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3-Term Arithmetic Progressions

Erdos-Turan 36: How many numbers can we choose
from {1,2,...,N} without three equally spaced numbers?
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3-Term Arithmetic Progressions

Erdos-Turan 36: How many numbers can we choose
from {1,2,...,N} without three equally spaced numbers?

1. Start with 1,2.
2. Skip 3.

3. Add 4,5.

4. Skip 6,7,8,9.
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Erdos-Turan 36: Subset A of integers {1,2,...,N},

|A| = 6N . How small can ¢ be while guaranteeing a
3AP in A?

Behrend 1946: 5 > 2~ 9Wlogh),

@ —@ — Beautiful geometric construction. Application @—@—@—@

1 2 3 to communication complexity too! Y
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Erdos-Turan 36: Subset A of integers {1,2,...,N},

|A| = 6N . How small can ¢ be while guaranteeing a
3AP in A?

Behrend 1946: 56 > 2~ 9Wlogh),

Roth 33 6 =~ 1/(loglog N)
Heath-Brown, Szemeredi . (log N, ¢ small
87-90
Bourgain 99, 08 § ~ 1/(log N)",1/(log N)*"

Sanders 11 5 ~ (loglog N)°/(log N)
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A (Finite) Field Detour
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|A| = ON. Wantdistincta,b,c € A,a+ b = 2c.

Behrend 1946: 56 > 2~ 9Wlogh),

Bloom, Sisask 20: 6 ~ 1/(log N)!*¢ suffices.
First progress on Erdos’s problem on reciprocals ...

This work: § ~ 2~2ogM)™) guffices.




A (Finite) Field Detour

We have a subset Aof {0,1,2}", |[A| = 63".
Are there unequala,b,c € A, a+ b =2c mod 37



A (Finite) Field Detour

We have a subset Aof {0,1,2}", |[A| = 63".
Are there unequal a,b,c € A,a+ b =72c mod 3?

How many cards do you need in an n-
dimensional SET game to find a SET?
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A (Finite) Field Detour

We have a subset Aof {0,1,2}", |[A| = 63".
Are there unequala,b,c € A, a+ b =2c mod 37

CLP17,EG17: 6 ~ 37" suffices.
“Cap-Set” problem.

This work: An analytic proof that 5 ~ 2~%((eeM)™") gyffices.

We work over finite fields, then “push it” to integers

Bloom-Sisask 23: A much cleaner way to push the finite
field arguments to integers and new improvements.
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Structure vs Randomness

A C {0,1,2}"
|A| = 6N, N = 3".

A is truly random and “density” ¢:
E[Num. 3APs inA] ~ 6°N? > 6N.
Many non-trivial 3APs!
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Structure vs Randomness

Wish 1: “Close to” uniform Wish 2: Far from uniform =
= Many 3APs “Structure”.
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Structure vs Randomness

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.
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Roth-Meshulam Proof

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.
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1. A is small-biased — Many 3APS.

Thm: Uniform on A fools linear tests with error 6/2,
then number of 3APs in A >/5°N?/2.

Pr(w,X) = a] =~ % 2
rfiw,X)=a] =—*—.

3 6
X~A Vwe {0,12},a € {0,1,2}.
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Roth-Meshulam Proof

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.

1. A is small-biased — Many 3APS.

Thm: Uniform on A fools linear tests with error 6/2,
then number of 3APs in A > 5°N?/2.

2. A not small-biased = density inc.

Thm: If A not small-biased = affine space V
of co-dimension 1, [A N V| > (5 + Q%) | V].

ACF!
[A] = 6N,N = 3",




Roth-Meshulam Proof

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.
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A, F;, density 6

No 3AP

Wish 2: Far from uniform = affine space V

with density increment,

co-dim(V) small.
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Roth-Meshulam Proof

Wish 1: “Close to” uniform

= Many 3APs

A, [F;, density 6 g

No 3AP

Wish 2: Far from uniform = affine space V
with density increment , co-dim(V) small.
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Roth-Meshulam Proof

Wish 1: “Close to” uniform

= Many 3APs

A, F;, density 6

Wish 2: Far from uniform = affine space V
with density increment , co-dim(V) small.

No 3AP

Al :A N Vl’ Vl’

density 5 + 52 | | No3aP

Contradiction:| . |A, = ANV, V,
o > 100/n. density 1.01 - 6

1/6
lterations

A2 — Al N Vz, Vz,
density 6 + 25~

Thm:A C F, [A| > 3"/n,then A has many 3APs.

ACF"
|A| = 6N,N = 3"
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Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.
A € {0,1,2}"
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Going beyond?

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.

Step 1. “Close” to uniform — Many 3APs?

