Greedy Algorithms, Matroids, and Parallel Complextiy

Joint work with Sumanta Ghosh and Roshan Raj

NISER Bhubaneswar
July 28, 2023

Outline

- Introduction to matroids and connection with greedy algorithms
- Search vs. decision: parallel complexity
- Matroid intersection: deterministic parallel search to decision reduction

Outline

- Introduction to matroids and connection with greedy algorithms
- Search vs. decision: parallel complexity
- Matroid intersection: deterministic parallel search to decision reduction

Takeaways:

- Isolation Lemma
- Succinct representation of all MSTs
- Succinct representation of all maximum weight perfect matchings

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Maximum weight spanning tree

Kruskal's Algorithm

- Sort the edges in decreasing order of weights.
- Keep selecting edges which do not create a cycle (maintain a forest).

Job Scheduling

Max Profit Job Scheduling

- Unit time jobs with a profit, release time, and deadline.
- Find a schedulable set of jobs, maximizing profit.

Job Scheduling

Max Profit Job Scheduling

- Unit time jobs with a profit, release time, and deadline.
- Find a schedulable set of jobs, maximizing profit.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	80	70	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	80	70	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	80	70	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	$\mathbf{8 0}$	70	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	$\mathbf{8 0}$	70	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	65	45	30	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	30	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	30	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	$\mathbf{4 5}$	30	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	30	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	$\mathbf{3 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	$\mathbf{3 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	$\mathbf{1 5}$	$\mathbf{6 5}$	45	$\mathbf{3 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	$\mathbf{3 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	10

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	$\mathbf{4 5}$	$\mathbf{3 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	$\mathbf{1 0}$

Job Scheduling

Max Profit Algorithm

- Sort the jobs in decreasing order of profit.
- Keep selecting jobs while maintaining schedulability.

Job	P	Q	R	S	T	U	V
Release	2	2	3	4	2	3	1
Deadline	6	3	5	6	4	5	7
Profit	15	$\mathbf{6 5}$	45	$\mathbf{3 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	$\mathbf{1 0}$

Linear Indpendence

Max weight basis

- Set of vectors from \mathbb{R}^{n}, each with a weight.
- Find a subset of linearly independent vectors with maximum total weight.

Linear Indpendence

Max weight basis

- Set of vectors from \mathbb{R}^{n}, each with a weight.
- Find a subset of linearly independent vectors with maximum total weight.

Algorithm

- Sort the vectors in decreasing order of weights.
- Keep selecting vectors while maintaining linear independence.

Greedy Algorithms

- All three algorithms are the same at a high level.

Greedy Algorithms

- All three algorithms are the same at a high level.
- Correctness is not obvious.

Greedy Algorithms

- All three algorithms are the same at a high level.
- Correctness is not obvious.
- Is there a common reason why greedy works in these three settings?

Greedy Algorithms

- All three algorithms are the same at a high level.
- Correctness is not obvious.
- Is there a common reason why greedy works in these three settings?
- Is there something in common between
- forests in a graph
- schedulable subsets of jobs
- linearly independent sets of vectors

Greedy Algorithms

- All three algorithms are the same at a high level.
- Correctness is not obvious.
- Is there a common reason why greedy works in these three settings?
- Is there something in common between
- forests in a graph
- schedulable subsets of jobs
- linearly independent sets of vectors
- Extendibility: if the selected set is not the largest, then it can be extended.

Greedy Algorithms

- All three algorithms are the same at a high level.
- Correctness is not obvious.
- Is there a common reason why greedy works in these three settings?
- Is there something in common between
- forests in a graph
- schedulable subsets of jobs
- linearly independent sets of vectors
- Extendibility: if the selected set is not the largest, then it can be extended. (without removing any elements)

Matroids

Definition (Matroid)

- E : Ground set

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets)

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets) (forests, schedulable sets of jobs, linearly independent sets of vectors)

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets) (forests, schedulable sets of jobs, linearly independent sets of vectors)
- (E, \mathcal{I}) is a matroid if

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets) (forests, schedulable sets of jobs, linearly independent sets of vectors)
- (E, \mathcal{I}) is a matroid if
- $\emptyset \in \mathcal{I}$.

