
Improved Sublinear-Time Algorithms
for Testing Order Pattern Freeness

Ilan Newman Nithin Varma

Ordered Patterns in Arrays

• Let be an array of length and be a bijection

• Array has a -appearance if  
 indices such that if

• is -free if it has no -appearance

• Above array has a -appearance but is -free

A n π : [k] → [k]

A π
∃ i1 < … < ik A[ia] > A[ib] π(a) > π(b) ∀a, b ∈ [k]

A π π

(3,4,1,2) (1,2,3,4)

100 98 723 1.2 5.68 3 1

Ordered Patterns in Arrays

• Let be an array of length and be a bijection

• Array has a -appearance if  
 indices such that if

• is -free if it has no -appearance

• Above array has a -appearance but is -free

A n π : [k] → [k]

A π
∃ i1 < … < ik A[ia] > A[ib] π(a) > π(b) ∀a, b ∈ [k]

A π π

(3,4,1,2) (1,2,3,4)

100 98 723 1.2 5.68 3 1

Ordered Patterns in Arrays

• Let be an array of length and be a bijection

• Array has a -appearance if  
 indices such that if

• is -free if it has no -appearance

• Above array has a -appearance but is -free

A n π : [k] → [k]

A π
∃ i1 < … < ik A[ia] > A[ib] π(a) > π(b) ∀a, b ∈ [k]

A π π

(3,4,1,2) (1,2,3,4)

100 98 723 1.2 5.68 3 1

Ordered Patterns in Arrays

• Let be an array of length and be a bijection

• Array has a -appearance if  
 indices such that if

• is -free if it has no -appearance

• Above array has a -appearance but is -free

A n π : [k] → [k]

A π
∃ i1 < … < ik A[ia] > A[ib] π(a) > π(b) ∀a, b ∈ [k]

A π π

(3,4,1,2) (1,2,3,4)

100 98 723 1.2 5.68 3 1

Pattern freeness

• Well studied notion in combinatorics [Bona; J. Comb. Theory ’99], [Arratia; Elec. J. Of
Comb. ’99], [Alon & Friedgut; J. Comb. Theory ’00], [Marcus & Tardos; J. Comb. Theory ’04]

• Several classical algorithms to decide -freeness [Albert, Aldred, Atkinson & Holton;
ISAAC ’01], [Ahal & Rabinovich; SIDMA ’08], [Guillemot & Marx; SODA ’14], [Berendson,
Kozma & Marx; Algorithmica ’21]

• Motivated by detecting motifs and patterns in time series analysis [Berndt &
Clifford; AAAI ’94], [Keogh, Lonardi & Chiu; SIGKDD ’02]

• Connections to Longest Increasing Subsequence [Newman & V.; ICALP ’21]

π

Pattern freeness

• Well studied notion in combinatorics [Bona; J. Comb. Theory ’99], [Arratia; Elec. J. Of
Comb. ’99], [Alon & Friedgut; J. Comb. Theory ’00], [Marcus & Tardos; J. Comb. Theory ’04]

• Several classical algorithms to decide -freeness [Albert, Aldred, Atkinson & Holton;
ISAAC ’01], [Ahal & Rabinovich; SIDMA ’08], [Guillemot & Marx; SODA ’14], [Berendson,
Kozma & Marx; Algorithmica ’21]

• Motivated by detecting motifs and patterns in time series analysis [Berndt &
Clifford; AAAI ’94], [Keogh, Lonardi & Chiu; SIGKDD ’02]

• Connections to Longest Increasing Subsequence [Newman & V.; ICALP ’21]

π

Pattern freeness

• Well studied notion in combinatorics [Bona; J. Comb. Theory ’99], [Arratia; Elec. J. Of
Comb. ’99], [Alon & Friedgut; J. Comb. Theory ’00], [Marcus & Tardos; J. Comb. Theory ’04]