Step 2. Far from uniform = affine V with
(1.01) density increment,

co-dim(V') < poly(log(1/6))?

Previous arguments:
Need co-dim(V) ~ 1/6.

A C {0,1,2}"

|A| =06N,N = 3".




Going beyond?

Step 1. “Close” to uniform — Many 3APs?

Let2A = {2c:c € A}.
Want: Many a, b € A suchthata + b € 2A.

Recall: Want distincta.b.c € A,a+ b = 2c
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Let2A = {2c:c € A}.
Want: Many a,b € A suchthata + b € 2A.

X,Y independent, uniform over A
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Step 1. “Close” to uniform — Many 3APs?

Let2A = {2c:c € A}.
Want: Many a,b € A suchthata + b € 2A.

X,Y independent, uniform over A
PriIX+Y e 2A] = Q(5)?
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A Star Arises

Step 1. “Close” to uniform — Many 3APs?

X,Y independent, uniform over A
Pr[X+ Y € 2A] = Q(0)?

Fact: If density of X is 4,
density of X+Y is the convolution x4, * u,

Convolutions: [ * g(x) = E [ f(z) g(x — 2)].
fegl) =E|[f(2) gx + 2)].

A C10,121"
|A| = 6N,N = 3".
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Closeness: Lowerconcentration

Step 1. “Close” to uniform — Many 3APs?

Hitting property: X,Y independent uniform over A,
forevery 7, |T| = 6N, PriX+ Y e T] = Q(6)?

Density of X+Y

ANVA

{3 H ’) .
0| “Universe” F7 Bad: Mass of (T) > 6.

A C10,121"
|A| = 6N,N = 3".




Closeness: Lowerconcentration

Step 1. “Close” to uniform — Many 3APs?

Def: Density ¢ 6-lower-concentrated if
Pr{g(z) < 0.1] < 6/2.

Density of X+Y

ANVA
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0| “Universe” F3 Bad: Mass of (T) > §.
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Closeness: Lowerconcentration

Step 1. “Close” to uniform — Many 3APs?

Def: Density ¢ 6-lower-concentrated if
Pr{g(z) < 0.1] < 6/2.

“Closeness 1”7: A is close to uniform if
u, * 1y 1S lower-concentrated as ahove.

S vs R Lemma: i, * 1, lower-concentrated, then we
have many 3APS.

Proof: Pr[X + Y € 2A] > 6/20.
Number of 3APs is ~ 5°N?/20.

A C {0,1,2}"
|A| =6N,N =3".




Structure vs Randomness: Summary

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.
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Structure vs Randomness Summary

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.

“Closeness 1”: A is close to uniform if
u, * 1y 1S lower-concentrated.

S vs R Lemma (Basy): /i, * i1, lower-concentrated,
then we have many 3APSs.

Need: /i, ° /i, not lower-concentrated =
(Strong) Density increment

A C {0,1,2}"
|A| =6N,N =3".
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How small can 6 be, 4 unequal a,b,c € A, a + b = 2c?
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1. Density 2. Spectral
increment positivity

3. Sifting

Structure vs Underestimation to Finding structured
pseudorandomness Overestimation substructures




Overview

We have a subsetAof F/, |A| = 6g".
How small can 6 be, 4 unequal a,b,c € A, a + b = 2c?

An analytic proof that 5 ~ 2~ ™M™ gyffices.

2. Spectral
positivity

Underestimation to
Overestimation




Spectral Positivity

Want: 1, ° 11, not lower-concentrated

=
(Strong) Density increment

0| “Universe” F”. | | |
3 Mass of (T) > o.

A € {0,1,2}"
|A| =6N,N =3".
1, density of A




Spectral Positivity

Want: 1, ° 11, not lower-concentrated

=
(Strong) Density increment

0| “Universe” F”. | | |
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1, density of A




Spectral Positivity

Want: /i, ° 1, not lower-concentrated

=
(Strong) Density increment

Upward errors

-

e N errors
' ' \1/

0| “Universe” F” | |
3 Mass of (T) > o.

A C{0,1,2}"
|A| =6N,N =3".
1, density of A




Spectral Positivity

General densities can have only
downward errors.

No upward
errors!

0| “Universe” F”. | | |
3 Mass of (T) > o.

A C{0,1,2}"
|A| =6N,N =3".
1, density of A




Spectral Positivity

[KM23]: A spectrally positive density,
cannot have only downward errors.

No upward
errors!
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0| “Universe” F”. | | |
3 Mass of (T) > o.
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Spectral Positivity

[KM23]: A spectrally positive density,
cannot have only downward errors.

Spectrally positive: Fourier coefficients non-negative

A € {0,1,2}"
|A| =6N,N =3".
1, density of A




Spectral Positivity

[KM23]: A spectrally positive density,
cannot have only downward errors.

