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Ordered Patterns in Arrays

• Let  be an array of length  and  be a bijection


• Array  has a -appearance if  
 indices  such that  if 


•  is -free if it has no -appearance


• Above array has a -appearance but is -free

A n π : [k] → [k]

A π
∃ i1 < … < ik A[ia] > A[ib] π(a) > π(b) ∀a, b ∈ [k]

A π π

(3,4,1,2) (1,2,3,4)
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Pattern freeness

• Well studied notion in combinatorics [Bona; J. Comb. Theory ’99], [Arratia; Elec. J. Of 
Comb. ’99], [Alon & Friedgut; J. Comb. Theory ’00], [Marcus & Tardos; J. Comb. Theory ’04]


• Several classical algorithms to decide -freeness [Albert, Aldred, Atkinson & Holton; 
ISAAC ’01], [Ahal & Rabinovich; SIDMA ’08], [Guillemot & Marx; SODA ’14], [Berendson, 
Kozma & Marx; Algorithmica ’21]


• Motivated by detecting motifs and patterns in time series analysis [Berndt & 
Clifford; AAAI ’94], [Keogh, Lonardi & Chiu; SIGKDD ’02]


• Connections to Longest Increasing Subsequence [Newman & V.; ICALP ’21]
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Today: Sublinear-Time Algorithms for (approximate) Pattern Freeness



Decision Problem

         NO

Universe of all inputs

YES

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3



Decision Problem

•Cannot exactly solve nontrivial 
decision problems without full 
access to the input


•Need a notion of 
approximation

         NO

Universe of all inputs

YES

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3



Property testing  
[Rubinfeld & Sudan; SODA 92 & SICOMP 96, 

Goldreich, Goldwasser & Ron; FOCS 96 & JACM 98] 

• -far from property: At least  
fraction of input values need to 
be changed to satisfy the 
property

ε ε
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Property testing  
[Rubinfeld & Sudan; SODA 92 & SICOMP 96, 

Goldreich, Goldwasser & Ron; FOCS 96 & JACM 98] 

•Several well-studied and fundamental 
properties


•Bipartiteness [Alon, Krivelevich; SICOMP ’02, 
…] 


•Monotonicity [Chakrabarty Seshadhri; STOC 
’13, Khot, Minzer, Safra; SICOMP ’18, …] 


•Convexity of images [Berman Murzabulatov 
Raskhodnikova; RSA ’19, …]


•Linearity and related properties [Blum 
Luby Rubinfeld; JCSS ‘93, …] 

 -far from  
  property
ε

Universe of all inputs

Property

Accept  
w.p. ≥ 2/3

Reject  
w.p. ≥ 2/3



Testing Pattern Freeness
• Given query access to an array  of length , a parameter , and 

permutation , decide whether 


•  is -free, OR


•  is -far from -free 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π
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Monotonicity -freeness≡ (2,1)
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Testing Pattern Freeness

• Special case: Sortedness testing of arrays of length  [Ergun Kannan Kumar 
Rubinfeld Vishwanathan 00, Fischer 04, … ] 


• [Newman Rabinovich Rajendraprasad Sohler 19] initiated the study of 
sublinear-time algorithms for testing pattern freeness for larger patterns


• Studied extensively for monotone patterns  or  
 
[NRRS19, BenEliezer Canonne Letzter Waingarten 19, BenEliezer Letzter 
Waingarten 19]
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Testing Pattern Freeness

• Special case: Sortedness testing of arrays of length  [Ergun Kannan Kumar 
Rubinfeld Vishwanathan 00, Fischer 04, … ] 


• [Newman Rabinovich Rajendraprasad Sohler 19] initiated the study of 
sublinear-time algorithms for testing pattern freeness for larger patterns


• Studied in depth for monotone patterns  or  
 
[NRRS19, BenEliezer Canonne Letzter Waingarten 19, BenEliezer Letzter 
Waingarten 19]

n

(1,2,…, k) (k, k − 1,…,1)



Highlights of Past Work

• Sortedness testing of arrays of length  can be done using  queries 
[EKKRV00, F04]


• -query tester for monotone patterns of constant length [BLW19]


• polylog  query tester for arbitrary patterns of length  [NRRS19] 

• Nonadaptive testers making  queries [NRRS19]


• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1 )
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Highlights of Past Work

• Sortedness testing of arrays of length  can be done using  queries 
[EKKRV00, F04]


• -query tester for monotone patterns of constant length [BLW19]


• polylog  query tester for arbitrary patterns of length  [NRRS19] 

• Nonadaptive testers making  queries [NRRS19]


• Nonadaptive testers cannot do better! [NRRS19, BenEliezer Canonne 18]

n Θ(log n)

O(log n)

n 3

O(n1− 1
k − 1 )

What about nonmonotone patterns of length > 3?

What about adaptive testers ? 



Our Result

Strong sublinear-time guarantee 


Our techniques are general and work for all π

Let  . There is an -tester for -freeness


• with query complexity  


• that always accepts -free arrays.

ϵ ∈ (0,1), k ∈ ℕ, π ∈ 𝕊k ϵ π

Õ(no(1))

π



Our Result

• Improved sublinear-time guarantee 


• Our techniques are general and do not rely on the structure of the pattern 
being considered (e.g., as opposed to [NRRS19])

Let  . There is an -tester for -freeness


• with query complexity  


• that always accepts -free arrays.