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets) (forests, schedulable sets of jobs, linearly independent sets of vectors)
- (E, \mathcal{I}) is a matroid if
- $\emptyset \in \mathcal{I}$.
- $I \in \mathcal{I} \Longrightarrow J \in \mathcal{I}$ for all $J \subseteq I$.

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets) (forests, schedulable sets of jobs, linearly independent sets of vectors)
- (E, \mathcal{I}) is a matroid if
- $\emptyset \in \mathcal{I}$.
- $I \in \mathcal{I} \Longrightarrow J \in \mathcal{I}$ for all $J \subseteq I$.
- $A, B \in \mathcal{I}$ with $|A|<|B|$

Matroids

Definition (Matroid)

- E : Ground set (edge set, set of jobs, set of vectors)
- I: family of subsets of E (called independent sets) (forests, schedulable sets of jobs, linearly independent sets of vectors)
- (E, \mathcal{I}) is a matroid if
- $\emptyset \in \mathcal{I}$.
- $I \in \mathcal{I} \Longrightarrow J \in \mathcal{I}$ for all $J \subseteq I$.
- $A, B \in \mathcal{I}$ with $|A|<|B|$ then
$\exists a \in B \backslash A$ such that $A+a \in \mathcal{I}$.

Examples of Matroids

- Graphic matroids

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take at most 3 students from 4th year, at most 4 from 3rd year, ...

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take
at most 3 students from 4th year, at most 4 from 3rd year, ...
- Gammoids

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take
at most 3 students from 4th year, at most 4 from 3rd year, ...
- Gammoids $E \leftarrow$ client nodes in a network

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take
at most 3 students from 4th year, at most 4 from 3rd year, ...
- Gammoids $E \leftarrow$ client nodes in a network
$\mathcal{I} \leftarrow$ sets of clients with vertex-disjoint paths to servers

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take
at most 3 students from 4th year, at most 4 from 3rd year, ...
- Gammoids $E \leftarrow$ client nodes in a network
$\mathcal{I} \leftarrow$ sets of clients with vertex-disjoint paths to servers

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take
at most 3 students from 4th year, at most 4 from 3rd year, ...
- Gammoids $E \leftarrow$ client nodes in a network
$\mathcal{I} \leftarrow$ sets of clients with vertex-disjoint paths to servers

Examples of Matroids

- Graphic matroids $E \leftarrow$ edge set, $\mathcal{I} \leftarrow$ family of all forests.
- Transversal matroids
- Linear matroids
- Partition matroids
$E \leftarrow$ set of students in a college,
$\mathcal{I} \leftarrow$ teams that take
at most 3 students from 4th year, at most 4 from 3rd year, ...
- Gammoids $E \leftarrow$ client nodes in a network
$\mathcal{I} \leftarrow$ sets of clients with vertex-disjoint paths to servers

Matroids in Computer Science

- Combinatorial optimization
- Game theory
- Online algorithms
- Algebraic problems

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example I:

- Graph with Colored edges

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example I:

- Graph with Colored edges
largest forest with ≤ 2 red edges, ≤ 2 blue edges, ≤ 1 green edges ...

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example I:

- Graph with Colored edges
largest forest with ≤ 2 red edges, ≤ 2 blue edges, ≤ 1 green edges ...
Graphic Matroid \cap Partition Matroid

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example I:

- Graph with Colored edges
largest forest with ≤ 2 red edges, ≤ 2 blue edges, ≤ 1 green edges ...
Graphic Matroid \cap Partition Matroid

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example I:

- Graph with Colored edges
largest forest with ≤ 2 red edges, ≤ 2 blue edges, ≤ 1 green edges ...
Graphic Matroid \cap Partition Matroid

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example I:

- Graph with Colored edges
largest forest with ≤ 2 red edges, ≤ 2 blue edges, ≤ 1 green edges ...
Graphic Matroid \cap Partition Matroid

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example II:

- Bipartite matching

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example II:

- Bipartite matching (any vertex having at most one edge)

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example II:

- Bipartite matching (any vertex having at most one edge)

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example II:

- Bipartite matching (any vertex having at most one edge)

Partition Matroid \cap Partition Matroid.

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example II:

- Bipartite matching (any vertex having at most one edge)

Partition Matroid \cap Partition Matroid.

