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Distribution Testing

Definition (Probability Distribution)

A probability distribution D over a universe {0, 1}n is a non-negative function
D : {0, 1}n → [0, 1] such that

∑
x∈{0,1}n D(x) = 1.

Definition (Distribution Property)

A distribution property P is a collection of distributions over {0, 1}n.

How are the distributions given?
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Huge Object Model

Consider distributions defined over {0, 1}n.

For large n, even reading a few samples is infeasible.

To address this, Goldreich and Ron [ITCS 2021] defined the huge object model.

Samples may only be queried in a few places.

Goal is to minimize sample and query complexities.
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Sampling & Query Model

Take s iid samples {X1, . . . ,Xs} from D.

At each step, query some index i , i ∈ [n] from some Xj , j ∈ [s].
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Motivation

Testing properties of high dimensional distribution has several applications. For example
clusterability testing has applications to computer vision.

Understanding the properties of CNF-samplers is another important problem with wide
applications.

Testing properties of the distribution over the satisfying assignments of the CNF-formula
such as uniformity, or high entropy.

When a formula’s size is large, reading the full assignment of the variables is very costly in
practice.

Ideally we would want to read the input only in few places.
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Property Testing in Huge Object Model

Given a property P, design an algorithm A such that

Input: A distribution D accessible via iid samples and queries to samples, and two
parameters ε1 and ε2 with 0 ≤ ε1 < ε2 ≤ 1.

Output: With probability at least 2
3 , output:

Yes if D is ε1-close to P.

No if D is ε2-far from P.

D is ε1-close to P if min
D′∈P

dEM(D,D ′) ≤ ε1.
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Earth Mover Distance (EMD)

Let D1 and D2 be two probability distributions over {0, 1}n. The EMD between D1 and D2 is
denoted by dEM(D1,D2), and is defined as the solution to the following linear program:

Minimize
∑

X,Y∈{0,1}n
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}n
fXY = D1(X) ∀Y ∈ {0, 1}n,

∑
X∈{0,1}n

fXY = D2(Y) ∀X ∈ {0, 1}n

0 ≤ fXY ≤ 1, ∀X,Y ∈ {0, 1}n
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Index-Invariant Property

Definition (Index-Invariant Distribution Property)

A property P is index-invariant if for all D ∈ P and all permutation σ : [n] → [n], Dσ ∈ P,
where

Dσ(wσ(1), . . . ,wσ(n)) = D(w1, . . . ,wn) ∀(w1, . . . ,wn) ∈ {0, 1}n

Property Monotone: D ∈ Monotone property if

X ⪯ Y implies D(X) ≤ D(Y), for any X,Y ∈ {0, 1}n,
Property Low-VC-dimension: D ∈ Low-VC-dimension if the support of D has
VC-dimension at most d .

Similarly, we can define non-index-invariant properties.

Identity with a fixed distribution.

Not the same as Label-invariant properties that consider all permutations
τ : {0, 1}n → {0, 1}n!
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Testing via Learning

If we can learn D, we can also test for any property P.

Definition (Learning a Distribution)

Given sample and query accesses to an unknown distribution D over {0, 1}n, and a parameter
ε ∈ (0, 1), construct a distribution D̃ such that dEM(D, D̃) ≤ ε.

Goal is to minimize query complexity.

Theorem (Folklore)

For any distribution D over {0, 1}n, Õ(2n) queries are sufficient to construct D̃.

Can we learn D with better query complexity ?

Arijit Ghosh RTA 2023



Our Result: Learning Clusterable distributions

Definition (Clusterable distribution)

A distribution D over {0, 1}n is called (ζ, δ, r)-clusterable if there is a partition C0, . . . , Cs of
{0, 1}n such that D(C0) ≤ ζ, s ≤ r , and for every 1 ≤ i ≤ s, dH(U,V) ≤ δ for any U,V ∈ Ci .

Clusterable distributions can be learnt easily.