• Several classical algorithms to decide -freeness [Albert, Aldred, Atkinson & Holton;
ISAAC ’01], [Ahal & Rabinovich; SIDMA ’08], [Guillemot & Marx; SODA ’14], [Berendson,
Kozma & Marx; Algorithmica ’21]

• Motivated by detecting motifs and patterns in time series analysis [Berndt &
Clifford; AAAI ’94], [Keogh, Lonardi & Chiu; SIGKDD ’02]

• Connections to Longest Increasing Subsequence [Newman & V.; ICALP ’21]

π

Pattern freeness

• Well studied notion in combinatorics [Bona; J. Comb. Theory ’99], [Arratia; Elec. J. Of
Comb. ’99], [Alon & Friedgut; J. Comb. Theory ’00], [Marcus & Tardos; J. Comb. Theory ’04]

• Several classical algorithms to decide -freeness[Albert, Aldred, Atkinson & Holton;

ISAAC ’01], [Ahal & Rabinovich; SIDMA ’08], [Guillemot & Marx; SODA ’14], in particular a
linear time algorithm [Berendson, Kozma & Marx; Algorithmica ’21]

• Motivated by detecting motifs and patterns in time series analysis [Berndt &
Clifford; AAAI ’94], [Keogh, Lonardi & Chiu; SIGKDD ’02]

• Connections to Longest Increasing Subsequence [Newman & V.; ICALP ’21]

π

Pattern freeness

• Well studied notion in combinatorics [Bona; J. Comb. Theory ’99], [Arratia; Elec. J. Of
Comb. ’99], [Alon & Friedgut; J. Comb. Theory ’00], [Marcus & Tardos; J. Comb. Theory ’04]

• Several classical algorithms to decide -freeness[Albert, Aldred, Atkinson & Holton;

ISAAC ’01], [Ahal & Rabinovich; SIDMA ’08], [Guillemot & Marx; SODA ’14], in particular a
linear time algorithm [Berendson, Kozma & Marx; Algorithmica ’21]

• Motivated by detecting motifs and patterns in time series analysis [Berndt &
Clifford; AAAI ’94], [Keogh, Lonardi & Chiu; SIGKDD ’02]

• Connections to Longest Increasing Subsequence [Newman & V.; ICALP ’21]

π

Today: Sublinear-Time Algorithms for (approximate) Pattern Freeness

Decision Problem

 NO

Universe of all inputs

YES

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3

Decision Problem

•Cannot exactly solve nontrivial
decision problems without full
access to the input

•Need a notion of
approximation

 NO

Universe of all inputs

YES

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3

Property testing  
[Rubinfeld & Sudan; SODA 92 & SICOMP 96,

Goldreich, Goldwasser & Ron; FOCS 96 & JACM 98]

• -far from property: At least
fraction of input values need to
be changed to satisfy the
property

ε ε

 -far from  
 property
ε

Universe of all inputs

Property

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3

Property testing  
[Rubinfeld & Sudan; SODA 92 & SICOMP 96,

Goldreich, Goldwasser & Ron; FOCS 96 & JACM 98]

 -far from  
 property
ε

Universe of all inputs

Property

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3

Property testing  
[Rubinfeld & Sudan; SODA 92 & SICOMP 96,

Goldreich, Goldwasser & Ron; FOCS 96 & JACM 98]

•Several well-studied and fundamental
properties

•Bipartiteness [Alon, Krivelevich; SICOMP ’02,
…]

•Monotonicity [Chakrabarty Seshadhri; STOC
’13, Khot, Minzer, Safra; SICOMP ’18, …]

•Convexity of images [Berman Murzabulatov
Raskhodnikova; RSA ’19, …]

•Linearity and related properties [Blum
Luby Rubinfeld; JCSS ‘93, …]

 -far from  
 property
ε

Universe of all inputs

Property

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3

Testing Pattern Freeness
• Given query access to an array of length , a parameter , and

permutation , decide whether

• is -free, OR

• is -far from -free 
 
 
 
 
 