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example III:

- r-Arborescences in a directed graph

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example III:

- r-Arborescences in a directed graph

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example III:

- r-Arborescences in a directed graph

Figure: Graphic Matroid \cap Partition Matroid

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Example III:

- r-Arborescences in a directed graph

Figure: Graphic Matroid \cap Partition Matroid

- At most 1 incoming edge at each vertex.

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Examples:

- Rainbow spanning tree
- Bipartite matching
- r-Arborescences in a directed graph

Matroid Intersection

Problem

- Given two matroids on the same ground set,
- Find the largest size (weight) common independent set.

Examples:

- Rainbow spanning tree
- Bipartite matching
- r-Arborescences in a directed graph
- Finding two disjoint spanning trees (Homework)

Search vs. Decision

Search vs. Decision

Satisfiability

- Decision: Given a Boolean formula, is there a satisfying assignment?
- Search: Find a satisfying assignment, if one exists.

Search vs. Decision

Satisfiability

- Decision: Given a Boolean formula, is there a satisfying assignment?
- Search: Find a satisfying assignment, if one exists.

Matching

- Decision: Is there a perfect matching in a given graph?
- Search: Find a perfect matching, if one exists.

Search vs. Decision

Satisfiability

- Decision: Given a Boolean formula, is there a satisfying assignment?
- Search: Find a satisfying assignment, if one exists.

Matching

- Decision: Is there a perfect matching in a given graph?
- Search: Find a perfect matching, if one exists.
- Decision is as easy as Search.

Search vs. Decision

Satisfiability

- Decision: Given a Boolean formula, is there a satisfying assignment?
- Search: Find a satisfying assignment, if one exists.

Matching

- Decision: Is there a perfect matching in a given graph?
- Search: Find a perfect matching, if one exists.
- Decision is as easy as Search.
- Is Search as easy as Decision?

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true $\left., x_{2}, \ldots, x_{n}\right)$ Satisfiable?

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true, $\left.x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true, $\left.x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true, $\left.x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true $\left., x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.
Matching: finding perfect matching in a graph G.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true, $\left.x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.
Matching: finding perfect matching in a graph G.
- Pick an edge $e=(u, v)$.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true $\left., x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.
Matching: finding perfect matching in a graph G.
- Pick an edge $e=(u, v)$.

- Does $G-e$ have a perfect matching ?

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true $\left., x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.
Matching: finding perfect matching in a graph G.
- Pick an edge $e=(u, v)$.

- Does $G-e$ have a perfect matching ?
- If yes, delete e and continue.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true $\left., x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.
Matching: finding perfect matching in a graph G.
- Pick an edge $e=(u, v)$.

- Does $G-e$ have a perfect matching ?
- If yes, delete e and continue.
- If no, include e in the perfect matching and continue with $G-u-v$.

Search to Decision Reduction

Satisfiability: finding a satisfying assignment for $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- is $\varphi\left(x_{1}=\right.$ true $\left., x_{2}, \ldots, x_{n}\right)$ Satisfiable?
- If yes, set $x_{1}=$ true and continue.
- If no, set $x_{1}=$ false and continue.
- Repeat for each variable one by one to get a satisfying assignment.
Matching: finding perfect matching in a graph G.
- Pick an edge $e=(u, v)$.

- Does $G-e$ have a perfect matching ?
- If yes, delete e and continue.
- If no, include e in the perfect matching and continue with $G-u-v$.
- Keep repeating to get a perfect matching.

Search to Decision Reduction

- Search can be done using n decision queries.

Search to Decision Reduction

- Search can be done using n decision queries.
- These decision queries are adaptive.

Search to Decision Reduction

- Search can be done using n decision queries.
- These decision queries are adaptive.
- Is there a parallel search-to-decision reduction?

Search to Decision Reduction

- Search can be done using n decision queries.
- These decision queries are adaptive.
- Is there a parallel search-to-decision reduction?
- If we are allowed poly(n) decision queries in parallel - can we do search, say, in $O(\sqrt{n})$ (or $O\left(\log ^{c} n\right)$) rounds?

Search to Decision Reduction

- Search can be done using n decision queries.
- These decision queries are adaptive.
- Is there a parallel search-to-decision reduction?
- If we are allowed poly(n) decision queries in parallel
- can we do search, say, in $O(\sqrt{n})$ (or $O\left(\log ^{c} n\right)$) rounds?
- [Karp, Upfal, Wigderson 1985] studied this question, motivated by the parallel complexity status of matching and matroid intersection.