Theorem

Clusterability ⇒ Distribution Learning with Constant Queries.
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Overview of Learning Algorithm

Take two sets of samples S = {X1, . . . ,Xt1} and T = {Y1, . . . ,Yt2} from D. Also sample
a set of indices R ⊆ [n] u.a.r.

Project S and T to R to obtain SR = {x1, . . . , xt1} and TR = {y1, . . . , yt2}.

For every yj ∈ TR , if there exists xi ∈ SR , if dH(xi , yj) ≤ 2δ, assign yj to xi . If no xi
found, keep it unassigned.

If total number of unassigned vectors is more than 3ζ, REJECT.
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Learning Algorithm Overview Contd.

Estimate the relative weight wi of every x1, . . . , xt1 ∈ SR .

Construct new vectors Z1, . . . ,Zt1 such that dH(Zi ,Xi ) ≤ δ/10.

Define D ′: D ′(Zi ) = wi for every i ∈ [t1] and D ′(ℓ) = 0 for ℓ ∈ {0, 1}n \ {Z1, . . . ,Zt1}.

Output D ′.
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Results from VC Theory

Definition (VC Dimension)

For a set of vectors V ⊆ {0, 1}n and a sequence of indices I = (i1, . . . , ik), with ij ∈ [n], let
V |I denote the set of projections of V onto I , i.e.

V |I= {(vi1 , . . . , vik ) : (v1, . . . , vn) ∈ V }.

If V |I= {0, 1}k , then we say that V shatters I . The VC-dimension of V is the size of the
largest index sequence I that is shattered by V .

Definition (α-packing number)

For a set of vectors V ⊂ {0, 1}n and α ∈ (0, 1), the α-packing number M(α,V ) of V is the
cardinality of the largest subset W ⊆ V such that ∀ X,Y ∈ V , dH(X,Y) ≥ α.

Small packing number implies clusterability!
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Our Result 2: Learning distributions of bounded VC-dimension

Theorem (Haussler’s Packing Theorem)

If the VC-dimension of a set of vectors V is d, then the α-packing number of V is

M(α,V ) ≤ e(d + 1)
(
2e
α

)d

Theorem

If the support of D has VC-dimension at most d, then D can be learned using constant
number of queries.

Bounded VC-dimension implies clusterability by Haussler’s Packing theorem.

Call the algorithm for learning clusterable distributions.
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Our Result 3: Tester for Bounded VC-dimension Properties

Theorem

Let P be an index-invariant property such that any D ∈ P has VC-dimension at most d. There
exists a tester that can distinguish whether D ∈ P or D is ε-far from P using poly(1ε ) queries.

Follows from the learning result.

Sample and query complexities of the tester are exponential and doubly-exponential in d
respectively.

Are these dependencies necessary?
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Our Result 4: Tightness of Bounded VC-dimension Property Tester

Theorem

There exists an index-invariant property Pvc with VC-dimension at most d such that any
tester for Pvc requires 2Ω(d) samples and 22

d−O(1)
queries.

Follows from Yao’s lemma.

Take a matrix A of dimension k × ℓ such that dH(A·,j ,A·,t) ≥ 1/3 with ℓ = 22
d−10

.

Construct V1, . . . ,Vk where Vi is the n/ℓ times “blow-up” of the i-th row of A.

Define DA(Vi ) =
1
k = 1

2d
for every i ∈ [k].

Dyes : Choose a permutation σ : [n] → [n] u.a.r and pick Dσ
A.
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Tightness of VC Tester Contd.

Choose ℓ′ = 22
d−20

many column vectors uniformly at random from A to construct the
matrix B of dimension k × ℓ′.

Construct W1, . . .Wk where Wi is the n/ℓ′ times blow-up of the i-th row of B.

Define DB(Wi ) =
1
k = 1

2d
for every i ∈ [k].

Dno : Choose a permutation σ : [n] → [n] u.a.r and pick Dσ
B .