A n ϵ ∈ (0,1)
π

A π

A ϵ π

Testing Pattern Freeness
• Given query access to an array of length , a parameter , and

permutation , decide whether

• is -free, OR

• is -far from -free 
 
 
 
 
 

A n ϵ ∈ (0,1)
π

A π

A ϵ π

Hamming distance
of to every -free array is at

least
A π

ϵn

Testing Pattern Freeness
• Given query access to an array of length , a parameter , and

permutation , decide whether

• is -free, OR

• is -far from -free 
 
 
 
 
 

A n ϵ ∈ (0,1)
π

A π

A ϵ π

Hamming distance
of to every -free array is at

least
A π

ϵn

Generalization of monotonicity testing of arrays [EKKRV00,
DGLRRS99, F04, …]

Testing Pattern Freeness
• Given query access to an array of length , a parameter , and

permutation , decide whether

• is -free, OR

• is -far from -free 
 
 
 
 
 

A n ϵ ∈ (0,1)
π

A π

A ϵ π

Hamming distance
of to every -free array is at

least
A π

ϵn

Generalization of monotonicity testing of arrays [EKKRV00,
DGLRRS99, F04, …]

Monotonicity -freeness≡ (2,1)

Testing Pattern Freeness
• Given query access to an array of length , a parameter , and

permutation , decide whether

• is -free, OR

• is -far from -free 
 
 
 
 
 

A n ϵ ∈ (0,1)
π

A π

A ϵ π

Hamming distance
of to every -free array is at

least
A π

ϵn

Algorithm solving this problem is called -tester for -freeness

Tester adaptive if its queries depend on answers to previous queries

Tester nonadaptive otherwise

ϵ π

Testing Pattern Freeness
• Given query access to an array of length , a parameter , and

permutation , decide whether

• is -free, OR

• is -far from -free 
 
 
 
 
 

A n ϵ ∈ (0,1)
π

A π

A ϵ π

Hamming distance
of to every -free array is at

least
A π

ϵn

Algorithm solving this problem is called -tester for -freeness

Tester adaptive if its queries depend on answers to previous queries

Tester nonadaptive otherwise

ϵ π

Testing Pattern Freeness

• Special case: Sortedness testing of arrays of length [Ergun Kannan Kumar
Rubinfeld Vishwanathan 00, Fischer 04, …]

• [Newman Rabinovich Rajendraprasad Sohler 19] initiated the study of
sublinear-time algorithms for testing pattern freeness for larger patterns

• Studied extensively for monotone patterns or  
 
[NRRS19, BenEliezer Canonne Letzter Waingarten 19, BenEliezer Letzter
Waingarten 19]

n

(1,2,…, k) (k, k − 1,…,1)

Testing Pattern Freeness

• Special case: Sortedness testing of arrays of length [Ergun Kannan Kumar
Rubinfeld Vishwanathan 00, Fischer 04, …]

• [Newman Rabinovich Rajendraprasad Sohler 19] initiated the study of
sublinear-time algorithms for testing pattern freeness for larger patterns

• Studied extensively for monotone patterns or  
 
[NRRS19, BenEliezer Canonne Letzter Waingarten 19, BenEliezer Letzter
Waingarten 19]

n

(1,2,…, k) (k, k − 1,…,1)

Testing Pattern Freeness

• Special case: Sortedness testing of arrays of length [Ergun Kannan Kumar
Rubinfeld Vishwanathan 00, Fischer 04, …]

• [Newman Rabinovich Rajendraprasad Sohler 19] initiated the study of
sublinear-time algorithms for testing pattern freeness for larger patterns

• Studied in depth for monotone patterns or  
 
[NRRS19, BenEliezer Canonne Letzter Waingarten 19, BenEliezer Letzter
Waingarten 19]

n

(1,2,…, k) (k, k − 1,…,1)

Highlights of Past Work

• Sortedness testing of arrays of length can be done using queries
[EKKRV00, F04]

• -query tester for monotone patterns of constant length [BLW19]

• polylog query tester for arbitrary patterns of length [NRRS19] 

