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Problem setup
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Fairness in Matchings

Classes are subsets on the
neighborhood.
Classes denote fairness constraints.
The neighborhood is a trivial class!
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Goal: Match maximum number of items to platforms
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Fairness in Matchings

Why classes?

Some natural constraints that can be modelled:

Selection of committees

Committee - Needs to have experts from all areas

Formation of teams for projects

Project - wasteful to have many employees with the same skills.
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Fairness in Matchings

A Special Case: Laminar classes Huang (2010); 2-sided pref.

Laminar classification ⇐⇒ any pair of classes has no nontrivial intersection

OR

Example: Countries , States , Districts , Cities

Special case: Partition i.e. disjoint classes
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Fairness in Matchings

Reduction to Max-Flow Problem

Maximum matchings under laminar classes

⇓

Maximum flow in a flow network
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Fairness in Matchings

Classification tree - property of laminar classification
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Fairness in Matchings

Feasible matchings to feasible flows
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Fairness in Matchings

Feasible matchings to feasible flows
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Maximum matching in G ⇐⇒ Maximum flow in H
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Fairness in Matchings

Hardness for non-laminar classes

Reduction from independent set problem

Vertices → items

Only one platform

Complete bipartite graph

Edges → classes with quota 1
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Fairness in Matchings

Hardness continued...

Independent set ≡ Matching respecting class quotas

No nϵ−1-approximation for any ϵ > 0 unless P=NP [Zuckerman]
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Fairness in Matchings

O(1) classes: 1
2 -approximation [Sankar, Louis, Nasre, N. IJCAI’21]

∆ = O(1) classes, one platform ⇒ Exact algorithm by solving ILP

Items have

≤ 2∆ types, ILP has one variable xi for each type i ∈ {1, . . . , 2∆}

ILP:

Maximize

2∆∑
i=1

xi

Subject to∑
C∈Type i

xi ≤ q(C) for each class C

0 ≤ xi ≤ number of Type i items
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Fairness in Matchings

From one platform to multiple platforms

Theorem

α-approximation for one platform ⇒ α
1+α

-approximation for multiple platforms.

⇓

1
2
-approximation for multiple platforms, O(1) classes
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Fairness in Matchings

Proof of the theorem

Algorithm: Find α-approximation for each platform, from remaining items.
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Fairness in Matchings

Another simple case

When each item is in ≤ ∆ classes: 1
∆+1

-approximation

Simple maximal matching like argument.
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Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = ∆

How to define independent set for hypergraphs?

Strong independent set: Pick ≤ 1 vertex from each hyperedge

1
∆
-approximation known [Halldòrsson, Losievskaja 2009]

Weak independent set: Pick ≤ all but one vertices from each hyperedge

log ∆
∆ log log ∆

-approximation known [Agnarsson et al. 2013]

Our result (one platform) ⇒ Generalized independent set

Pick at most q(e) vertices from hyperedge e
Class C ≡ hyperedge e, quota of C = q(e)
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Weak independent set: Pick ≤ all but one vertices from each hyperedge

log ∆
∆ log log ∆

-approximation known [Agnarsson et al. 2013]

Our result (one platform) ⇒ Generalized independent set

Pick at most q(e) vertices from hyperedge e
Class C ≡ hyperedge e, quota of C = q(e)

14 / 18



Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = ∆

How to define independent set for hypergraphs?

Strong independent set: Pick ≤ 1 vertex from each hyperedge

1
∆
-approximation known [Halldòrsson, Losievskaja 2009]
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Fairness in Matchings

What next?

Lower quotas
Laminar classes ⇒ reduction to flows with lower bounds

Non-laminar classes: maximal matching is O(ℓ)-approximation, ℓ=max of all
lower bounds
Ω(ℓ/ log ℓ) hardness of approximation
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Fairness in Matchings

Proportional fairness

α|M(p)| ≤ |M(C)| ≤ β|M(p)|

M(p): Items matched to platform p
M(C): Items matched to p from class C
0 ≤ α ≤ β ≤ 1

O(ℓ)-approximation only for disjoint classes with slight violation of constraints
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Fairness in Matchings

Fairness to individuals

When items have preferences, every matching is unfair to some items.

Idea: Output a distribution on matchings
Uniform sampling from the distribution is fair to all items.
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Fairness in Matchings

Thank you!!2

2Thanks to Meghana and Nada for slides upto laminar part
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