Lemma

dEM(Dσ
A,D

σ
B) ≥ 1/8.
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Adaptive vs. Non-adaptive Testers

Adaptive testers can query depending upon the answers to previous queries.

Non-adaptive testers’ queries are oblivious to answers to previous queries.

Adaptive testers are more powerful.

For dense graphs, there is a tight quadratic gap ([Goldreich-Trevisan’03 &
Goldreich-Wigderson’21]).

For functions and sparse graphs, this gap is exponential ([Ron-Servedio’15,
Goldreich-Ron’97]).

What about huge object model?

Arijit Ghosh RTA 2023



Adaptive vs. Non-adaptive Testers

Adaptive testers can query depending upon the answers to previous queries.

Non-adaptive testers’ queries are oblivious to answers to previous queries.

Adaptive testers are more powerful.

For dense graphs, there is a tight quadratic gap ([Goldreich-Trevisan’03 &
Goldreich-Wigderson’21]).

For functions and sparse graphs, this gap is exponential ([Ron-Servedio’15,
Goldreich-Ron’97]).

What about huge object model?

Arijit Ghosh RTA 2023



Our Result 4: Exponential Gap for General Properties

Theorem

Any non-index-invariant property that can be adaptively tested using q queries, can be
non-adaptively tested using at most 2q queries.

Overall idea is to follow the decision tree T of the adaptive tester.

Since T has depth q, we can first non-adaptively make all 2q − 1 “potential queries”
inside T , and then follow the correct root to leaf path.

Is this gap is tight?
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Tightness of Exponential Gap

PPal : S ∈ PPal if |S| = n & S = vvRwwR, where vvR is over the alphabet {0, 1}, and wwR is
over the alphabet {2, 3}.

Lemma

PPal can be tested using O(log n) adaptive queries, but Ω(
√
n) non-adaptive queries are

necessary.

Upper bound follows from binary search.

Lower bound follows from result of Alon-Krivelevich-Newman-Szegedy ’99.
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Exponential Tightness Proof Contd.

1PPal
: For any D ∈ 1PPal

, |Supp(D)| = 1, and for x ∈ Supp(D), x ∈ PPal .

Theorem

1PPal
can be tested adaptively using O(log n) queries, but Ω(

√
n) queries are necessary for any

non-adaptive tester.

First test if the support size of D is 1 ⇒ Õ(1/ε) queries are enough.

If the above test passes, test for PPal .

Lower bound follows from testing PPal .
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Our Result 5: Quadratic Gap for Index-Invariant Properties

Theorem

Any index-invariant property that can be adaptively tested using q queries, can be
non-adaptively tested using at most q2 queries.

Consider an adaptive tester A with sample complexity s and query complexity q.

Simulate a semi-adaptive tester A′ that queries q indices from each of the s samples.

Apply a uniformly random permutation σ over [n] and run A′ over Dσ. Sample
Complexity s and Query Complexity qs.

Is this gap is tight?
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Tightness of Quadratic Gap

Theorem

There exists an index-invariant property PGap that can be tested adaptively using Õ(n)

queries, but requires Ω̃(n2) non-adaptive queries.

Lemma (Valiant-Valiant’11)

Given an unknown distribution D over [2n], accessed via iid samples and a parameter
ε ∈ (0, 1/8), to distinguish whether D has support size at most n or D has at least (1 + ε)n
elements in the support, Θ( n

log n ) samples from D are necessary and sufficient.

Encode hard distributions from Valiant-Valiant’s result using a secret sharing code.
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Conclusion

This is a very recent model with lots of potential applications.

We proved that distributions whose support has bounded VC-dimension can be learned in
constant number queries.

For index-invariant properties, there is a tight quadratic gap between adaptive vs.
non-adaptive testers.

This is in contrast with a tight exponential gap for general properties.

Recently Adar-Fischer [AF’23] studied various notions of adaptivity in this model.

It would be interesting to see new notions!

THANK YOU!!
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