• Nonadaptive testers making queries [NRRS19]

• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1)

Highlights of Past Work

• Sortedness testing of arrays of length can be done using queries
[EKKRV00, F04]

• -query tester for monotone patterns of constant length [BLW19]

• polylog query tester for arbitrary patterns of length [NRRS19] 

• Nonadaptive testers making queries [NRRS19]

• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1)

Highlights of Past Work

• Sortedness testing of arrays of length can be done using queries
[EKKRV00, F04]

• -query tester for monotone patterns of constant length [BLW19]

• polylog query tester for arbitrary patterns of length [NRRS19] 

• Nonadaptive testers making queries [NRRS19]

• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1)

What about nonmonotone patterns of length > 3?

Highlights of Past Work

• Sortedness testing of arrays of length can be done using queries
[EKKRV00, F04]

• -query tester for monotone patterns of constant length [BLW19]

• polylog query tester for arbitrary patterns of length [NRRS19] 

• Nonadaptive testers making queries [NRRS19]

• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1)

What about nonmonotone patterns of length > 3?

Highlights of Past Work

• Sortedness testing of arrays of length can be done using queries
[EKKRV00, F04]

• -query tester for monotone patterns of constant length [BLW19]

• polylog query tester for arbitrary patterns of length [NRRS19] 

• Nonadaptive testers making queries [NRRS19]

• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1)

What about nonmonotone patterns of length > 3?

What about adaptive testers ?

Our Result

Strong sublinear-time guarantee

Our techniques are general and work for all π

Let . There is an -tester for -freeness

• with query complexity

• that always accepts -free arrays.

ϵ ∈ (0,1), k ∈ ℕ, π ∈ 𝕊k ϵ π

Õ(no(1))

π

Our Result

• Improved sublinear-time guarantee

• Our techniques are general and do not rely on the structure of the pattern
being considered (e.g., as opposed to [NRRS19])

Let . There is an -tester for -freeness

• with query complexity

• that always accepts -free arrays.

ϵ ∈ (0,1), k ∈ ℕ, π ∈ 𝕊k ϵ π

Õ(no(1))

π

Today

• -query algorithm to test -freeness of

[BC18] Every nonadaptive algorithm has query complexity  
 
 
 
 
 

Õ(n) π π ∈ 𝕊4

Ω(n2/3)

Today

• -query algorithm to test -freeness of

• [BC18] Every nonadaptive algorithm has query complexity  
 
 
 
 
 

Õ(n) π π ∈ 𝕊4

Ω(n2/3)

Today

• -query algorithm to test -freeness of

• [BC18] Every nonadaptive algorithm has query complexity  
 
 
 
 
 

Õ(n) π π ∈ 𝕊4

Ω(n2/3)

Goal: Design an algorithm that makes queries and finds  
a -appearance in an array that is -far from -free

Õ(n)
π ϵ π

First Useful Fact

• Array is -far from being -free there are disjoint -appearances

Used by all algorithms to test -freeness 
 
 
 
 
 
 

A ϵ π ⟹ ≥
ϵn
4

π

π

First Useful Fact

• Array is -far from being -free there are disjoint -appearances

• Used by all algorithms to test -freeness 
 
 
 
 
 
 

A ϵ π ⟹ ≥
ϵn
4

π

π

First Useful Fact

• Array is -far from being -free there are disjoint -appearances

• Used by all algorithms to test -freeness 
 
 
 
 
 
 

A ϵ π ⟹ ≥
ϵn
4

π

π

100 99 78 98 77 97 76 21

First Useful Fact

• Array is -far from being -free there are disjoint -appearances

• Used by all algorithms to test -freeness 
 
 
 
 
 
 

A ϵ π ⟹ ≥
ϵn
4

π

π

100 99 78 98 77 97 76 21

Disjoint -appearances(4,3,2,1)

Gridding

• (Conceptual) Step 1: View the array as a
box of points in

Step 2: Use uniform samples to
approximate the box by a coarse

 grid of sub-boxes

Step 3: Identify, by sampling, the set of
“dense” boxes

n [n] × ℝ

Õ(n)