Parallel Complexity of Matroid Intersection

- [Lovász 1979] gave randomized parallel algorithms for the Decision version of matching and linear matroid intersection.

Parallel Complexity of Matroid Intersection

- [Lovász 1979] gave randomized parallel algorithms for the Decision version of matching and linear matroid intersection.
- Based on determinant computation.

Parallel Complexity of Matroid Intersection

- [Lovász 1979] gave randomized parallel algorithms for the Decision version of matching and linear matroid intersection.
- Based on determinant computation.
- Efficient parallel algorithm (NC): $O\left(\log ^{c} n\right)$ time on poly (n) parallel processors.

Parallel Complexity of Matroid Intersection

- [Lovász 1979] gave randomized parallel algorithms for the Decision version of matching and linear matroid intersection.
- Based on determinant computation.
- Efficient parallel algorithm (NC): $O\left(\log ^{c} n\right)$ time on poly (n) parallel processors.
- Did not imply any parallel algorithm for Search version.

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?
- Implied a randomized parallel algorithm for the search version.

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?
- Implied a randomized parallel algorithm for the search version.

Open questions:

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?
- Implied a randomized parallel algorithm for the search version.

Open questions:

- Is there a deterministic parallel (NC) algorithm for any version?

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?
- Implied a randomized parallel algorithm for the search version.

Open questions:

- Is there a deterministic parallel (NC) algorithm for any version?
still open.

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?
- Implied a randomized parallel algorithm for the search version.

Open questions:

- Is there a deterministic parallel (NC) algorithm for any version?
still open.
- Is there a deterministic parallel (NC) reduction from search to decision (or weighted-decision)?

Parallel Complexity of Matroid Intersection

- [KUW86, MVV87]: efficient parallel randomized reduction (RNC) from search to weighted-decision.
- Weighted-decision: given a graph with edge weights, is there a matching with weight at least W ?
- Implied a randomized parallel algorithm for the search version.

Open questions:

- Is there a deterministic parallel (NC) algorithm for any version?
still open.
- Is there a deterministic parallel (NC) reduction from search to decision (or weighted-decision)?
Some exciting progress recently.

Search to weighted-decision

Search to weighted-decision deterministic parallel reduction

- [FGT16, GG17] Bipartite Matching

Search to weighted-decision

Search to weighted-decision deterministic parallel reduction

- [FGT16, GG17] Bipartite Matching
- [AV20] General Matching

Search to weighted-decision

Search to weighted-decision deterministic parallel reduction

- [FGT16, GG17] Bipartite Matching
- [AV20] General Matching
- This work Matroid Intersection

Search to decision: unique solution

Search to decision: unique solution

- Suppose a Boolean formula φ has exactly one satisfying assignment.

Search to decision: unique solution

- Suppose a Boolean formula φ has exactly one satisfying assignment.
- Can we find it using non-adaptive decision queries?

Search to decision: unique solution

- Suppose a Boolean formula φ has exactly one satisfying assignment.
- Can we find it using non-adaptive decision queries?

Finding unique assignment

For each variable x_{i}, in parallel:
is $\varphi\left(\ldots, x_{i}=\right.$ true,$\left.\ldots\right)$ satisfiable?

Search to decision: unique solution

- Suppose a Boolean formula φ has exactly one satisfying assignment.
- Can we find it using non-adaptive decision queries?

Finding unique assignment

For each variable x_{i}, in parallel:
is $\varphi\left(\ldots, x_{i}=\right.$ true,$\left.\ldots\right)$ satisfiable?

- If yes, set $x_{i}=$ true.

Search to decision: unique solution

- Suppose a Boolean formula φ has exactly one satisfying assignment.
- Can we find it using non-adaptive decision queries?

Finding unique assignment

For each variable x_{i}, in parallel:
is $\varphi\left(\ldots, x_{i}=\right.$ true,$\left.\ldots\right)$ satisfiable?

- If yes, set $x_{i}=$ true.
- If no, set $x_{i}=$ false.

Search to decision: unique solution

- If a graph has a only one perfect matching, then can find it using non-adaptive decision queries.

