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Is this the best?
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Erdos-Turan 36: Subset A of integers {1,2,…,N}, 

 How small can  be while guaranteeing a 
3AP in A?

|A | = δN . δ

Behrend 1946: .δ > 2−O( log N)

Bloom, Sisask 20:  suffices.

First progress on Erdos’s problem on reciprocals …

δ ≈ 1/(log N)1+c

This work:  suffices.δ ≈ 2−Ω((log N).08)

Number of triples is 2−O(log(1/δ)12)N2 .
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Behrend 1946: .δ > 2−O( log N)

Bloom, Sisask 20:  suffices.

First progress on Erdos’s problem on reciprocals …

δ ≈ 1/(log N)1+c

This work:  suffices.δ ≈ 2−Ω((log N).08)

Erdos-Turan 36: Subset A of integers {1,2,…,N}, 
 Want distinct |A | = δN . a, b, c ∈ A, a + b = 2c .
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A (Finite) Field Detour
We have a subset A of , 


Are there ?
{0,1,2}n |A | = δ3n .

 unequal a, b, c ∈ A, a + b = 2c mod 3

CLP17, EG17:  suffices.

“Cap-Set” problem.

δ ∼ 3−cn

Bloom-Sisask 23: A much cleaner way to push the finite 
field arguments to integers and new improvements.
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δ
≈ δ3N2 ≫ δN .
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Structure vs Randomness Summary
Wish 1: “Close to” uniform


  Many 3APs⇒
Wish 2: Far from uniform  affine space V 
with density increment , co-dim(V) small.

⇒

S vs R Lemma (Easy):  lower-concentrated, 
then we have many 3APs.

μA * μA

“Closeness 1”: A is close to uniform if 
 is lower-concentrated.μA * μA

Need:  not lower-concentrated 

                  (Strong) Density increment 

μA ∘ μA ⇒


A ⊆ {0,1,2}n

|A | = δN, N = 3n .
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General densities can have only 
downward errors.  
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cannot have only downward errors.

Spectral Positivity

Spectrally positive: Fourier coefficients non-negative






 density of A

A ⊆ {0,1,2}n

|A | = δN, N = 3n .
μA



[KM23]: A spectrally positive density, 
cannot have only downward errors.

Spectral Positivity

Spectrally positive: Fourier coefficients non-negative

Fact: Fourier coefficients of  are given by 




(Convolution is product in Fourier domain)

μA ∘ μA
̂μA ∘ μA(w) = | ̂μA(w) |2 .
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Spectral Positivity: Summary

Why useful? We want density increment

i.e., we want V for which we lower bound |A ∩ V | .
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Spectral Positivity: Summary

Why useful? We want density increment

i.e., we want V for which we lower bound |A ∩ V | .

SP Lemma:  not lower-concentrated. 

Then, it must also take large values.

μA ∘ μA






 density of A

A ⊆ {0,1,2}n

|A | = δN, N = 3n .
μA
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Sifting: Finding additive structure
“Final" goal:  takes large values often


                  Density increment.
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⟹






 density of A

A ⊆ 𝔽n
3

|A | = δN, N = 3n .
μA

Subspaces: Very structured …

V = V + V

How about: Find increment onto a sumset ?B + B

Want: A large set B with, 
|A ∩ (B + B) | > 1.05 ⋅ δ ⋅ |B + B |?
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out” the portion with 
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Sifting

Large set 

What “operation” will “sift-

out” the portion with 
structure?

S ⊆ 𝔽n
3 .

Idea: Shift and intersect!
Look at B = S ∩ (S + s1) ∩ (S + s2) ∩ ⋯(S + sℓ)

Random s1, s2, …, sℓ

Bigger fraction of inner-square will 
survive than from isolated points.

s1

s2



Sifting: Finding Correlated Sumset

Sifting Lemma: There exists a large B as below 
such that we have density increment on B+B. 

Idea: Shift and intersect!

Look at 


Random 
B = S ∩ (S + s1) ∩ (S + s2) ∩ ⋯(S + sℓ)

s1, s2, …, sℓ 
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3

|A | = δN, N = 3n .
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Sifting: Finding Correlated Sumset

Idea: Shift and intersect!

Look at 


Random 
B = S ∩ (S + s1) ∩ (S + s2) ∩ ⋯(S + sℓ)

s1, s2, …, sℓ 




 density of A

A ⊆ 𝔽n
3

|A | = δN, N = 3n .
μA

Key identity: Can exactly count what sifting does!

N2 ⋅ ∥μA ∘ μA∥k

k = E[ | (A + s1) ∩ ⋯ ∩ (A + sk) |2 ] .

Sifting Lemma: There exists a large B as below 
such that we have density increment on B+B. 



Almost Periodicity: Sumsets to Subspaces

Sanders’ Theorem: If  of density , 
. Then,  has density increment onto an 

affine space V with co-dim(V) 

∃B 2−O(ℓ)

B + B ≈ S S
= O(ℓ4) .

“Final" goal:  takes large values often

                  Density increment.