O(n) × n

1 2 ……… n

Range

of the

array

Gridding

• (Conceptual) Step 1: View the array as a
box of points in

Step 2: Use uniform samples to
approximate the box by a coarse

 grid of sub-boxes

Step 3: Identify, by sampling, the set of
“dense” boxes

n [n] × ℝ

Õ(n)

O(n) × n

1 2 ……… n

Range

of the

array

(i, A[i])

Gridding

• (Conceptual) Step 1: View the array as a
box of points in

Step 2: Use uniform samples to
approximate the box by a coarse

 grid of sub-boxes

Step 3: Identify, by sampling, the set of
“dense” boxes

n [n] × ℝ

Õ(n)

O(n) × n

1 2 ……… n

Range

of the

array

(i, A[i])

Goal: Detect any one of the

disjoint -appearances present
among the points

≥
ϵn
4

π

Gridding

• (Conceptual) Step 1: View the array as a
box of points in

• Step 2: Query uniform indices to
approximate the box by a coarse

 grid of sub-boxes

Step 3: Identify, by sampling, the set of
“dense” boxes

n [n] × ℝ

Õ(n)

O(n) × n

R1

C1

R2

RO(n)

.

.

.

.

.

.

.

C2 C n

Gridding

• (Conceptual) Step 1: View the array as a
box of points in

• Step 2: Query uniform indices to
approximate the box by a coarse

 grid of sub-boxes

Step 3: Identify, by sampling, the set of
“dense” boxes

n [n] × ℝ

Õ(n)

O(n) × n

.

.

.

.

.

.

.

.

We ensure that rows and columns roughly
equipartition the set of array points

R1

C1

R2

RO(n)

C2 C n

Gridding

• (Conceptual) Step 1: View the array as a
box of points in

• Step 2: Query uniform indices to
approximate the box by a coarse

 grid of sub-boxes

Step 3: Identify, by sampling, the set of
“dense” boxes

n [n] × ℝ

Õ(n)

O(n) × n

.

.

.

.

.

.

.

.

Each row has points

Each column has points

∼ n
n

R1

C1

R2

RO(n)

C2 C n

Gridding: Part 2

• From each column, sample uniformly
random points

• Tag a box as nonempty if it has at least one
sampled point; tag it dense if it has a
constant fraction of sampled points

• There are boxes, out of which we
only tag boxes 
 

Õ(1)

O(n)
Õ(n)

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n

Gridding: Part 2

• From each column, sample uniformly
random points

• Tag a box as nonempty if it has at least one
sampled point; tag it dense if it has a
constant fraction of sampled points

• There are boxes, out of which we
only tag boxes 
 

Õ(1)

O(n)
Õ(n)

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n
If , we already found a

-appearance
π = (3,2,1,4)

π

In general, if too many nonempty boxes…

• [Markus & Tardos ’04] For each
permutation , there exists a constant
such that such that if the grid on the right
has more than nonempty boxes, then
there is a -appearance among the
nonempty boxes 

π κ

κ n
π

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n

If gridding does not find a -appearanceπ
We show that:

• Only nonempty boxes. In particular, only

 dense boxes

• Each row and column contains dense boxes each

• The union of points in all the dense boxes contains
 disjoint -appearances  

 
 
 
 

O(n)
O(n)

O(1)

Ω(ϵn) π

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n

If gridding does not find a -appearanceπ
We show that:

• Only nonempty boxes. In particular, only

 dense boxes

• Each row and column contains dense boxes each

• The union of points in all the dense boxes contains
 disjoint -appearances  

 
 
 
 

O(n)
O(n)

O(1)

Ω(ϵn) π

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n

If gridding does not find a -appearanceπ
We show that:

• Only nonempty boxes. In particular, only

 dense boxes

• Each row and column contains dense boxes each

• The union of points in all the dense boxes contains
 disjoint -appearances  

 
 
 
 

O(n)
O(n)

O(1)

Ω(ϵn) π

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n

If gridding does not find a -appearanceπ
We show that:

• Only nonempty boxes. In particular, only

 dense boxes

• Each row and column contains dense boxes each

• The union of points in all the dense boxes contains
 disjoint -appearances  

 
 
 
 

O(n)
O(n)

O(1)

Ω(ϵn) π

.