Search to decision: unique solution

- If a graph has a only one perfect matching, then can find it using non-adaptive decision queries.

Finding unique perfect matching
For each edge e, in parallel: does $G-e$ have a perfect matching?

Search to decision: unique solution

- If a graph has a only one perfect matching, then can find it using non-adaptive decision queries.

Finding unique perfect matching
For each edge e, in parallel: does $G-e$ have a perfect matching?

- If no, select e.

Search to decision: unique solution

- If a graph has a only one perfect matching, then can find it using non-adaptive decision queries.

Finding unique perfect matching
For each edge e, in parallel: does $G-e$ have a perfect matching?

- If no, select e.
- If yes, discard e.

Search to weighted-decision: Randomized Reduction

- [MVV87] Isolating weight assignment: a weight assignment on the edges such that there is only one maximum weight perfect matching.

Search to weighted-decision: Randomized Reduction

- [MVV87] Isolating weight assignment: a weight assignment on the edges such that there is only one maximum weight perfect matching.
- Can we find unique max weight PM using non-adaptive weighted-decision queries?

Search to weighted-decision: Randomized Reduction

- [MVV87] Isolating weight assignment: a weight assignment on the edges such that there is only one maximum weight perfect matching.
- Can we find unique max weight PM using non-adaptive weighted-decision queries?

Finding unique max weight perfect matching

- Find w^{*} using weighted-decision queries.

Search to weighted-decision: Randomized Reduction

- [MVV87] Isolating weight assignment: a weight assignment on the edges such that there is only one maximum weight perfect matching.
- Can we find unique max weight PM using non-adaptive weighted-decision queries?

Finding unique max weight perfect matching

- Find w^{*} using weighted-decision queries.
- For each edge e, in parallel:
does $G-e$ have a perfect matching with weight $\geq w^{*}$?

Search to weighted-decision: Randomized Reduction

- [MVV87] Isolating weight assignment: a weight assignment on the edges such that there is only one maximum weight perfect matching.
- Can we find unique max weight PM using non-adaptive weighted-decision queries?

Finding unique max weight perfect matching

- Find w^{*} using weighted-decision queries.
- For each edge e, in parallel:
does $G-e$ have a perfect matching with weight $\geq w^{*}$?
- If no, select e.

Search to weighted-decision: Randomized Reduction

- [MVV87] Isolating weight assignment: a weight assignment on the edges such that there is only one maximum weight perfect matching.
- Can we find unique max weight PM using non-adaptive weighted-decision queries?

Finding unique max weight perfect matching

- Find w^{*} using weighted-decision queries.
- For each edge e, in parallel:
does $G-e$ have a perfect matching with weight $\geq w^{*}$?
- If no, select e.
- If yes, discard e.

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?
- weights are poly bounded, but number of PMs is exponential.

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?
- weights are poly bounded, but number of PMs is exponential.

Isolation Lemma [MVV87]

Wake up!

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?
- weights are poly bounded, but number of PMs is exponential.

Isolation Lemma [MVV87]

Assign each edge a random weight independently from $\{0,1,2 \ldots, 2 m\}$. Then,

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?
- weights are poly bounded, but number of PMs is exponential.

Isolation Lemma [MVV87]

Assign each edge a random weight independently from $\{0,1,2 \ldots, 2 m\}$. Then,

$$
\operatorname{Pr}\{\text { there is only one max weight } \mathrm{PM}\} \geq 1 / 2 .
$$

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?
- weights are poly bounded, but number of PMs is exponential.

Isolation Lemma [MVV87]

Assign each edge a random weight independently from $\{0,1,2 \ldots, 2 m\}$. Then,

$$
\operatorname{Pr}\{\text { there is only one max weight } \mathrm{PM}\} \geq 1 / 2 .
$$

- Works for an arbitrary family of sets.

Search to weighted-decision: Randomized Reduction

- But how do we guarantee unique max weight perfect matching?
- weights are poly bounded, but number of PMs is exponential.

Isolation Lemma [MVV87]

Assign each edge a random weight independently from $\{0,1,2 \ldots, 2 m\}$. Then, $\operatorname{Pr}\{$ there is only one max weight PM$\} \geq 1 / 2$.

- Works for an arbitrary family of sets.
- Derandomizing Isolation Lemma remains an open question.

