̃

W̃ = ∑
e∈E(G)

w-old(e) + 1

Is there an s-t cut in

whose is

at most ?

G′￼

w-new
λW̃ + W

(NP-hard)

minimal minimum

[is a minimum s-t cut
in the new graph.]
Z

Do flow-augmentation
and get .G′￼

Flow augmentation

Compute min s-t cut
value, say , in .

If , report No.

λ G′￼

λ > k

Questions?

Questions?

Constraint Satisfaction Problems (CSP)
Variables, Domain, Constraints

Example 1: 2-SAT

= all 2-clauses

Instance:

Constraints:

D = {0,1}
Γ

V = {x1, x2, x3}
(x1 ∨ x2), (¬x2 ∨ x3), (¬x1 ∨ ¬x2)

CSP is defined by: (1) the domain set and (2) the set of allowed constraints .D Γ

Constraint Satisfaction Problems (CSP)

For a fixed CSP , an instance consists of :

• A set of variables

• A set of constraints from applied to tuples of variables.

Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

(D, Γ)

Γ

Variables, Domain, Constraints

Example 1: 2-SAT

= all 2-clauses

Instance:

Constraints:

D = {0,1}
Γ

V = {x1, x2, x3}
(x1 ∨ x2), (¬x2 ∨ x3), (¬x1 ∨ ¬x2)

CSP is defined by: (1) the domain set and (2) the set of allowed constraints .D Γ

Constraint Satisfaction Problems (CSP)

For a fixed CSP , an instance consists of :

• A set of variables

• A set of constraints from applied to tuples of variables.

Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

(D, Γ)

Γ

Variables, Domain, Constraints

Example 1: 2-SAT

= all 2-clauses

Instance:

Constraints:

D = {0,1}
Γ

V = {x1, x2, x3}
(x1 ∨ x2), (¬x2 ∨ x3), (¬x1 ∨ ¬x2)

Example 2: 3-Coloring

=

Instance: Graph

Constraints:

D = {0,1,2}
Γ { ≠ }

G
V = V(G)

for each uv ∈ E(G), u ≠ v

CSP is defined by: (1) the domain set and (2) the set of allowed constraints .D Γ

Constraint Satisfaction Problems (CSP)

For a fixed CSP , an instance consists of :

• A set of variables

• A set of constraints from applied to tuples of variables.

Goal: Find a satisfying assignment (from the domain to the variables that satisfies all constraints).

(D, Γ)

Γ

Variables, Domain, Constraints

Example 1: 2-SAT

= all 2-clauses

Instance:

Constraints:

D = {0,1}
Γ

V = {x1, x2, x3}
(x1 ∨ x2), (¬x2 ∨ x3), (¬x1 ∨ ¬x2)

Example 2: 3-Coloring

=

Instance: Graph

Constraints:

D = {0,1,2}
Γ { ≠ }

G
V = V(G)

for each uv ∈ E(G), u ≠ v

Theorem [Bulatov, Zhuk 2017]: For every finite and , the corresponding
CSP is either polynomial-time solvable or NP-complete.

D Γ

CSP is defined by: (1) the domain set and (2) the set of allowed constraints .D Γ

MinCSP
MinCSP (): Can we delete at most k constraints to make the resulting instance satisfiable?D, Γ

MinCSP
MinCSP (): Can we delete at most k constraints to make the resulting instance satisfiable?D, Γ

Min 2-SAT: captures a range of problems like Edge Bipartization, Odd Cycle Transversal,
Above-guarantee Vertex Cover, Köning Vertex Deletion and Split Vertex Deletion.

MinCSP
MinCSP (): Can we delete at most k constraints to make the resulting instance satisfiable?D, Γ

• Interesting if CSP() is polynomial-time.

• Trivial algorithm.

• Is it FPT parameterized by ?

D, Γ
n𝒪(k)

k

Min 2-SAT: captures a range of problems like Edge Bipartization, Odd Cycle Transversal,
Above-guarantee Vertex Cover, Köning Vertex Deletion and Split Vertex Deletion.

MinCSP
MinCSP (): Can we delete at most k constraints to make the resulting instance satisfiable?D, Γ

• Interesting if CSP() is polynomial-time.

• Trivial algorithm.

• Is it FPT parameterized by ?