.

.

.

.

.

.

.

Ideas in Proof: Combinatorial lemma by
[MarcusTardos04] + Averaging arguments
+ Properties of the sampling procedure

R1

C1

R2

RO(n)

C2 C n

If gridding does not find a -appearanceπ
We show that:

• Only nonempty boxes. In particular, only

 dense boxes

• Each row and column contains dense boxes each

• The union of points in all the dense boxes contains
 disjoint -appearances  

 
 
 
 

O(n)
O(n)

O(1)

Ω(ϵn) π

.

.

.

.

.

.

.

.

R1

C1

R2

RO(n)

C2 C n

Where in the grid do these appear?

If gridding does not find a -appearanceπ
 disjoint -appearances have their “legs” in dense boxes arranged according

to any one of the constantly many types of “configurations” 
 
 
 
 
 
 
 
 
 
 

Ω(ϵn) π

If gridding does not find a -appearanceπ
 disjoint -appearances have their “legs” in dense boxes arranged

according to any one of the constantly many types of “configurations” 
 
 
 
 
 
 
 
 
 

Ω(ϵn) π

3

2 1

4

If gridding does not find a -appearanceπ
 disjoint -appearances have their “legs” in dense boxes arranged

according to any one of the constantly many types of “configurations” 
 
 
 
 
 
 
 
 
 

Ω(ϵn) π

3

2 1

4
3

2 1

4

If gridding does not find a -appearanceπ
 disjoint -appearances have their “legs” in dense boxes arranged

according to any one of the constantly many types of “configurations” 
 
 
 
 
 
 
 
 
 

Ω(ϵn) π

3

2 1

4
3

2 1

4 3
2

1

4

How to find -appearances in these configurations?π

• For each configuration :

• Check for -appearances whose legs are in boxes forming the
configuration

𝒞

π
𝒞

A 2-boxed configuration
• Suppose disjoint -appearances have their legs distributed according to the

following -boxed configuration

At most dense boxes & each dense box has points

A uniformly random dense box contains the (3,2) legs of disjoint -appearances

There are dense boxes sharing a row with , by our Gridding

Querying all points in the subarrays corresponding to and the other dense boxes in its
row is sufficient to detect such a -appearance  
 queries overall, since we want a high success probability

Ω(ϵn) π
2

n ≤ n

B Ω(ϵ n) π

O(1) B

B
π

Õ(n)

3

2 1

4

A 2-boxed configuration
• Suppose disjoint -appearances have their legs distributed according to the

following -boxed configuration

• At most dense boxes & each dense box has points

A uniformly random dense box contains the (3,2) legs of disjoint -appearances

There are dense boxes sharing a row with , by our Gridding

Querying all points in the subarrays corresponding to and the other dense boxes in its
row is sufficient to detect such a -appearance  
 queries overall, since we want a high success probability

Ω(ϵn) π
2

n ≤ n

B Ω(ϵ n) π

O(1) B

B
π

Õ(n)

3

2 1

4

A 2-boxed configuration
• Suppose disjoint -appearances have their legs distributed according to the

following -boxed configuration

• At most dense boxes & each dense box has points

• A uniformly random dense box contains the (3,2) legs of disjoint
-appearances

There are dense boxes sharing a row with , by our Gridding

Querying all points in the subarrays corresponding to and the other dense boxes in its row
is sufficient to detect such a -appearance  
 queries overall, since we want a high success probability

Ω(ϵn) π
2

n ≤ n

B Ω(ϵ n) π

O(1) B

B
π

Õ(n)