Search to weighted-decision: Deterministic Reduction

Main technical result

- Given two matroids,
- construct a weight assignment such that there is only one max weight common base (rainbow spanning tree)
- using $O\left(\log ^{2} n\right)$ rounds of weighted-decision queries.

Search to weighted-decision: Deterministic Reduction

Main technical result

- Given two matroids,
- construct a weight assignment such that there is only one max weight common base (rainbow spanning tree)
- using $O\left(\log ^{2} n\right)$ rounds of weighted-decision queries.

Algorithm at a high level

$S \leftarrow$ set of all common bases
while ($|S|>1$)
Update w to enforce some tie breaks in S.
$S \leftarrow$ set of max weight common bases.

Search to weighted-decision: Deterministic Reduction

Main technical result

- Given two matroids,
- construct a weight assignment such that there is only one max weight common base (rainbow spanning tree)
- using $O\left(\log ^{2} n\right)$ rounds of weighted-decision queries.

Algorithm at a high level

$S \leftarrow$ set of all common bases
while ($|S|>1$)
Update w to enforce some tie breaks in S.
$S \leftarrow$ set of max weight common bases.

- In $O(\log n)$ rounds, unique max weight common base.

Search to weighted-decision: Deterministic Reduction

Main technical result

- Given two matroids,
- construct a weight assignment such that there is only one max weight common base (rainbow spanning tree)
- using $O\left(\log ^{2} n\right)$ rounds of weighted-decision queries.

Algorithm at a high level

$S \leftarrow$ set of all common bases
while ($|S|>1$)
Update w to enforce some tie breaks in S.
$S \leftarrow$ set of max weight common bases.

- In $O(\log n)$ rounds, unique max weight common base.
- Crucially use a succinct representation of the set of max weight common bases.

Succinct representation of all MSTs

- First question: How do we succinctly represent all maximum weight bases of a Matroid?
- How do we succinctly represent all maximum weight spanning trees in a graph?

Succinct representation of all MSTs

Figure: Graph G

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{20}

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{20}

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{20}

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{20}

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{20}

Figure: Graph G_{40}

Figure: Graph G_{30}

Succinct representation of all MSTs

Figure: Graph G

Figure: Graph G_{20}

Figure: Graph G_{40}

Figure: Graph G_{30}

MSTs in $G=\left\{\right.$ largest forests in $\left.G_{40}\right\} \times\left\{\right.$ largest forests in $\left.G_{30}\right\} \times$ \{largest forests in G_{20} \}

Succinct representation of all MSTs

Observation: Every MST takes

- 1 edge from G_{40}
- 3 edges from G_{30}
- and 1 edge from G_{20}.

Succinct representation of all max weight common bases

Weight splitting theorem

Succinct representation of all max weight common bases

Weight splitting theorem

- Given two matroids M_{1} and M_{2} with a weight assignment w,

Succinct representation of all max weight common bases

Weight splitting theorem

- Given two matroids M_{1} and M_{2} with a weight assignment w,
- there exists a weight splitting $w=w_{1}+w_{2}$ such that

Succinct representation of all max weight common bases

Weight splitting theorem

- Given two matroids M_{1} and M_{2} with a weight assignment w,
- there exists a weight splitting $w=w_{1}+w_{2}$ such that
- set of max weight common bases $=$
$\left\{\max\right.$ weight bases in M_{1} w.r.t. w_{1} \}
\cap
$\left\{\right.$ max weight bases in M_{2} w.r.t. $\left.w_{2}\right\}$

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Figure: Weight-splitting

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Weight-splitting for Bipartite Perfect Matching

Figure: Weight-splitting

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Weight-splitting for Bipartite Perfect Matching

Figure: Weight-splitting

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Figure: Weight-splitting

Weight-splitting for Bipartite Perfect Matching

Figure: Weight-splitting

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Obs: A perfect matching maximizes w_{1} and $w_{2} \Longrightarrow$ it maximizes $w_{1}+w_{2}$.

Weight-splitting for Bipartite Perfect Matching

Figure: Weight-splitting

Three perfect matchings

- $10+12+20=42$
- $10+20+30=60$
- $30+10+20=60$

Obs: A perfect matching maximizes w_{1} and $w_{2} \Longrightarrow$ it maximizes $w_{1}+w_{2}$.