ϵ ∈ (0,1), k ∈ ℕ, π ∈ 𝕊k ϵ π

Õ(no(1))

π



Today

• -query algorithm to test -freeness of 


[BC18] Every nonadaptive algorithm has query complexity   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Today

• -query algorithm to test -freeness of 


• [BC18] Every nonadaptive algorithm has query complexity   
 
 
 
 
 

Õ( n) π π ∈ 𝕊4

Ω(n2/3)

Goal: Design an algorithm that makes  queries and finds  
a -appearance in an array that is -far from -free 

Õ( n)
π ϵ π



First Useful Fact

• Array  is -far from being -free  there are  disjoint -appearances


Used by all algorithms to test -freeness 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First Useful Fact

• Array  is -far from being -free  there are  disjoint -appearances


• Used by all algorithms to test -freeness 
 
 
 
 
 
 

A ϵ π ⟹ ≥
ϵn
4

π

π

100 99 78 98 77 97 76 21

Disjoint -appearances(4,3,2,1)



Gridding

• (Conceptual) Step 1: View the array as a 
box of  points in 


Step 2: Use  uniform samples to 
approximate the box by a coarse 

 grid of sub-boxes


Step 3: Identify, by sampling, the set of 
“dense” boxes 

n [n] × ℝ
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Gridding

• (Conceptual) Step 1: View the array as a 
box of  points in 


Step 2: Use  uniform samples to 
approximate the box by a coarse 

 grid of sub-boxes


Step 3: Identify, by sampling, the set of 
“dense” boxes 

n [n] × ℝ

Õ( n)

O( n) × n

1 2 ……… n

Range 

of the 

array

(i, A[i])

Goal: Detect any one of the  

disjoint -appearances present 
among the points 

≥
ϵn
4

π



Gridding

• (Conceptual) Step 1: View the array as a 
box of  points in 


• Step 2: Query  uniform indices to 
approximate the box by a coarse 

 grid of sub-boxes
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. 

. 
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.

. . . . . . . . .

We ensure that rows and columns roughly 
equipartition the set of array points
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Gridding

• (Conceptual) Step 1: View the array as a 
box of  points in 


• Step 2: Query  uniform indices to 
approximate the box by a coarse 

 grid of sub-boxes


Step 3: Identify, by sampling, the set of 
“dense” boxes 

n [n] × ℝ

Õ( n)

O( n) × n

. 

. 

. 

. 

. 

. 

.

. . . . . . . . .

Each row has   points


Each column has  points

∼ n
n

R1

C1

R2

RO( n)

C2 C n



Gridding: Part 2

• From each column, sample  uniformly 
random points 


• Tag a box as nonempty if it has at least one 
sampled point; tag it dense if it has a 
constant fraction of sampled points


• There are  boxes, out of which we 
only tag  boxes 
 

Õ(1)
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Gridding: Part 2

• From each column, sample  uniformly 
random points 


• Tag a box as nonempty if it has at least one 
sampled point; tag it dense if it has a 
constant fraction of sampled points


• There are  boxes, out of which we 
only tag  boxes 
 

Õ(1)

O(n)
Õ( n)

. 

. 

. 

. 

. 

. 

.

. . . . . . . . .

R1

C1

R2

RO( n)

C2 C n
If , we already found a 

-appearance
π = (3,2,1,4)

π



In general, if too many nonempty boxes…

• [Markus & Tardos ’04] For each 
permutation , there exists a constant  
such that such that if the grid on the right 
has more than  nonempty boxes, then 
there is a -appearance among the 
nonempty boxes 

π κ

κ n
π

. 

. 

. 

. 

. 

. 

.

. . . . . . . . .

R1

C1

R2

RO( n)

C2 C n



If gridding does not find a -appearanceπ
We show that:


• Only  nonempty boxes. In particular, only 

 dense boxes


• Each row and column contains  dense boxes each


• The union of points in all the dense boxes contains 
 disjoint -appearances  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If gridding does not find a -appearanceπ
We show that:


• Only  nonempty boxes. In particular, only 

 dense boxes


• Each row and column contains  dense boxes each


• The union of points in all the dense boxes contains 
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Ideas in Proof: Combinatorial lemma by 
[MarcusTardos04] + Averaging arguments 
+ Properties of the sampling procedure 
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If gridding does not find a -appearanceπ
We show that:


• Only  nonempty boxes. In particular, only 

 dense boxes


• Each row and column contains  dense boxes each


• The union of points in all the dense boxes contains 
 disjoint -appearances  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Where in the grid do these appear?



If gridding does not find a -appearanceπ
 disjoint -appearances have their “legs” in dense boxes arranged according 

to any one of the constantly many types of “configurations” 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If gridding does not find a -appearanceπ
 disjoint -appearances have their “legs” in dense boxes arranged 

according to any one of the constantly many types of “configurations” 
 
 
 
 
 
 
 
 
 

Ω(ϵn) π

3

2 1

4
3

2 1

4 3
2

1

4



How to find -appearances in these configurations?π

• For each configuration :


• Check for -appearances whose legs are in boxes forming the 
configuration 

𝒞

π
𝒞



A 2-boxed configuration
• Suppose  disjoint -appearances have their legs distributed according to the 

following -boxed configuration


At most  dense boxes & each dense box has  points


A uniformly random dense box  contains the (3,2) legs of  disjoint -appearances


There are  dense boxes sharing a row with , by our Gridding


Querying all points in the subarrays corresponding to  and the other dense boxes in its 
row is sufficient to detect such a -appearance   
                   queries overall, since we want a high success probability
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Other proof ideas
• Most other configurations are dealt with by similar averaging arguments


• However, more complicated arguments needed for some specific configurations


• Our algorithm works for patterns of all constant length 


• For patterns of length , our recursive algorithm ends up solving a more general 
problem


• Detect a -appearance with a specific leg appearance, where  is some subpattern of 


• The algorithm is called recursively in order to improve the query complexity to  
from 
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Open problems

• What is the true complexity of testing -freeness? 


Lower bounds for adaptive algorithms?


What about patterns of superconstant length?


Approximating the distance of arrays to -freeness 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Thank you!