3

2 1

4

A 2-boxed configuration
• Suppose disjoint -appearances have their legs distributed according to the

following -boxed configuration

• At most dense boxes & each dense box has points

• A uniformly random dense box contains the (3,2) legs of disjoint
-appearances

• There are dense boxes sharing a row with , by our Gridding

Querying all points in the subarrays corresponding to and the other dense boxes in its row
is sufficient to detect such a -appearance  
 queries overall, since we want a high success probability

Ω(ϵn) π
2

n ≤ n

B Ω(ϵ n) π

O(1) B

B
π

Õ(n)

3

2 1

4

A 2-boxed configuration
• Suppose disjoint -appearances have their legs distributed according to the

following -boxed configuration

• At most dense boxes & each dense box has points

• A uniformly random dense box contains the (3,2) legs of disjoint
-appearances

• There are dense boxes sharing a row with , by our Gridding

• Querying all points in the subarrays corresponding to and the other dense boxes in its
row is sufficient to detect such a -appearance  
 queries overall, since we want a high success probability

Ω(ϵn) π
2

n ≤ n

B Ω(ϵ n) π

O(1) B

B
π

Õ(n)

3

2 1

4

Other proof ideas
• Most other configurations are dealt with by similar averaging arguments

• However, more complicated arguments needed for some specific configurations

• Our algorithm works for patterns of all constant length

• For patterns of length , our recursive algorithm ends up solving a more general
problem

• Detect a -appearance with a specific leg appearance, where is some subpattern of

• The algorithm is called recursively in order to improve the query complexity to
from

k

k > 4

ν ν π

Õ(no(1))
O(n)

Other proof ideas
• Most other configurations are dealt with by similar averaging arguments

• However, more complicated arguments needed for some specific configurations

• Our algorithm works for patterns of all constant length

• For patterns of length , our recursive algorithm ends up solving a more general
problem

• Detect a -appearance with a specific leg appearance, where is some subpattern of

• The algorithm is called recursively in order to improve the query complexity to
from

k

k > 4

ν ν π

Õ(no(1))
O(n)

3

1

2

4

Other proof ideas
• Most other configurations are dealt with by similar averaging arguments

• However, more complicated arguments needed for some specific configurations

• Our algorithm works for patterns of all constant length

• For patterns of length , our recursive algorithm ends up solving a more general
problem

• Detect a -appearance with a specific leg distribution, where is some subpattern of

• The algorithm is called recursively in order to improve the query complexity to
from

k

k > 4

ν ν π

Õ(no(1))
O(n)

3
2

4 2
1

3=

Other proof ideas
• Most other configurations are dealt with by similar averaging arguments

• However, more complicated arguments needed for some specific configurations

• Our algorithm works for patterns of all constant length

• For patterns of length , our recursive algorithm ends up solving a more general
problem

• Detect a -appearance with a specific leg distribution, where is some subpattern of

• The algorithm is called recursively in order to improve the query complexity to
from

k

k > 4

ν ν π

Õ(no(1))
O(n)

Open problems

• What is the true complexity of testing -freeness?

Lower bounds for adaptive algorithms?

What about patterns of superconstant length?

Approximating the distance of arrays to -freeness 
 
 
 

π

π

Open problems

• What is the true complexity of testing -freeness?

• Lower bounds for adaptive algorithms?

What about patterns of superconstant length?

Approximating the distance of arrays to -freeness 
 
 
 

π

π

Open problems

• What is the true complexity of testing -freeness?

• Lower bounds for adaptive algorithms?

• What about patterns of superconstant length?

Approximating the distance of arrays to -freeness 
 
 
 

π

π

Open problems

• What is the true complexity of testing -freeness?

• Lower bounds for adaptive algorithms?

• What about patterns of superconstant length?

• Approximating the distance of arrays to -freeness 
 
 
 

π

π

Open problems

• What is the true complexity of testing -freeness?

• Lower bounds for adaptive algorithms?

• What about patterns of superconstant length?

• Approximating the distance of arrays to -freeness 
 
 
 

π

π

Thank you!