Thm: All maximum weight perfect matchings can be obtained this way.

Ideas

Algorithm at a high level

$S \leftarrow$ set of all common bases while $(|S|>1)$

Update w to enforce some tie breaks in S.
$S \leftarrow$ set of max weight common bases.

Ideas

Algorithm at a high level

$S \leftarrow$ set of all common bases while $(|S|>1)$

Update w to enforce some tie breaks in S.
$S \leftarrow$ set of max weight common bases.

- How do we update w to break ties?

Ideas

Algorithm at a high level

$S \leftarrow$ set of all common bases while $(|S|>1)$

Update w to enforce some tie breaks in S.
$S \leftarrow$ set of max weight common bases.

- How do we update w to break ties?
- Consider two max weight common bases and their symmetric difference.

Consider two max weight common bases.

Figure: A cycle in two common bases

Figure: A cycle in two common bases

Algorithm

Observation

- Weight splitting defines a bipartite graph on the elements.
- Each cycle in this graph has zero alternating sum.

Algorithm

Observation

- Weight splitting defines a bipartite graph on the elements.
- Each cycle in this graph has zero alternating sum.

Algorithm

For $i=1$ to $\log n$:

- Update w to give nonzero alternating weight to all cycles of length $\leq 2^{i}$ (need Hashing techinques).
- Recompute weight-splitting and the bipartite graph (need weighted-decision query) [Har07].

Algorithm

Observation

- Weight splitting defines a bipartite graph on the elements.
- Each cycle in this graph has zero alternating sum.

Algorithm

For $i=1$ to $\log n$:

- Update w to give nonzero alternating weight to all cycles of length $\leq 2^{i}$ (need Hashing techinques).
- Recompute weight-splitting and the bipartite graph (need weighted-decision query) [Har07].

Termination:

- After i-th iteration, the bipartite graph will not have any cycle of length $\leq 2^{i}$.

Algorithm

Observation

- Weight splitting defines a bipartite graph on the elements.
- Each cycle in this graph has zero alternating sum.

Algorithm

For $i=1$ to $\log n$:

- Update w to give nonzero alternating weight to all cycles of length $\leq 2^{i}$ (need Hashing techinques).
- Recompute weight-splitting and the bipartite graph (need weighted-decision query) [Har07].

Termination:

- After i-th iteration, the bipartite graph will not have any cycle of length $\leq 2^{i}$.
- After $\log n$ iteration, no cycles remain, and hence unique max weight common base.

Algorithm

Algorithm

For $i=1$ to $\log n$:

- Update w to give nonzero alternating weight to all cycles of length $\leq 2^{i}$ (need Hashing techinques).
- Recompute weight-splitting and the bipartite graph (need weighted-decision query) [Har07].

Termination:

- After i-th iteration, the bipartite graph will not have any cycle of length $\leq 2^{i}$.
- After $\log n$ iteration, no cycles remain, and hence unique max weight common base.

Efficiency:

- When there are no cycles of length $\leq 2^{i}$, the number of cycles of length $\leq 2^{i+1}$ is polynomial.

Questions

- Derandomize the Isolation Lemma even for Bipartite Matching.

Questions

- Derandomize the Isolation Lemma even for Bipartite Matching.
- Search to decision reduction (in parallel) for bipartite matching.

Questions

- Derandomize the Isolation Lemma even for Bipartite Matching.
- Search to decision reduction (in parallel) for bipartite matching.
- Search to weighted-decision: for what all optimization problems?

Nima Anari and Vijay V. Vazirani.
Matching is as easy as the decision problem, in the NC model.
In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 54:1-54:25. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2020.

Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf.
Bipartite perfect matching is in quasi-nc.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, pages 754-763, 2016.

Shafi Goldwasser and Ofer Grossman.

Bipartite perfect matching in pseudo-deterministic NC.

In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPICs, pages 87:1-87:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

Nicholas J. A. Harvey.
An algebraic algorithm for weighted linear matroid intersection.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07, page 444453, USA, 2007. Society for Industrial and Applied Mathematics.

Richard M. Karp, Eli Upfal, and Avi Wigderson.
Constructing a perfect matching is in random NC.
Combinatorica, 6(1):35-48, 1986.
Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani.
Matching is as easy as matrix inversion.
Combinatorica, 7:105-113, 1987.