Spectrally positive: Fourier coefficients non-negative

Fact: Fourier coefficients of i, o 11, are given by

/\

2
oo pa(w) = | ua(w) |7
(Convolution is product in Fourier domain)

A € {0,1,2}"
|A| =6N,N =3".
1, density of A




Spectral Positivity: Summary

Why useful? We want density increment
I.e., we want V for which we lower bound [A N V]|.

A € {0,1,2}"
|A| =6N,N =3".
1, density of A




Spectral Positivity: Summary

SP Lemma: /1, ° [/, not lower-concentrated.
Then, it must also take large values.

Why useful? We want density increment
I.e., we want V for which we lower bound [A N V]|.

A C{0,1,2}"
|A| =6N,N =3".
1, density of A




Overview

We have a subset Aof {0,1,2}", |[A| = 63".
How small can 6 be, 4 unequal a,b,c € A, a + b = 2c?

An analytic proof that 5 ~ 2~ ™M™ gyffices.

1. Structure vs 2. Spectral
randomness positivity

3. Sifting

Density increment Underestimation to Finding structured
onto subspaces Overestimation substructures
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How small can 6 be, 4 unequal a,b,c € A, a + b = 2c?

An analytic proof that 5 ~ 2~ ™M™ gyffices.
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Sifting: Finding additive structure

“Final” goal: /1, o 1, takes large values often
—> Density increment.

Want: A large affine space V with
IANnV|>(1.01)d]|V].

ACF;
|A| =6N,N =3".
u, density of A
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Sifting: Finding additive structure

“Final” goal: /1, o 1, takes large values often
—> Density increment.

Want: A large affine space V with
IANnV|>(1.01)d]|V].

How about: Find increment onto a sumset B + B?

Subspaces: Very structured ...
V=V+V

ACF;
|A| =6N,N =3".
u, density of A




Sifting: Finding additive structure

“Final” goal: /1, o 1, takes large values often
—> Density increment.

Want: A large set B with,
I AN(B+B)|>1.05-6-|B+B|?

How about: Find increment onto a sumset B + B?

Subspaces: Very structured ...
V=V+V

ACF;
|A| =6N,N =3".
u, density of A
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Random s, s,, ..., s,




Sifting

Large set S C [} .
What “operation” will “sift-
out” the portion with
structure?

/7 \

Idea: Shift and intersect!
LookatB=SNS+s)NS +5,)N-(S+5,)
Random s, s,, ..., s,




Slﬂmg Bigger fraction of inner-square will
survive than from isolated points.

Large set S C [} .
What “operation” will “sift-
out” the portion with
structure?

/ \

Idea: Shift and intersect!
LookatB=SNS+s)NS +5,)N-(S+5,)
Random s, s,, ..., s,




Sifting: Finding Correlated Sumset

“Final” goal: /1, o 1, takes large values often
—> Density increment.

Sifting Lemma: There exists a large B as below
such that we have density increment on B+B.

Idea: Shift and intersect!
LOOk atB — S ﬂ (S + Sl) ﬂ (S + S2) ﬂ "'(S + S{)

Random s, s,, ..., s, ACF
|A| = 6N,N = 3".
u, density of A




Sifting: Finding Correlated Sumset

Sifting Lemma: There exists a large B as below
such that we have density increment on B+B.

Key identity: Can exactly count what sifting does!
N2 Nlpg o pglly = ELIA +s) 0 - (A + 59| ]

Idea: Shift and intersect!
LOOk atB — S ﬂ (S + Sl) ﬂ (S + S2) ﬂ "'(S + S{)

Random s, s,, ..., s, ACF
|A| = 6N,N = 3".
u, density of A




Almost Periodicity: Sumsets to Subspaces

“Final” goal: /1, o 1, takes large values often
—> Density increment.

Sanders’ Theorem: If 3B of density 27,
B + B =~ §. Then, § has density increment onto an
affine space V with co-dim (V) = O(Z%).




Sifting Summary

Sifting: ||y oy, > 1+ >
There is an affine space V of co-dimension

O(k*log(1/6)%, |[An V]| > (1.01)-6|V].

ACF;
|A| =6N,N =3".
u, density of A




Proof Summary

Sifting: ||y oy, > 1+ >
There is an affine space V of co-dimension

O(k*log(1/6)%, |[An V]| > (1.01)-6|V].

SP Lemma: If /1, o 1, not lower-concentrated,
then ||, o jiyll, > 1 + .01, k = O(log(1/5)).

S vs R Lemma: //, o i/, lower-concentrated, then
we have many SAPSs.