D, Γ
n𝒪(k)

k

Weighted MinCSP (): Each constraint has a weight.

Can we delete at most k constraints of total weight W to make the resulting instance satisfiable?

D, Γ

Min 2-SAT: captures a range of problems like Edge Bipartization, Odd Cycle Transversal,
Above-guarantee Vertex Cover, Köning Vertex Deletion and Split Vertex Deletion.

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

MinCSP (): Can we delete at most k constraints to
make the resulting instance satisfiable?

D, Γ

• D = {0,1}, Γ = {x ≠ y}
Edge Bipartization
• D = {0,1}, Γ = {x = 1,x = 0,x = y}
Undirected s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,x → y}
Directed s-t cut
• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (u → v)}
Bundled s-t cut W[1]-hard

• D = {0,1}, Γ = {1 → x, x → 0,(x → y) ∧ (y → z) ∧ (z → v)}
-Chain SAT (-Chain SAT) FPT3 ℓ

Weighted Boolean MinCSP FPT v/s W[1]-hard dichotomy

Theorem [Kim, Kratsch, Pilipczuk, Wahlström SODA 2023]: FPT v/s W[1]-hard dichotomy
for Weighted MinCSP with boolean domain.

Either Weighted MinCSP() is FPT,

or Weighted MinCSP() is W[1]-hard, but MinCSP() is FPT,

or MinCSP() is W[1]-hard.

Γ
Γ Γ

Γ

Weighted Boolean MinCSP FPT v/s W[1]-hard dichotomy

Theorem [Kim, Kratsch, Pilipczuk, Wahlström SODA 2023]: FPT v/s W[1]-hard dichotomy
for Weighted MinCSP with boolean domain.

Either Weighted MinCSP() is FPT,

or Weighted MinCSP() is W[1]-hard, but MinCSP() is FPT,

or MinCSP() is W[1]-hard.

Γ
Γ Γ

Γ

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.

- A pair of variables are independent, if every assignment to
them can be extended to a satisfying assignment for this
constraint.

- Put an edge between a pair of variables that is not independent.

vi, vj

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.

- A pair of variables are independent, if every assignment to
them can be extended to a satisfying assignment for this
constraint.

- Put an edge between a pair of variables that is not independent.

vi, vj

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.

- A pair of variables are independent, if every assignment to
them can be extended to a satisfying assignment for this
constraint.

- Put an edge between a pair of variables that is not independent.

vi, vj

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.

- A pair of variables are independent, if every assignment to
them can be extended to a satisfying assignment for this
constraint.

- Put an edge between a pair of variables that is not independent.

vi, vj

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.

- A pair of variables are independent, if every assignment to
them can be extended to a satisfying assignment for this
constraint.

- Put an edge between a pair of variables that is not independent.

vi, vj

FPT Island: Weighted MinCSP(Γgood) is FPT

parameterized by k and the maximum arity over all constraints.

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5

FPT island: Weighted MinCSP(Γgood)
• Set of variables

• Domain of variables is boolean

• Collection of constraints:

- Each constraint is an ⋀ of 2-ary clauses and
clauses of the form or .

- The constraint graph is -free.

- The arity of a constraint is the number of

clauses in it.

• Each constraint has a weight.

• The goal is to find a satisfying assignment that

satisfies all but at most k constraints of total weight at
most W.

V
D = {0,1}

1 → v v → 0
2K2

Constraint graph (defined for every constraint)

- The vertex set is the variables in the constraint.

- A pair of variables are independent, if every assignment to
them can be extended to a satisfying assignment for this
constraint.

- Put an edge between a pair of variables that is not independent.

vi, vj

FPT Island: Weighted MinCSP(Γgood) is FPT

parameterized by k and the maximum arity over all constraints.

Eg: 4-Chain SAT
(v1 → v2) ∧ (v2 → v3) ∧ (v3 → v4) ∧ (v4 → v5)

v1 v2 v3 v4 v5

Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairs

Weighted settings?
Find a solution of size at most and weight at most .

Parameter:

k W
k

I

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: constant factor FPT approximation classfication

[Bonnet, Egri, Marx ESA 2016]

Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairs

Weighted settings?
Find a solution of size at most and weight at most .

Parameter:

k W
k

I

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: constant factor FPT approximation classfication

[Bonnet, Egri, Marx ESA 2016]

Weighted settings?