μA ∘ μA
⟹



Sifting Summary

Sifting: 

There is an affine space  of co-dimension 

, 

∥μA ∘ μA∥k > 1 + ε ⇒
V

O(k4 log(1/δ)4) |A ∩ V | > (1.01) ⋅ δ |V | .
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Proof Summary

SP Lemma: If  not lower-concentrated, 

then , .

μA ∘ μA
∥μA ∘ μA∥k > 1 + .01 k = O(log(1/δ))

S vs R Lemma:  lower-concentrated, then 
we have many 3APs.

μA ∘ μA
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Summary

An analytic proof that  suffices.δ ∼ 2−Ω((log N)0.11)
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Are there ?
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 unequal a, b, c ∈ A, a + b = 2c mod 3
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Summary

Going from finite fields to integers is 
quite technical but uses similar ideas.

Main Thm: Any set of at least  integers from [N] for   
 has many 3APs.

δN
δ > 2−Ω((log N).08)

An analytic proof that  suffices.δ ∼ 2−Ω((log N)0.11)

We have a subset A of , 

Are there ?

{0,1,2}n |A | = δ3n .
 unequal a, b, c ∈ A, a + b = 2c mod 3



What’s next?

1. Four-term arithmetic progressions?

2. “Corners problem”: How small 
can  be so that A always have a “corner”? 

A ⊆ [N]2, |A | = δN2 .
δ

Corner = {(x, y), (x + d, y), (x, y + d)}

(x, y) (x + d, y)

(x, y + d)

Behrend: Need δ > 2−O( log N)

ac

b



THANK YOU



Going beyond?


A ⊆ 𝔽n
3

|A | = δN, N = 3n .

Wish 1: “Close to” uniform

  Many 3APs⇒

Wish 2: Far from uniform  affine space V 
with density increment , co-dim(V) small.

⇒



Going beyond?


A ⊆ 𝔽n
3

|A | = δN, N = 3n .

Step 1. “Close” to uniform  Many 3APs?⇒

Step 2. Far from uniform  affine V with 
 density increment, 

⇒
(1.01)

co-dim(V ) ≤ poly(log(1/δ))?

Wish 1: “Close to” uniform

  Many 3APs⇒

Wish 2: Far from uniform  affine space V 
with density increment , co-dim(V) small.

⇒

Roth-Meshulam argument:

Need co-dim  (V ) ≈ 1/δ .
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Sifting: Finding Correlated Sumset
“Final" goal: 


                  (Strong) Density increment 
∥μA ∘ μA∥k > 1 + ε ⇒

Sifting Lemma: 


,   .

 ,  

S = {z : μA ∘ μA(z) > 1 + ε/4} .

∃B ⊂ 𝔽n
3 |B | = δO(k)N, B + B ≈ S

X ∼ μB, Y ∼ μB Pr[X + Y ∈ S] ≥ 1 − O(ε) .

Idea: Shift and intersect!

Look at 
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Sifting: Finding Correlated Sumset
Sifting Lemma: 


,   .

 ,  

S = {z : μA ∘ μA(z) > 1 + ε/4} .

∃B ⊂ 𝔽n
3 |B | = δO(k)N, B + B ≈ S

X ∼ μB, Y ∼ μB Pr[X + Y ∈ S] ≥ 1 − O(ε) .

Idea: Shift and intersect!

Look at 


Random 
B = S ∩ (S + s1) ∩ (S + s2) ∩ ⋯(S + sℓ)

s1, s2, …, sℓ 




 density of A

A ⊆ 𝔽n
3

|A | = δN, N = 3n .
μA

Key identity

N2 ⋅ ∥μA ∘ μA∥k

k = E[ | (A + s1) ∩ ⋯ ∩ (A + sk) |2 ] .



Sanders’ Invariance: Sumsets to Subspaces

“Final" goal: 

                  (Strong) Density increment 

∥μA ∘ μA∥k > 1 + ε ⇒

Sanders’ invariance: If  of density , 
. Then,  has density increment onto an 

affine space V with co-dim(V) 

∃B 2−O(ℓ)

B + B ≈ S S
= O(ℓ4) .

Sifting Lemma: 


,   .

 ,  

S = {z : μA ∘ μA(z) > 1 + ε/4} .

∃B ⊂ 𝔽n
3 |B | = δO(k)N, B + B ≈ S

X ∼ μB, Y ∼ μB Pr[X + Y ∈ S] ≥ 1 − O(ε) .



Sifting Summary

Sifting: 

There is an affine space  of co-dimension 

, 

∥μA ∘ μA∥k > 1 + ε ⇒
V

O(k4 log(1/δ)4) |A ∩ V | > (1.01) ⋅ δ |V | .
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3

|A | = δN, N = 3n .
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Proof Summary

SP Lemma: If  not lower-concentrated, 

then , .

μA ∘ μA
∥μA ∘ μA∥k > 1 + .01 k = O(log(1/δ))

S vs R Lemma:  lower-concentrated, then 
we have many 3APs.

μA ∘ μA






 density of A

A ⊆ 𝔽n
3

|A | = δN, N = 3n .
μA

Sifting: 

There is density increment with good parameters.

∥μA ∘ μA∥k > 1 + ε ⇒