ACF;
|A| =6N,N =3".
u, density of A




Summary

We have a subset Aof {0,1,2}", |[A| = 63".
Are there unequala,b,c € A, a+ b =2c mod 37

An analytic proof that 5 ~ 2~ ™M™ gyffices.
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Summary

We have a subset Aof {0,1,2}", |[A| = 63".
Are there unequala,b,c € A, a+ b =2c mod 37

An analytic proof that 5 ~ 2~ ™M™ gyffices.

Going from finite fields to integers is
quite technical but uses similar ideas.

Main Thm: Any set of at least 6NV integers from [N] for
5 > 2~1ogM™) hag many 3APs.




What'’s next?

1. Four-term arithmetic progressions?

2. “Corners problem”: A C [N]%, |A| = 6N?. How small
can 6 be so that A always have a “corner”?

(x,y+d)
he
Behrend: Need 5 > 2-0WlogV)
Ce Y|
()C,y) (x+d,y)

Corner={(x,y),(x+d,y),(x,y+d)}




THANK YOU



Going beyond?

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.
ACF!

|A| =06N,N = 3".




Going beyond?

Wish 1: “Close to” uniform Wish 2: Far from uniform = affine space V
= Many 3APs with density increment , co-dim(V) small.

Step 1. “Close” to uniform — Many 3APs?

Step 2. Far from uniform = affine V with
(1.01) density increment,

co-dim(V') < poly(log(1/6))?

Roth-Meshulam argument:
Need co-dim(V) ~ 1/6.

ACF!
[A] = 6N,N = 3",
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Want: A large affine space V with

IANV]> (1.01)8|V].

“Forget” full affine space V,
how about partial progress?

ACF;
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Sifting: Finding additive structure

“Final" goal: ||p4 o p4|l, > 1

£ =

(Strong) Density increment

Want: A large affine space V with

ANV]>((1.01)5|V].

How about: Find increment onto a sumset?
LargeB, | AN (B+B)|>105-6-|B+ B|?

ACF;
|A| =6N,N =3".
u, density of A
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What “operation” will “sift-
out” the portion with
structure?
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Sifting

Large set S C [} .
What “operation” will “sift-
out” the portion with
structure?

/7 \

Idea: Shift and intersect!
LookatB=SNS+s)NS +5,)N-(S+5,)
Random s, s,, ..., s,




Slﬂmg Bigger fraction of inner-square will
survive than from isolated points.

Large set S C [} .
What “operation” will “sift-
out” the portion with
structure?

/ \

Idea: Shift and intersect!
LookatB=SNS+s)NS +5,)N-(S+5,)
Random s, s,, ..., s,




Sifting: Finding Correlated Sumset

“Final" goal: |[p o iyl|, > 1 +e=>
(Strong) Density increment

Sifting Lemma: S = {7 : p, o pus(2) > 1 +¢€/4}.

AB C F%, |B| = 8°®N, B+ B =~ S.

Idea: Shift and intersect!
LOOk atB — S ﬂ (S + Sl) ﬂ (S + S2) ﬂ "'(S + S{)

Random s, s,, ..., s, ACF
|A| = 6N,N = 3".
u, density of A




Sifting: Finding Correlated Sumset

Sifting Lemma: S = {7 : p o puy(z) > 1+ ¢€/4}.

AB C F%, |B| = 8°®N, B+ B~ S.

Key identity
N* g o pallk = ELIA +s) NN (A + 59|71

Idea: Shift and intersect!
LOOk atB — S ﬂ (S + Sl) ﬂ (S + S2) ﬂ "'(S + S{)

Random s, s,, ..., s, ACF
|A| = 6N,N = 3".
u, density of A




Sanders’ Invariance: Sumsets to Subspaces

“Final" goal: |[p o uyll, > 1 +e=>
(Strong) Density increment

Sifting Lemma: S = {z: p o puy(2) > 1+ ¢€/4}.

AB C F%, |B| = 8°®N, B+ B~ S.

Sanders’ invariance: If 15 of density -0 ),

B + B ~ §. Then, $ has density increment onto an
affine space V with co-dim (V) = O(Z%).




Sifting Summary

Sifting: ||y oy, > 1+ >
There is an affine space V of co-dimension

O(k*log(1/6)%, |[An V]| > (1.01)-6|V].

ACF;
|A| =6N,N =3".
u, density of A




Proof Summary

Sifting: ||y o pull, > 1+ =>
There is density increment with good parameters.

SP Lemma: If /1, o 1, not lower-concentrated,
then ||, o jiyll, > 1 + .01, k = O(log(1/5)).

S vs R Lemma: //, o i/, lower-concentrated, then
we have many SAPSs.

ACF;
|A| =6N,N =3".
u, density of A