Multicut

Undirected

Directed

Multiway Cut DFAS Subset DFAS

— —

[KMPSW]

[KMPSW]

W[1]-hard

even with 2 terminals

[HJLMPSS,

SODA 2023]

W[1]-hard

even with 2 pairs

[HJLMPSS,

SODA 2023]

MinCSP ()= MinCSP ()= , ≠

MinCSP ()< , ≤

[Kim, Masaryk, Pilipczuk, Sharma, Wahlström]

(non-boolean)

(non-boolean)

(non-boolean)

Weighted settings?

Multicut

Undirected

Directed

Multiway Cut DFAS Subset DFAS

— —

[KMPSW]

[KMPSW]

W[1]-hard

even with 2 terminals

[HJLMPSS,

SODA 2023]

W[1]-hard

even with 2 pairs

[HJLMPSS,

SODA 2023]

MinCSP ()= MinCSP ()= , ≠

MinCSP ()< , ≤

[Kim, Masaryk, Pilipczuk, Sharma, Wahlström]

(non-boolean)

(non-boolean)

(non-boolean)

Weighted settings?

Multicut

Undirected

Directed

Multiway Cut DFAS Subset DFAS

— —

[KMPSW]

[KMPSW]

W[1]-hard

even with 2 terminals

[HJLMPSS,

SODA 2023]

W[1]-hard

even with 2 pairs

[HJLMPSS,

SODA 2023]

MinCSP ()= MinCSP ()= , ≠

MinCSP ()< , ≤

[Kim, Masaryk, Pilipczuk, Sharma, Wahlström]

(non-boolean)

(non-boolean)

(non-boolean)

Undirected Multiway Cut MinCSP ()=

1 2 3 p

T = {t1, …, tp}

G-Z (Z is a solution)

tpt1 t2 t3

⇒

connected components of G-Z

0

Assume is connected. Then .G p ≤ k + 1

Undirected Multiway Cut MinCSP ()=

1 2 3 p

T = {t1, …, tp}

G-Z (Z is a solution)

tpt1 t2 t3

⇒

connected components of G-Z

For every vertex , v ∈ V(G) create a variable v domain is 0,1,…, p
For every edge , uv ∈ E(G) create a constraint u = v
For every , ti ∈ T create an undeletable constraint ti = i

weight=w(uv)

0

Assume is connected. Then .G p ≤ k + 1

Encoding bucket numbers (domain) in binary

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

• Create variables for every vertex v.

• Ensure that if v belongs to bucket, say 3, in G-Z, then

v(3) is set to 1 and others are set to 0.

• If it belongs to bucket 0, then everything is assigned

to 0.

p v(1)

v(2)

v(3)

 v(p)

0

0

1

0
• This can be ensured by adding undeletable

constraints as shown on right.

¬v(i) ∨ ¬v(j)

∀1 ≤ i < j ≤ p

Encoding bucket numbers (domain) in binary

The unique superscript that gets assigned 1, tells the
bucket this vertex will go into. If none of them gets
assigned 1, then it goes to bucket 0.

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

• Create variables for every vertex v.

• Ensure that if v belongs to bucket, say 3, in G-Z, then

v(3) is set to 1 and others are set to 0.

• If it belongs to bucket 0, then everything is assigned

to 0.

p v(1)

v(2)

v(3)

 v(p)

0

0

1

0
• This can be ensured by adding undeletable

constraints as shown on right.

¬v(i) ∨ ¬v(j)

∀1 ≤ i < j ≤ p

• Force in bucket .

• This is done by adding undeletable constraints

as shown on right.

ti i

Forcing the vertices of in the correct bucketT

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

t(2)
i

t(i)
i

t(1)
i

t(p)
i

0

1

0

0

Forcing an edge uv into the same bucket

• This is done by adding a constraint that is an AND of
all the clauses shown on right.

• Weight of this constraint=w(uv)

v(2)

v(3)

v(p)

v(1)

u(2)

u(3)

u(p)

u(1)

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

Encoding bucket numbers (domain) in
binary

Forcing the vertices of in the
correct bucket

T Forcing an edge uv in the same
bucket

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

v(2)

v(3)

v(p)

v(1)

u(2)

u(3)

u(p)

u(1)v(1)

v(2)

v(3)

 v(p)

t(2)
i

t(i)
i

t(1)
i

t(p)
i

0

1

0

0

Encoding bucket numbers (domain) in
binary

Forcing the vertices of in the
correct bucket

T Forcing an edge uv in the same
bucket

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

v(2)

v(3)

v(p)

v(1)

u(2)

u(3)

u(p)

u(1)v(1)

v(2)

v(3)

 v(p)

t(2)
i

t(i)
i

t(1)
i

t(p)
i

0

1

0

0

Encoding bucket numbers (domain) in
binary

Forcing the vertices of in the
correct bucket

T Forcing an edge uv in the same
bucket

Encode this as MinCSP(Γgood)uv ∈ E(G) u = v

Domain

ti ∈ T ti = i

{1,…, p}

v(2)

v(3)

v(p)

v(1)

u(2)

u(3)

u(p)

u(1)v(1)

v(2)

v(3)

 v(p)

t(2)
i

t(i)
i

t(1)
i

t(p)
i

0

1

0

0

Pre-pandemic~2016: Open questions

Directed Multicut 3 terminal pairs

Weighted settings?
Find a solution of size at most and weight at most .

Parameter:

k W
k

I

II

III FPT v/s W[1]-hard dichotomy for Boolean MinCSP?
Known: constant factor FPT approximation classfication

[Bonnet, Egri, Marx ESA 2016]

Pre-pandemic~2019: Open questions

Directed Multicut 3 terminal pairsI

minimal minimum

Flow augmentation [STOC 2022] Twin-width [FOCS 2020]

[Bonnet, Kim, Thomassé, Watrigant]

[Heike, Jaffke, Lima, Masaryk, Pilipczuk, Sharma, Sorge SODA 2023]

FPT

Generalization of the class of co-graphs

Beyond Boolean MinCSP

Min CSP
over Point Algebra

Point Algebra()= , ≠ , < , ≤
<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x <latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>yDomain ℚ

Constraints have access to

and are FO formulae
< , = , ≤ , ≠

Min CSP
over Point Algebra

Point Algebra()= , ≠ , < , ≤
<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x <latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>yDomain ℚ

Constraints have access to

and are FO formulae
< , = , ≤ , ≠≡

Directed Symmetric Multicut
Given a digraph ,

pairs

integer

G
(s1, t1), …, (sp, tp)

k

Delete at most arcs, say Z,

such that in ,

for every ,

either no path, or

no path.

k
G − Z

i ∈ {1,…, p}
si → ti

ti → si

Is this FPT

parameterized by k?

Min CSP
over Point Algebra

Point Algebra()= , ≠ , < , ≤
<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x <latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>yDomain ℚ

Constraints have access to

and are FO formulae
< , = , ≤ , ≠≡

Directed Symmetric Multicut
Given a digraph ,

pairs

integer

G
(s1, t1), …, (sp, tp)

k

Delete at most arcs, say Z,

such that in ,

for every ,

either no path, or

no path.

k
G − Z

i ∈ {1,…, p}
si → ti

ti → si

Min CSP
over basic Allen Algebra

Domain: intervals {[a, b] : a, b ∈ ℚ, a < b}
Basic constraints: “before”, “equals”, “meets”,

“overlaps”, “contains”, “starts”, “finishes”.

[Dabrowski, Jonsson, Ordyniak, Osipov, Pilipczuk, Sharma]

FPT v/s W[1]-hard dichotomy based on which subset of the above 7 constraints are allowed.

In general, admits 2-approximation in FPT time.

Summary
Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

Summary
Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

Greedy tools (directed)

Important cuts

Summary
Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

3 terminal pairs

Directed Multicut Greedy tools (directed)

Important cuts

Summary
Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

3 terminal pairs

Directed Multicut Min CSP
over Point Algebra

Greedy tools (directed)

Important cuts

Summary
Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

3 terminal pairs

Directed Multicut Min CSP
over Point Algebra

Greedy tools (directed)

Important cuts

Summary
Before flow-augmentation With flow-augmentation Beyond flow-augmentation?

FPT v/s W[1]-hard dichotomy
for Boolean MinCSP

3 terminal pairs

Directed Multicut Min CSP
over Point Algebra

Greedy tools (directed)

Important cuts

